METR 4202 -- Advanced Controls & Robotics

Individual Quiz		September 23,2015
Name:		
Student Number:		
	Answers must be neat and clear. All answ	d Problems. Please Answer All Questions wers (except for multiple choice) must
You may use the back of easis worth 100 points.	ach sheet as scratch paper if needed. Each	ch question is worth <u>10 points</u> . The total quiz
	Please clearly mark your fin	nal answer
_	2D transformation (e.g., for imagint in the first image.	res) where \mathbf{x}^{\bullet} is a point in the second
	the transformation is rigid (Euclides (i.e., x ' and \underline{x} together) are nee	dean), how many point eded to recover the transformation?
		transformation, how many point eded to recover the transformation?
	the transformation is an affine tra es (i.e., x' and <u>x</u> together) are nee	ensformation, how many point eded to recover the transformation?

2.	What are the differences between the joint space, workspace and operation space? (explain fundamentally, not just their <u>definitions</u>).
3.	What does the Null-space of the Jacobian inform or imply for a serial robot?
4.	What is a distinguishing feature of SfM's operation, in particular over SLAM? (explain fundamentally, not just the acronyms).
	(explain fundamentally, not just the actonyms).

- 5. Consider two 2D homogenous points P_1 and P_2 . For parts (a), (b) and (c), what is the equation of the line between them?
 - a. Two non-collinear points If $P_1 = (a, b, c)$ and $P_2 = (d, e, f)$

b. If $P_1 = (3, 2, 1)$ and $P_2 = (2.5, 2, 1)$

c. If $P_1 = (4, 2, 1)$ and $P_2 = (0, 2, 1)$

d. Are the lines found in part (b) and (c) parallel to each other? Briefly, why?

6. Consider the camera calibration process with a *planar* calibration object (e.g., a planar checkerboard). The object possesses M distinct features. The camera takes K images. You may assume an undistorted camera with following following characteristics: • Zero skew (orthogonal pixel arrangement) • Unity aspect ratio (square pixels) • Known image center (at ½ of image height and width) a. Given these assumptions, what unknown parameters are there to calibrate? (hint: what intrinsic parameters need to be recovered? And, what extrinsic parameters need to be recovered for each image?) b. For the K images, each of M features, how many constraints are given? c. For the K images, each of M features, how many parameters need to be calibrated? d. For M = 4, what is the minimum number of images needed to determine the calibration?

7.]	Please state if the	following statements	are generally TR	UE (T) or FALSE (F)
------	---------------------	----------------------	------------------	---------------------

The inverse of a rotation matrix is always its transpose. $T \mid F$ b. The inverse of a transformation matrix is its transpose. $T \mid F$ Homogeneous transforms are linear operations. $T \mid F$ d. In DH one of the four parameters (a, α, d, θ) must be 0. $T \mid F$ The inverse kinematics of a 6R arm is closed form with 16 solutions. $T \mid F$ f. Straight lines remain straight under a perspective transformation. $T \mid F$ g. For a manipulator, the torque needed is a function of the pose. $T \mid F$ h. RGB colour spaces are invariant to changes in illumination. $T \mid F$ Local perspective transformations are approximately affine transformations. $T \mid F$ j. The fundamental matrix is invertible. $T \mid F$

- 8. What small changes in properties is SIFT invariant to?
 - a. Rotation
 - b. Illumination
 - c. Affine
 - d. (a) and (b)
 - e. (a) and (b) and (c)

9. For a general coordinate transformation between four frames {A}, {B}, {C}, and {D}. What is the overall transformation matrix ${}_D^A T$ between {A} and {D} as a function of the **individual** Rotations [${}_i^{i+1}R$, eg ${}_b^aR$] and Positions [${}_i^{i+1}P$, eg ${}_b^aP$].

10. Consider the planar manipulator shown at right

Assume the following properties:

- $a_1 = 42 \text{ cm}$
- $a_2 = 32 \text{ cm}$
- $a_3 = 15 \text{ cm}$
- θ_1 , θ_2 and θ_3 may take a value from 0 to 360°
- a. Provide two classes of pose where the arm will be at a singularity

b. What value of joint angles will get the tip to the position [0, 89] cm?

c. What value of joint angles will get the tip to the position [21.4, 53] cm with an orientation of 180 degrees (in Frame {0})?