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Probabilistic Robotics: Control 
(LQR, Value Functions, Q-Learning, 
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& The Future of Robotics/Automation 
(Open Challenges)
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Reference Material

UQ Library / Online (PDF)

UQ Library
(TJ211.4 .L38 1991)
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Probabilistic Robotics
What about variation?

October 21, 2019 -METR 4202: Robotics 4



Inherent Sources of Uncertainty
There are some common sources of uncertainty:
• Inherent stochasticity in the system being modeled

• Incomplete modeling

• Incomplete observability

• Incompetent control (or action)
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Two Views of Probability

Frequentist probability
• Relates directly to the rates at 

which events occur
• Basically, things that are 

directly “repeatable”
• e.g. Drawing a hand of cards

Belief (Bayesian) probability
• Degree of a Belief
• Qualitative levels of uncertainty
• For more details about why a 

small set of common sense
• Ramsey (1926) –

The same set of axioms control 
both kinds of probability
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II.1 Basic Probability Theory

• Probability Theory
– Given a data generating process, what are the properties of 

the outcome?

• Statistical Inference
– Given the outcome, what can we say about the process that 

generated the data?
– How can we generalize these observations and make 

predictions about future outcomes?
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In Particular: Bayes’ Rule

• What does Bayes’ Formula helps to find?
– Helps us to find:

– By having already known:

( )ABP |

( )|P A B
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Example: Inference  / Generative Models
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Robot Controls
Controls Example I: Cart & Pole 

(& Obstacles)
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Classic State-Space Problem: Cart & Pole
• Equations of State:

(" +$) '̈ + $()̈cos) − $()̇/sin) = 3
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See Also: Tutorial 12: Cart-Pole Inverted Pendulum (State-Space)
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Motion Planning & Control: a Unified Design Tool? 

Atkeson, C. & Stephens, B.
“Random sampling of states in dynamic programming” IEEE T. Syst. Man Cybern, 2008

Maeda, Singh, Durrant-Whyte, ICRA 2011

GPS tree

Belief tree

Seiler, et al. ICRA, May 2015, 2290-2297

⇡
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#!POMDP Framework:
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Why?  Bellman’s Principle of Optimality
• Suppose we are given a DT ODE

Δ" = $ ", &
" ∈ ℝ), & ∈ ℝ*

• Optimal Control:
Find &: 0, - → ℝ* that minimizes the cost (or said more optimistically: maximizes the reward):

/ ", & = 0 -, " - + 2
345

678
ℒ :, " : , & :

• Bellman’s insight (1957):
* the optimal control at time s depends only on ; <

(i.e.  not any prior states!)
∴ It’s an MDP!

Final cost

“Running” cost
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Motion Planning & Control: 
Trajectory Generation with Constraints

Steering/Feedback Control
Methods:

Motion  Planning Methods:
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Feedback controller

Motion planner

Parameterized 
control policy
(PID, LQR, …)

One Approach: Gain-Scheduled RRT
Core Idea: 
• Basic approach: decoupling à tractable
• Integrated approach: use feedback to shortcut the planning phase

xgoal

xinit
*  Maeda, G.J; Singh, S.P.N; Durrant-Whyte, H. 

“Feedback Motion Planning Approach for Nonlinear Control using Gain Scheduled RRTs”, IROS 2010
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Gain-Scheduled RRT: Algorithm

Initialize tree(s)

Design feedback at 
the goal

Estimate the RoA

Extend tree

Try to reach RoA

Finish

yes

no
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Gain-Scheduled RRT

Holonomic case

q(m)

q(
m

/s
)

Under differential constraints

xinit 
s(m)

r(m
)

xgoalxrand 

Core Idea: 
• Basic approach: decoupling à tractable
• Integrated approach: use feedback to shortcut the planning phase

*  Maeda, G.J; Singh, S.P.N; Durrant-Whyte, H. 
“Feedback Motion Planning Approach for Nonlinear Control using Gain Scheduled RRTs”, IROS 2010
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A RRT solution rarely reaches the goal (or connect the two trees) with zero error

How large?

Gain-Scheduled RRT: RRT Connection Gap

Connection gap
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Region search
RRT connection is relaxed

Gain-Scheduled RRT: Search

Backwards tree

Forward tree

goal

Single state  search:
Extensive exploration

Feedback system
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Sum of squares relaxation

GS-RRT: RoA & Verification
• Find a candidate

• Maximize candidate ( ρ )

• Verify candidate 
**R. Tedrake, “LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees”, RSS 2009

V(x) =
In the LQR case: J: optimal cost-to-go S: Algebraic Ricatti Eq.

goal
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Gain-Scheduled RRT:

22October 21, 2019 -METR 4202: Robotics 22



Automatic 
Robot Controls

Controls Example II: 
Underactuated Robotics
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The Jitterbug Problem
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Solving the Jitterbug Problem: 
Continuous Action Deep Reinforcement Learning
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Solving the Jitterbug Problem:
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Future of Robotics
Some Research Examples J
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Computer Aided Surgery: R/C Toolholders?

èMove in tandem with heart: Cardiac procedures without stopping it
• Unstructured environment (patient) makes this harder
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• Biomechanics approach: Predict expected tissue trajectories
• (Stochastic) Robot Motion Planning / Control Methods!

Modern (Tele)Surgical Robotics:

ARC DP160100714
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Computer Aided Surgery: “Soft” is “Hard”!
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Research: Incorporating Stiffness (Haptics): 
Visual Deformable Object Analysis 

Dansereau, Singh, Leitner, ICRA 2016
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Iceberg to Titanic: Take Advantage of Information

• 30 Min/Day Talking on Phone 
– 5.5 days/year of audio samples 

– Track this (notably the pauses) 
over time to detect onset of 
dimentia

• 150 Photos/Month
– Time history for detecting 

precursors 
– Skin cancer monitoring
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How?

• More Signals • Stochastic Processing
(Think TAPIR!)
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Robotics & Health: A Friendly Touch!
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∴ Planning to Inform “Novel Robot” Design Strategy

Morley-Drabble & Singh, AIM 2018 Ham, Singh & Lucey, WACV 2017
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THE 
Future of Robotics…
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You! 
J
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It’s all up to you!

If you want to build a ship, don't drum up the 
men to gather wood, divide the work and give 
orders. Instead, teach them to yearn for the vast 
and endless sea.

Antoine de Saint-Exupery, "The Wisdom of the Sands"

© National Geographic. Suruga Bay, Japan
“The Magic Starts Here: Kenji’s Workshop of Camera Wizardry”, December 4, 2014
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UQ Robotics: Dynamic Systems in Motion

Decision-Making/
Planning

Mechanics
of motion

Aerial Systems

Systems

Pauline Pounds (ANU/Yale)
Surya Singh (Stanford/Syd)

Diverse international 
research group
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