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Abstract

In this paper, we introduce optimal markers to be
used with the SIFT and SURF feature detectors.
They can be applied to trigger the detection of fea-
ture points at desired locations. Unlike conventional
marker systems, we do not propose a standalone so-
lution comprising a set of markers and a thereto
adapted detection algorithm. Instead, our mark-
ers are adapted to existing and established detec-
tors. In particular, we introduce markers optimally
suited for SIFT and SURF. We derive the optimal
design and show their high detectability within a
wide range of different imaging conditions in ex-
periments on both synthetic and real data.

1 Introduction

In the field of Augmented Reality, the use of so
called fiducial markers is common practice in order
to obatain reliably extractable 2D-3D correspon-
dences. Subsequent tasks such as pose estimation or
object recognition are hence vastly simplified. Due
to their versatility and low installation costs, fidu-
cial markers are often chosen over tracking systems
employing more costly infra-red or active markers.
Example applications from other fields include vi-
sual servoing in robotic surgery and monitoring in
production logistics.

In many applications, fiducial markers are sup-
plemented with image features originating in salient
points in the scene itself. Many algorithms exist
for feature extraction. Maybe the most widely used
are SIFT and SURF, two closely related algorithms
that yield scale and rotation invariant image feature
points. At the other end of the scale, in merely
feature-based applications, it might even so be de-
sirable to place some reliably detectable reference

Figure 1: Our SIFT (left) and SURF markers.

points on unstructured surfaces, which would usu-
ally not be detected.

In this work, we propose a light-weight marker
framework that conflates the 2-stage strategy con-
sisting of marker detection and feature point extrac-
tion into a more efficient 1-step approach. We aim
at the vast number of computer vision applications
which are based on feature points, enhancing them
with markers that fully integrate into the existing
detection process. The markers we have developed
for SIFT and SURF are provably optimal in that
they trigger maximum response by the respective
detector.

The remainder of the paper is structured as fol-
lows. In Section 2, we will give a brief overview
on existing marker systems and the functioning of
the SIFT and SURF feature detectors. Section 3
introduces the optimal markers for both these de-
tectors, which are then validated experimentally in
Section 4. We conclude the paper in Section 5 giv-
ing an outlook on future work.
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2 Related Work

2.1 Fiducial Markers

Fiducial markers are widely used in a variety of
different fields. Depending on the particular appli-
cation, different designs have been proposed. An
overview and comparison of different marker sys-
tems can be found in [13]. Fiducial marker sys-
tems typically consist of a set of distinguishable
labels that are placed in the scene and can be de-
tected and decoded by an associated algorithm. Ac-
cording to the design of the markers, the detection
consists of several nontrivial steps such as edge de-
tection, linking and line fitting. Decoding refers to
the identification of a detected marker. Early sys-
tems used correlation-based approaches to match
the appearance of a marker against a database of
templates [4, 5]. State-of-the-art marker systems
employ binary error correcting codes to allow the
unique and robust identification of thousands of dif-
ferent markers [3]. Recently, there have been efforts
towards lowering the computational complexity for
mobile real-time applications [12, 11]. Compared
to these highly specialized systems, our proposed
marker scheme offers very elementary, yet highly
valuable functionality: making feature points reli-
ably detectable, at no additional expenses.

Desirable properties of a conventional marker
system are low false positive and false negative
rates, as well as low inter-marker confusion rates
if the system comprises more than one distinguish-
able marker. That is, the system should neither re-
port a detected marker when there is none, nor miss
or mistake an actually present marker.

As mentioned before, state-of-the-art marker sys-
tems like, e. g., ARTag [3] use error correction
mechanisms which allow them to reach unrivaled
performance in terms of false positive and inter-
marker confusion rates. As our light-weight marker
system provides only one marker, respectively two
markers in the case of SURF, inter-marker confu-
sion is not an issue. Our main goal is to have a
highly detectable low-cost marker, not necessarily
a uniquely detectable one.

The key virtue of our system is its remarkably
low false negative rate. As we demonstrate in Sec-
tion 4, it can be virtually guaranteed that our mark-
ers get detected even under dramatically varying
imaging conditions. This makes them highly useful
in applications where SIFT or SURF points need to

be found at a desired location.

2.2 Scale Invariant Feature Transform
and Speeded Up Robust Features

Both SIFT [7] and SURF [1] belong to the fam-
ily of scale invariant feature detectors. As such,
they analyse an input image at different resolutions
in order to repeatably find characteristic blob-like
structures independently of their actual size in an
image. To this end, both algorithms use multi-
scale detection operators to analyze the so called
scale space representation of an image. In a sec-
ond step, detected features are assigned a rotation-
invariant descriptor computed from the surround-
ing pixel neighborhood. The interested reader is
referred to the original publications of SIFT and
SURF for more detailed information about their in-
ner workings. In the following, we will briefly re-
view those parts of both algorithms which are rele-
vant for our marker design: the detection operators,
and the composition of the descriptor.

Detection Operators It has been shown that
gradually filtering with a Gaussian kernel is par-
ticularly suited to build the scale space represen-
tation of natural images [6]. Furthermore, the
Laplacian operator has proven very usable for in-
terest point detection [8]. Consequently, SIFT uses
an approximation to the Laplacian of Gaussians
in order to find features on discrete scale levels.
This is achieved by convolving the image I with
Difference-of-Gaussian (DoG) filters of increasing
size. The SIFT detection filter output reads:

DSIFT(x, y, σk) =
(
Hk

DoG ? I
)
(x, y),

where Hk
DoG = Gσk+1 −Gσk (1)

Here, Gσk is a bivariate Gaussian with standard de-
viation σk representing the scale. Figure 2 shows
the typical “flipped mexican hat” shape of Hk

DoG.
The discrete scales are chosen appropriately to
cover a reasonable range. Features are found as
local maxima of the filter output in 3-dimensional
scale space. Every feature point hence is a combi-
nation of location and scale maximizing DSIFT.

SURF builds on the concepts of SIFT but intro-
duces more radical approximations in order to speed
up the detection process. Due to the use of inte-
gral images the complexity of SURF is greatly re-



Figure 2: Difference of Gaussians (DoG) filter used
by SIFT.

Figure 3: Box filteres used by SURF to approximate
second order Gaussian derivatives.

duced, yet, SURF often achieves superior perfor-
mance than its predecessor. Instead of the Laplacian
operator, SURF uses the determinant of the Hes-
sian for feature detection in scale space. Figure 3
shows the box filters G̃σxx, G̃σyy and G̃σxy approxi-
mating the second order derivatives of the Gaussian
Gσ . Scales are again discretized and depend on the
size of the used box filters. By definition, a kernel
size of s×s pixels corresponds to σ= 1.2

9
s. Apply-

ing these box filters to an image I yields the entries
of the Hessian matrix, and we have the following
detection operator output:

DSURF(x, y, σ) = det

[
H11(x, y) H12(x, y)
H21(x, y) H22(x, y)

]
(2)

where

H11 = G̃σxx ? I, H22 = G̃σyy ? I,

H12 = H21 = G̃σxy ? I

It is important to note here that, as opposed to the
DoG filters, the SURF detection operator is nonlin-
ear in the input image I .
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Figure 4: Left: The support used to compute the
descriptors in size comparison with the respective
markers. Right: The descriptors of the markers.
The highlighted entries corresponding to the inner
four subblocks constitute the marker’s signature.

Descriptors After detection, every feature is as-
signed a ”fingerprint” computed from the gradient
distribution around its pixel location. The more dis-
tinct these descriptors are, the better the results ob-
tained in a subsequent feature matching step. In our
case, descriptors will also be used to identify mark-
ers in an image.

The SIFT descriptor is constructed from a square
neighborhood of side length 12σ pixels, where σ
is the scale of the feature. This neighborhood is
aligned with the dominant local gradient direction,
and Figure 4 shows its 4×4 subdivision. For each
of the 16 subregions a 8-bin histogram of weighted
gradients is built, and finally the descriptor is com-
piled by sorting the bins’ contents from all sub-
blocks into a vector of length 8×4×4=128. Due
to the scale and rotation adaptive creation process,
SIFT descriptors are mostly invariant to moderate
geometric transformations.

SURF uses a very similar descriptor layout, also
based on a square region around the feature point
which is aligned with the dominant gradient, and
subdivided into 16 subblocks (see Fig. 4). The
only differences are that the neighborhood is chosen
20σ pixels wide, and that every subblock only con-
tributes 4 descriptor entries. Instead of histogram
values, the sum and absolute sum of the gradient’s
x- and y-components are used. In total, the SURF
descriptor hence comprises 64 entries.



3 Optimal Marker Design

In this section, we derive the optimal input images
for the SIFT and SURF detectors, which then lend
themselves as ideal markers for the respective de-
tector. In this context, optimal refers to giving rise
to the highest possible detector output.

3.1 The SIFT Marker

In case of SIFT, the task of determining the optimal
marker is that of maximizing the output of a linear
filter. As discussed in Section 2.2, this filter is a
DoG as given in Equation (1).

In signal processing, matched filters are used
to recover noisy signals of known shape [9]. A
matched filter maximizes the signal-to-noise ratio,
and its impulse response is simply the reversed ver-
sion of the given signal. In our case, we are given
a DoG filter and we search for the energy-limited
signal which, superimposed with image noise, will
yield maximum response at the filter output. In
analogy to the matched filter design, we conse-
quently choose our SIFT marker to be a DoG it-
self. Its shape and appearance are shown in Fig-
ures 2 and 1. Note that the reversed DoG is a valid
“matched signal”, thus marker, as well.

Figure 4 shows the associated descriptor which
can subsequently be used to identify the marker. Its
characteristic shape due to the fact that the main
lobes of the DoG fall inside the inner four subblocks
is beneficial for descriptor matching. We will refer
to these parts of the descriptor as the marker’s sig-
nature.

3.2 The SURF Marker

SURF on the other hand uses a nonlinear detection
operator. Hence, the matched filter approach we
took for SIFT is no longer applicable in this case.
Nevertheless, we can derive the input image that
will maximize the detector response by solving the
corresponding optimization problem.

Without loss of generality, we will derive the
SURF marker of size 9× 9 pixels here which in-
volves 81 variables in our optimization. The prob-
lem can of course also be solved for the other ker-
nel sizes used by SURF, i. e., 15, 21, 27, and so
on. However, as the complexity of the problem in-
creases with the square of the filter size, it should

be stated that the resulting markers will just be up-
scaled versions of the 9×9 marker. Hence, we settle
for the case s=9 in the following, and consequently
σ=1.2. Assume we want (2) to attain a maximum
at position (x0, y0). Then the 81 pixels in the square
region centered on (x0, y0) have to be taken into
consideration. These are the only pixels which are
actually covered by the support of the considered
operator and their values must be adjusted such as
to maximize DSURF(x0, y0, 1.2).

First, we arrange our 81 variables into the vec-
tor x, and accordingly the entries of the box filters
into the vectors gxx, gxy and gyy . From (2), the
filter output can then be written as follows.

DSURF(x0, y0, 1.2) =

∣∣∣∣g>xxx g>xyx

g>xyx g>yyx

∣∣∣∣
= x> (gxxg

>
yy − gxyg

>
xy)︸ ︷︷ ︸

G

x

= 1
2
x>(G>+G)x

With A = G>+ G, this leads to the following
quadratic optimization problem if we additionally
require that the pixel values be upper bounded.

max
x

x>Ax, s.t. ‖x‖ ≤ 1 (3)

It can be shown that rankA= 3, so the eigenvalue
decomposition A= UΛU> together with the sub-
stitution y=U>x yields the equivalent problem:

max
y

y>Λ y = max
y

(λ1y
2
1 + λ2y

2
2 + λ3y

2
3),

s.t. ‖y‖ ≤ 1

There are two solutions yopt =[±1, 0, . . . , 0]>
and back-substitution reveals that xopt is the eigen-
vector corresponding to the largest eigenvalue of
A (and its inverse respectively). Rearranging xopt

into a 9×9 image and adjusting its values to span
the whole range of gray values eventually leads to
the desired SURF markers, as depicted in Figures 5
and 1.

Due to their discrete nature, the SURF markers
leave an even more characteristic descriptor signa-
ture than their SIFT counterparts (see Figure 4). It
is particularly noteworthy that the signatures of the
dark and light versions of the SURF marker are dis-
tinguishable. However, the entries corresponding to
the sum of absolute gradients values are identical
for both.



Figure 5: Maximum response SURF marker opti-
mized for a kernel size of 15 pixels. Note the quali-
tative similarity to the reversed Mexican hat of Fig-
ure 2.

4 Experiments on Detectability

The markers we have derived in the previous sec-
tion are provably optimal only if viewed under per-
fect conditions, i. e., fronto-parallel to the camera,
upright, and at the exact same size as the operator
they were optimized for. The experiments we ran
on synthetic data suggest, however, that our mark-
ers are still detectable if imaged at sizes halfway be-
tween scales, and under perspective distortions. In
this section, we will give the results of our synthetic
experiments, and demonstrate detectability also in
real images. For all our experiments, we used the
SIFT implementation by Andrea Vedaldi [10] and
the OpenCV [2] implementaion of SURF.

4.1 Detectability under Distortion

In general, there are two properties related to the
performance of the proposed markers that have to
be distinguished.
Detectability: A marker is detectable in an image

if it generates a local maximum in scale space,
i. e., the detector will report a feature point at
the marker position. This is the minimum re-
quirement towards our markers.

Unique detectability: If the imaged marker even
triggers the global maximum in scale space,
or if the combination of high detector re-

Figure 6: Examples of the distortions we applied to
the SURF marker in our synthetic experiments. In
plane rotation by 10◦, out-of-plane rotation by 40◦,
Gaussian noise with standard deviation equal to 50
gray values. The green cross indicates the position
at which the marker has been detected

sponse and signature similarity identifies it as
a marker, it is uniquely detectable. The exper-
iments we describe in Section 4.2 suggest that
our markers also have this property.

The goal of the following experiments is to
backup the theoretical optimality of our marker de-
sign. More specifically, we want to show that
even under unfavorable viewing conditions, i. e.,
other than those assumed during the derivations, the
markers still yield over-average detector response.
What we would ideally expect is a detector response
invariant to all these effects.

We used the following setup: A synthetically
generated marker, either SIFT or SURF, is placed
centered in front of a uniform background in an im-
age of size 513×513 pixels. The initial size of the
SURF marker is s=147 pixels, and σ=15 pixels in
the SIFT case. After applying different distortions
to the image, we run the respective feature detec-
tor and measure the detector response. At the same
time, we follow the localization error with respect
to ground truth, and if the marker is detected more
than 3 pixels off, we declare it undetected. This is a
rather strict rule compared to the used marker size.
The distortions we have investigated are
(a) scaling,
(b) in-plane rotation,
(c) out-of plane rotation and
(d) image noise.

Figure 6 illustrates the applied distortions in the
case of the SURF marker. Note that for the depicted
out-of-plane rotation, the detection of the marker
did not pass our 3 pixel accuracy test. Yet, the de-
tection itself was apparently correct.

Figures 7 to 9 show the behavior of the response
values for selected examples. Our overall observa-



0 50 100 150 200 2500

10

20

30

marker size σ in image (pixel)

SI
FT

 re
sp

on
se

0 50 100 150 200 2500

5

10 x 104

marker size s in image (pixel)

SU
R

F 
re

sp
on

se

Figure 7: Behavior of detector response under scal-
ing of the marker.

tion is that the detector response in general stays on
a fairly high level, i. e., close to the maximum value
reachable in the absence of distortion. Within the
plotted ranges the 3 pixel threshold was never vio-
lated (except for major angles in the out-of-plane
rotation scenario). However, there are some unex-
pected effects which require further investigations.

A first interesting observation is the behavior of
the response over the actual marker scale (Fig. 7).
Both SURF and SIFT exhibit isolated ditches at
mid-scales. Apparently, the spacing between neigh-
boring scale values is adversely coarse in these re-
gions. Apart from that, the two curves show the ex-
pected behavior. At too small sizes, inferior to the
smallest detector operator, the marker does not get
detected at all. In the case of SURF, there is also an
upper limit to the detectable marker size as, differ-
ent from SIFT, there is a predefined number of scale
steps. This experiment suggests a minimum size for
the SURF marker of 12 pixels, and a maximum size
of 210 pixels. In practice, typical sizes are likely
not to exceed 50 pixels as markers are preferred to
be as nonintrusive as possible.

Regarding the behavior with respect to in-plane
rotation, the results are convincing (Fig. 8). Even
though there are minor variations in the detec-
tor output, the overall response level remains con-
stantly high. This was to be expected for the rota-
tionally symmetric SIFT marker, because the used
resolution is sufficiently high to avoid severe alias-
ing artifacts. It is remarkable in case of the SURF
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Figure 8: Behavior of detector response under in-
plane rotation.

marker however, for which reduced detectability for
rotation angles around 45◦ would seem inevitable.

For out-of-plane rotations (Fig. 9), the markers
hit the limits that are given by the feature detec-
tors themselves. It is known that both detectors
do not cope well with angles beyond some 40 de-
grees. While the SIFT marker does well in terms
of high detector output, it exceeds the 3 px local-
ization accuracy test for angles greater than 35 de-
grees. The SURF marker exhibits a significant re-
sponse decrease and also deviates from ground truth
more than 3 pixels for angles superior to 25 degrees.

The behavior with respect to artificially added
image noise is not shown here. It turns out that
both marker variants are highly robust against noise.
The performance degradation follows a linear de-
scent and is only relevant for unnaturally high noise
levels with a standard deviation of at least 20% of
the range of gray values.

4.2 Example Applications

Our markers are particularly useful whenever
homogeneous, unstructured surfaces need to be
”spiced up” with detectable features. Here, we
touch on two example applications .

Robotic Navigation Imagine an experimental
setup where a solely vision-based robot is to nav-
igate through the lab in order to fulfill a certain
task. Without a map or detectable markers in the
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Figure 9: Behavior of detector response under per-
spective distortion. The dotted red lines indicate
the limit above which the localization error ex-
ceeds 3 px.

scene, the robot would certainly lose track. Assume
the task involves the recognition of certain objects
which is based on the use of SURF features already.
Such a prototypical scenario is the ideal application
for our markers: We lay out the path to be followed
by simply lining it with markers the robot can detect
with its already built in functionalities.

Given the sensitivity to out-of-plane rotations ac-
cording to our experiments from Section 4.1, we
propose a simple preprocessing step for this partic-
ular scenario: As the height of the robot mounted
camera remains constant, we can assume that the
markers are always perceived perspectively dis-
torted in the same way, i. e., they appear wider than
high. We found that stretching the image vertically
by a factor 2 (using bilinear interpolation) improves
marker detection significantly.

As illustrated in Figure 10, we placed 14 8×8 cm
markers on the floor and ran SURF with very low
response threshold on the depicted image. In to-
tal, some 30000 features were detected. Neverthe-
less, the markers derived in this paper were reli-
ably found as those features with the highest detec-
tor response values. Two of the markers were de-
tected twice, each time with different orientation, so
there are 16 highest response features for 14 present
markers.

Figure 11 shows the response values in descend-
ing order. The labels in Figure 10 relate to this rank-
ing. A drop from feature 16 to feature 17 is clearly
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Figure 10: Image captured with a Panasonic DMC-
FX1 at resolution 2048×1536 pixels, after vertical
upsampling by factor 2. The detected SURF mark-
ers are labelled according to the ranking in Fig-
ure 11.

visible., i. e., the markers are indeed uniquely de-
tectable in the image. Figure 12 shows the simi-
larity between the descriptor signature of detected
points and the signature of the dark marker tem-
plate. Again, the markers clearly stand out. Note
that there are other features, e. g., the 56th, with sim-
ilar signatures, but their rank, and equivalently the
detector response they triggered are much lower.

A property of this example setup that is worth-
while mentioning is that since every detected
marker comes with a scale assigned by the SURF
algorithm, the robot can already make first assump-
tions about the marker distances without the need
for stereo vision and triangulation.

SIFT/SURF CAVE Another example application
that takes a similar line is to have a wallpaper or
poster textured with the markers from Section 3. By
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Figure 11: The SURF detector responses from the
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Figure 12: Signature similarity for the SURF fea-
tures from the example in Figure 10. For every fea-
ture, the Euclidean distance between its signature
and the signature of the template marker is plotted.

simply putting up such posters, a computer vision
lab can easily be turned into a ”SIFT/SURF CAVE”
with dense feature points all over the walls.

Mixing light and dark versions of the marker,
such posters can carry one bit per marker allowing,
e. g., to encode information about different parts of
the room. In principle, there are two ways to dis-
tinguish both marker variants from each other, ei-
ther based on marker signature or by means of the
Laplacian of the respective marker, i. e., the sum of
second derivatives. For SIFT, it is precisely the de-
tector output (1) that approximates the Laplacian.
In the case of SURF, it is given by the trace of the
Hessian matrix introduced in (2). The Laplacian is
strictly negative for dark markers and strictly posi-
tive for light ones, hence a simple thresholding is

sufficient for separation. We found that this ap-
proach is more reliable than signature comparison,
and we will use it in the following.

We illustrate the combination of markers using
arrays composed of three SURF markers each. Fig-
ure 13 shows two such super-markers printed out on
A4 paper and attached in our lab. The upper left cor-
ner of the two-by-two arrays is left blank to have an
obvious array orientation. This design allows eight
different marker arrays which could be used to tag
strategic points in the room.

We propose the following simple algorithm to
identify and decode these marker arrays. First, the
SURF markers are uniquely detected in the image
by means of their outstanding detector response and
signature similarity. The feasibility of this step will
be demonstrated shortly. Second, those markers are
identified whose closest two neighbors satisfy cer-
tain geometric constraints, namely (a) their respec-
tive distances are similar and (b) they lie in roughly
perpendicular directions. This yields 3-marker clus-
ters in linear time with regard to the number of
markers in place. Assuming that all the marker
arrays are imaged close to upright, the topmost
marker of each triple is then defined to carry the first
bit, the leftmost one the second and the remaining
marker the third bit. Finally, the bit value of each
marker is determined using the sign of its Laplacian
(see Figure 15). This approach is supposed to illus-
trate the combination of markers and can clearly be
extended in a more sophisticated way.

Figure 14 shows the results of the SURF detec-
tion step. Similarly to the robot navigation exam-
ple, we examine the found features in terms of de-
tector response and distance to the reference signa-
ture from Figure 4. Every point in the figure cor-
responds to a detected feature, and obviously, the
six features that belong to the markers form a clus-
ter in an area with high detector response and low
signature distance. As opposed to the previous ex-
periment where only dark markers were deployed,
we aim at simultaneously identifying both versions
of the SURF marker in this example. Therefore, we
decided not to work with the full marker signatures,
but only those entries which are common to both
marker variants. In the OpenCV implementation
of SURF the corresponding descriptor dimensions
are 23, 24, 27, 28, 39, 40, 43 and 44. We call this
reduced representation version independent signa-
ture (VIS).
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Figure 13: Two out of eight possible 3-bit marker
arrays photographed with a Sony DSC-S85 at res-
olution 2272×1704 pixels. The location of the six
SURF features which yielded highest detector re-
sponse are displayed as green crosses.

The distribution of response-distance pairs in
Figure 14 suggests the use of a more complex clas-
sification algorithm than the current one which is
primarily based on detector response. Instead, an
oblique separation line seems more suited to the
problem. In future work, it should be investigated
to what extent other linear or nonlinear classifica-
tion approaches can improve marker identification.

5 Conclusion

We have presented our work on maximum detec-
tor response markers for SIFT and SURF. We de-
rived their optimal design theoretically, and pre-
sented first experimental results. The markers we
propose are inexpensive and easy to use. It is suf-
ficient to print them out and arbitrarily place them
in the scene. No additional detection algorithms on
top of SIFT or SURF are required. The stated al-
gorithms detect our markers under a wide range of
viewpoints, such that they can be uniquely identi-
fied due to their high response and their discrimina-
tive descriptor signature.

We plan to conduct more exhaustive experiments
on real data in order to assess the markers’ perfor-
mance quantitatively. Especially a sound evaluation
of the localization error in natural applications will
be addressed in future work.

If you are interested in testing the markers we
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Figure 14: Detector response and VIS distance val-
ues for all the SURF features extracted from the im-
age in Figure 13. The markers form an apparent
cluster.
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Figure 15: The sign of the Laplacian allows to reli-
ably distinguish the light (+1) and dark (-1) versions
of the SURF marker (compare with Figure 13).

proposed in this paper yourself, we invite you to
visit our homepage1 and download the markers in
PDF format. Make sure you print them in high
quality as this is essential for optimal results! The
markers we used in the real world experiments from
Section 4.2 were printed on a HP Color Laser-
Jet CP4005 at 1200 dpi using bright-white paper.
Please feel free to share your experiences with us!

1http://www.lmt.ei.tum.de/florian/markers
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