
COMP3702/7702 ARTIFICIAL INTELLIGENCE

Semester 2 2017: Tutorial 3 Solutions

Question 1

a)

We know that h1 is an admissible heuristic. That is to say, it does not overestimate the true

cost to the goal. From the question, we know that h1(s) has values between 0.1 and 2.0.

ℎ2(𝑠) = ℎ1(𝑠) + 5. We can’t guarantee that ℎ2(𝑠) is admissible because ℎ2(𝑠) is larger

than ℎ1(𝑠). Because of this, we cannot say for sure whether or not ℎ2(𝑠) overestimates the

true cost to the goal. If however, ℎ2(𝑠) was smaller than or equal to ℎ1(𝑠) for any state 𝑠,

then we could guarantee this.

ℎ3(𝑠) = 2ℎ1. This heuristic will always be larger than ℎ1(𝑠). Thus, for the same reason as

ℎ2(𝑠), we cannot guarantee its admissibility.

ℎ4(𝑠) = cos⁡(𝜋ℎ1(𝑠)). We know that: −1 ≤ cos(𝑥) ≤ 1 and that 0.1 ≤ ℎ1(𝑠) ≤ 2.0. This

means that there may be some state 𝑠, such that cos(𝜋ℎ1(𝑠)) > ℎ1(𝑠). For example when

ℎ1(𝑠) = 0.1, ℎ4(𝑠) = cos(0.1𝜋) = 0.99998 > 0.1. For this reason, we cannot guarantee

the admissibility of ℎ4(𝑠).

ℎ5(𝑠) = ℎ1(𝑠) cos(𝜋ℎ1(𝑠)). This heuristic is equivalent to: ℎ1(𝑠) ℎ4(𝑠). Since the output of

ℎ4(𝑠) is being scaled by ℎ1(𝑠), we can guarantee that ℎ5(𝑠) ≤ ℎ1(𝑠). Since we know that

⁡ℎ1(𝑠) is admissible and thus never overestimates the true cost to the goal, we can

guarantee the same for ℎ5(𝑠).

b)

Despite ℎ2(𝑠) not being admissible, we can guarantee that it generates an optimal path.

Consider three states 𝑠1, 𝑠2 and 𝑠3 such that ℎ1(𝑠1) < ℎ1(𝑠2) < ℎ1(𝑠3). Since

ℎ2(𝑠) = ℎ1(𝑠) + 5, we can say that ℎ2(𝑠1) < ℎ2(𝑠2) < ℎ2(𝑠3).⁡ As such, the order in which

nodes are expanded from the frontier of a minimum-cost priority queue in an A* search

using ℎ1(𝑠) and ℎ2(𝑠) are the same. Since we know that using ℎ1(𝑠) produces an optimal

path, we can guarantee that ℎ2(𝑠) also produces an optimal path.

A similar argument can be used to show that using ℎ3(𝑠) in an A* search will also result in

an optimal path despite ℎ3(𝑠) not being an admissible heuristic.

ℎ4(𝑠) = cos(𝜋ℎ1(𝑠)). Given three states 𝑠1, 𝑠2 and 𝑠3 such that ℎ1(𝑠1) < ℎ1(𝑠2) < ℎ1(𝑠3),

we cannot guarantee that ℎ4(𝑠1) < ℎ4(𝑠2) < ℎ4(𝑠3). To check this, consider the following:

ℎ1(𝑠1) =
1

4
 , ℎ1(𝑠2) =

1

2
 , ℎ1(𝑠3) =

3

4
. In this case ℎ4(𝑠1) =

√2

2
, ℎ4(𝑠2) = 0 , ℎ4(𝑠3) =

−√2

2
.

This means that the order in which nodes are expanded from the frontier of the priority

queue can differ between an A* search using ℎ4(𝑠) and ℎ1(𝑠). Because ℎ4(𝑠) is also a non-

admissible heuristic, we cannot guarantee that using ℎ4(𝑠) will generate an optimal path.

For the same reason as ℎ4(𝑠),⁡using ℎ5(𝑠) in an A* search may expand nodes from the

priority queue in a different order to an A* search using ℎ1(𝑠). But because ℎ5(𝑠) is an

admissible heuristic, it will still generate an optimal path.

Question 2

Yes we can remove vertices and edges from G and still ensure that the shortest collision-free

path between a given initial and goal point can be found.

For visualisation purposes, we will consider this non-convex polygon to be an example of an
obstacle in the question.

We can remove the reflex vertices and all the edges are connected to it.

If the obstacle vertex nearest to the given initial/goal states is not a reflex vertex, then a

path that moves to the reflex vertex is essentially a detour and will be longer than a path

that does not pass through such a vertex.

Stepping towards
the reflex vertex
would result in a
detour

Reflex vertex

Initial state

Goal state

Even if the obstacle vertex nearest to the given initial/goal states was a reflex vertex,

stepping to the reflex vertex would still result in a detour. One could move more directly

towards the goal state without moving towards the reflex vertex.

Therefore, removing reflex vertices and edges connected to it from the visibility graph will

not change the optimality of the path we can find.

Reflex vertex

Initial state

Goal state

Question 3

a)
The C-space for this robot is real one-dimensional space spanning 0 to 360.

b)

The configuration space is drawn in green [0, 360]

The forbidden region is drawn in red [45, 135]

