

Robust Features and Multiple View Geometry

METR 4202: Robotics & Automation

Dr Surya Singh -- Lecture # 8

September 13, 2017

metr4202-staff@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~metr4202/

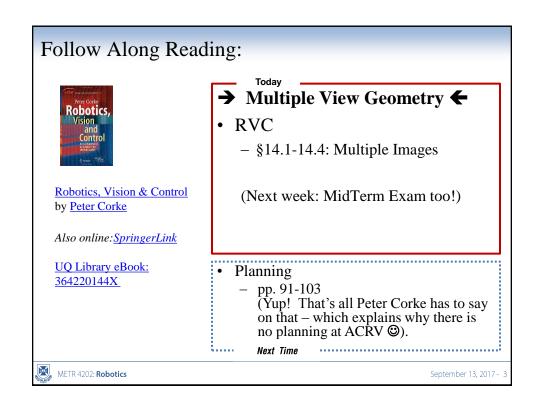
[http://metr4202.com]

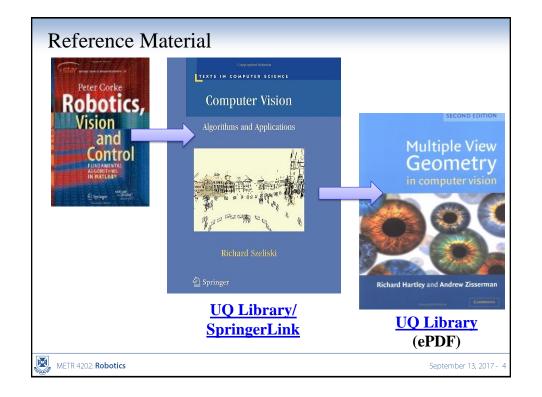
(cc) BY-NC-SA

Lecture Schedule

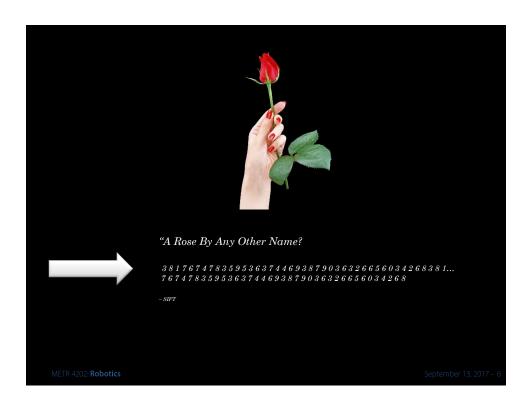
Week	Date	Lecture (W: 3:05p-4:50, 7-222)			
1	1 26-1111	Introduction +			
		Representing Position & Orientation & State			
2	2-Aug	Robot Forward Kinematics			
2		(Frames, Transformation Matrices & Affine Transformations)			
3	9-Aug	Robot Inverse Kinematics & Dynamics (Jacobians)			
4	16-Aug	Ekka Day (Robot Kinematics & Kinetics Review)			
5	23-Aug	Jacobians & Robot Sensing Overview			
6	30-Aug	Robot Sensing: Single View Geometry & Lines			
7	6-Sep	Robot Sensing: Basic Feature Detection			
8	13-Sep	Robot Sensing: Scalable Feature Detection & Multiple View Geometry			
9	20-Sep	Mid-Semester Exam			
	27-Sep	Study break			
10	4-Oct	Motion Planning			
11	11-Oct	Probabilistic Robotics: Localization & SLAM			
10	10.0	Probabilistic Robotics: Planning & Control			
12	18-Oct	(State-Space/Shaping the Dynamic Response/LQR)			
13	25-Oct	The Future of Robotics/Automation + Challenges + Course Review			

METR 4202: Robotics





Feature Detection METR 4202: Robotics September 13, 2017-5



How to get Matching Points? Features

- Colour
- Corners
- Edges
- Lines
- Statistics on Edges: SIFT, SURF, ORB...

In OpenCV: The following detector types are supported:

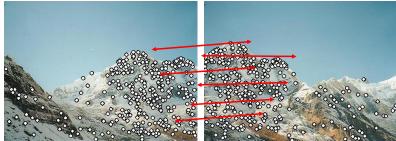
- "FAST" FastFeatureDetector
- "STAR" StarFeatureDetector
- "SIFT" SIFT (nonfree module)
- "SURF" SURF (nonfree module)
- "ORB" ORB
- "BRISK" BRISK
- "MSER" MSER
- "GFTT" GoodFeaturesToTrackDetector
- "HARRIS" GoodFeaturesToTrackDetector with Harris detector enabled
- "Dense" DenseFeatureDetector
 - "SimpleBlob" SimpleBlobDetector

METR 4202: Robotics

September 13, 2017 - 7

Why extract features?

- Object detection
- Robot Navigation
- Scene Recognition



- Steps:
 - Extract Features
 - Match Features

Adopted drom S. Lazebnik, Gang Hua (CS 558)

METR 4202: Robotics

Why extract features? [2]

- Panorama stitching...
 - → Step 3: Align images



Adopted from S. Lazebnik, Gang Hua (CS 558)

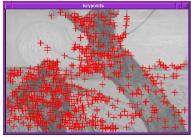
September 13, 2017 - 9

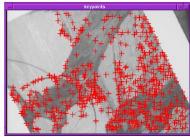
Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Adopted from S. Lazebnik, Gang Hua (CS 558)

Finding Corners





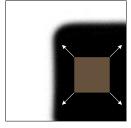
- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive
 C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Adopted from S. Lazebnik, Gang Hua (CS 558)

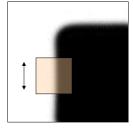
September 13, 2017 - 11

Corner Detection: Basic Idea

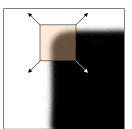
- Look through a window
- Shifting a window in any direction should give a large change in intensity



"flat" region: no change in all directions

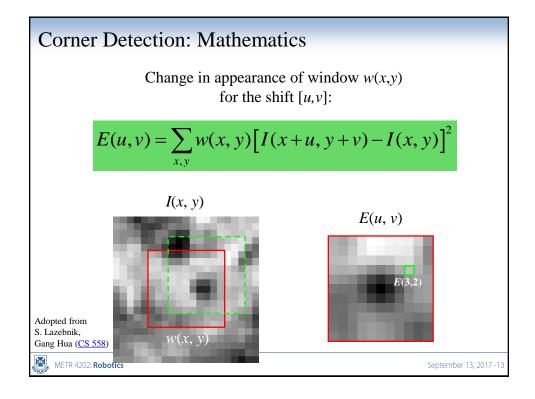


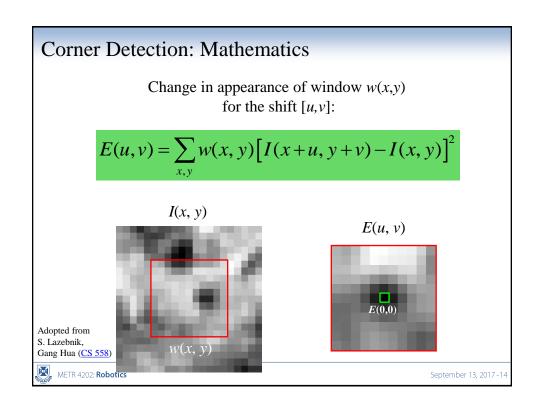
"edge": no change along the edge direction

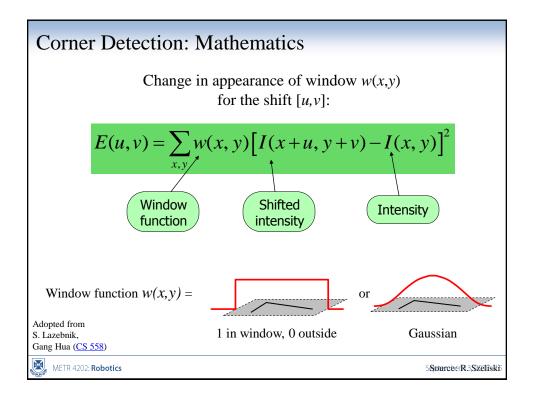


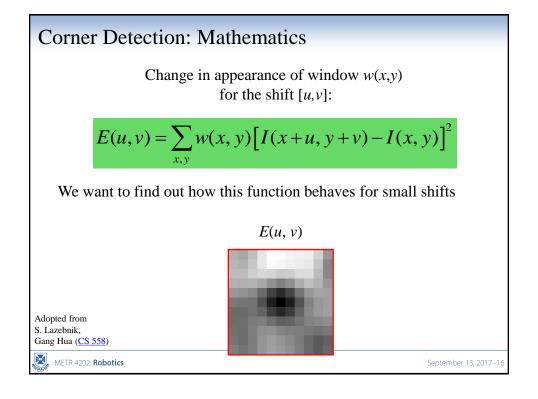
"corner": significant change in all directions

Source: A. Efros









Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the *second-order Taylor expansion*:

Adopted from S. Lazebnik, Gang Hua (CS 558)

METR 4202: Robotics

September 13, 2017 - 13

Corner Detection: Mathematics

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E_{(u,v) \approx E(0,0) + [u \ v \left[E_{u}(0,0) \right] + \frac{1}{2} [u \ v \left[E_{uu}(0,0) \ E_{w}(0,0) \right] u \right]}{E_{u}(0,0)} \\ E_{u}(u,v) = \sum_{x,y} 2w(x,y) \big[I(x+u,y+v) - I(x,y) \big] I_{x}(x+u,y+v) \\ E_{uu}(u,v) = \sum_{x,y} 2w(x,y) I_{x}(x+u,y+v) I_{x}(x+u,y+v) \\ + \sum_{x,y} 2w(x,y) \big[I(x+u,y+v) - I(x,y) \big] I_{xx}(x+u,y+v) \\ E_{uv}(u,v) = \sum_{x,y} 2w(x,y) I_{y}(x+u,y+v) - I(x,y) \big] I_{xx}(x+u,y+v) \\ E_{uv}(u,v) = \sum_{x,y} 2w(x,y) I_{y}(x+u,y+v) I_{x}(x+u,y+v) \\ + \sum_{x,y} 2w(x,y) \big[I(x+u,y+v) - I(x,y) \big] I_{xy}(x+u,y+v) \\ Adopted from S. Lazebnik,$$

Gang Hua (CS 558)

METR 4202: Robotics

Corner Detection: Mathematics

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx [u \ v] \begin{bmatrix} \sum_{x,y} w(x,y)I_x^2(x,y) & \sum_{x,y} w(x,y)I_x(x,y)I_y(x,y) \\ \sum_{x,y} w(x,y)I_x(x,y)I_y(x,y) & \sum_{x,y} w(x,y)I_y^2(x,y) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \\ E(0,0) = 0 \\ E_u(0,0) = 0 \\ E_v(0,0) = 0 \\ E_{uu}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y)I_x(x,y) \\ E_{vv}(0,0) = \sum_{x,y} 2w(x,y)I_y(x,y)I_y(x,y) \\ E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_y(x,y)I_y(x,y) \\ E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y)I_y(x,y) \\ E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y) \\ E_{uv}(0,0) = \sum_{x,y} 2w(x$$

Adopted from S. Lazebnik, Gang Hua (<u>CS 558</u>)

METR 4202: Robotics

September 13, 2017 - 19

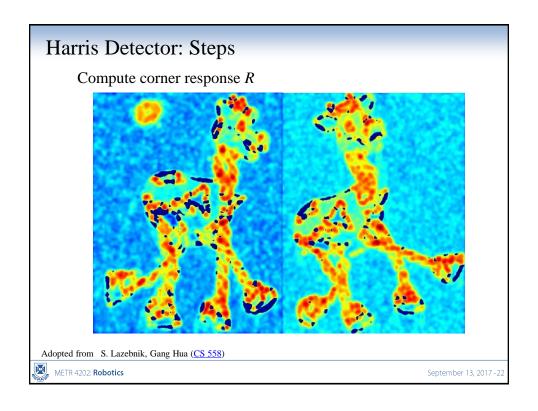
Harris detector: Steps

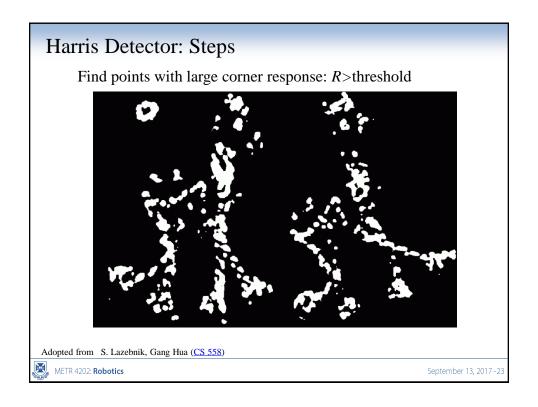
- Compute Gaussian derivatives at each pixel
- Compute second moment matrix M in a Gaussian window around each pixel
- Compute corner response function R
- Threshold R
- Find local maxima of response function (nonmaximum suppression)

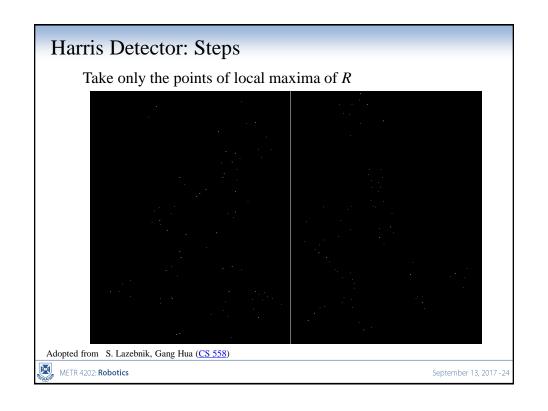
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Adopted from S. Lazebnik, Gang Hua (<u>CS 558</u>)

METR 4202: Robotics







Harris Detector: Steps

Adopted from S. Lazebnik, Gang Hua (CS 558)

September 13, 2017 - 25

Invariance and covariance

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Adopted from S. Lazebnik, Gang Hua (CS 558)

Feature matching

- Given a feature in I_1 , how to find the best match in I_2 ?
 - 1. Define distance function that compares two descriptors
 - 2. Test all the features in I₂, find the one with min distance

From Szeliski, Computer Vision: Algorithms and Applications

September 13, 2017 - 27

Feature distance

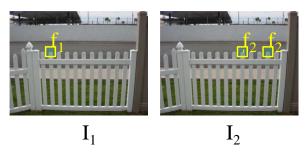
- How to define the difference between two features f_1, f_2 ?
 - Simple approach is $SSD(f_1, f_2)$
 - sum of square differences between entries of the two descriptors
 - can give good scores to very ambiguous (bad) matches

 I_2

From Szeliski, Computer Vision: Algorithms and Applications

Feature distance

- How to define the difference between two features f_1 , f_2 ?
 - Better approach: ratio distance = $SSD(f_1, f_2) / SSD(f_1, f_2')$
 - f_2 is best SSD match to f_1 in I_2
 - f_2 ' is 2^{nd} best SSD match to f_1 in I_2
 - gives small values for ambiguous matches

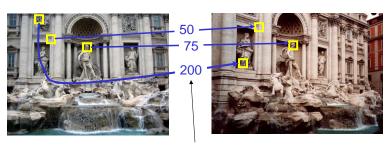


From Szeliski, Computer Vision: Algorithms and Applications

September 13, 2017 - 29

Evaluating the results

• How can we measure the performance of a feature matcher?

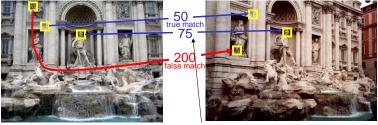


feature distance

From Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

True/false positives



feature distance

- The distance threshold affects performance
 - True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
 - False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

From Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

September 13, 2017 - 31

Levenberg-Marquardt

- Iterative non-linear least squares [Press'92]
 - Linearize measurement equations

$$\hat{u}_i = f(\mathbf{m}, \mathbf{x}_i) + \frac{\partial f}{\partial \mathbf{m}} \Delta \mathbf{m}$$

$$\hat{v}_i = g(\mathbf{m}, \mathbf{x}_i) + \frac{\partial g}{\partial \mathbf{m}} \Delta \mathbf{m}$$

- Substitute into log-likelihood equation: quadratic cost function in Dm

$$\sum_{i} \sigma_{i}^{-2} (\hat{u}_{i} - u_{i} + \frac{\partial f}{\partial \mathbf{m}} \Delta \mathbf{m})^{2} + \cdots$$

From Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

Levenberg-Marquardt

- What if it doesn't converge?
 - Multiply diagonal by (1 + 1), increase 1 until it does
 - Halve the step size Dm (my favorite)
 - Use line search
 - Other ideas?
- Uncertainty analysis: covariance S = A-1
- Is maximum likelihood the best idea?
- How to start in vicinity of global minimum?

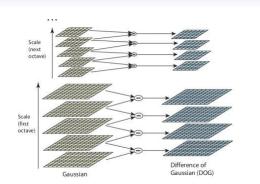
From Szeliski, Computer Vision: Algorithms and Applications

September 13, 2017 - 33

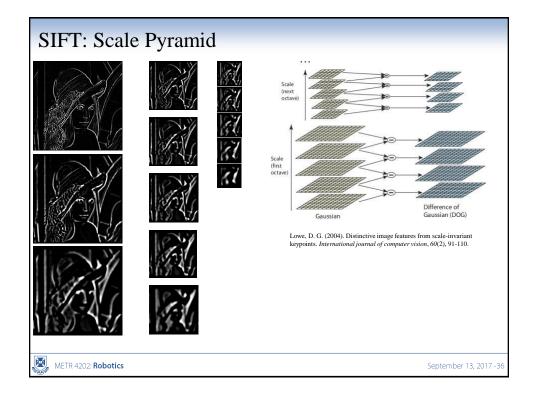
Example: SIFT (Many Others: ORB, MSER, CNN/Deep Learning, etc.)

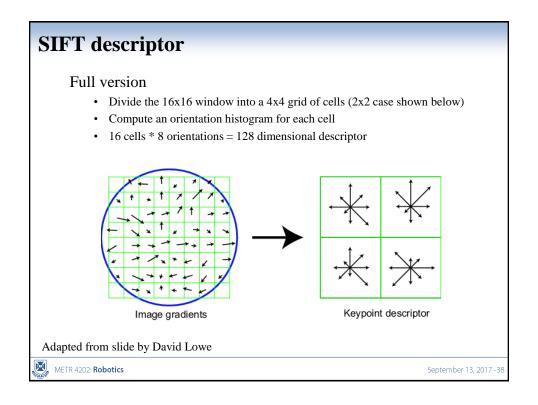
SIFT: Scale Pyramid

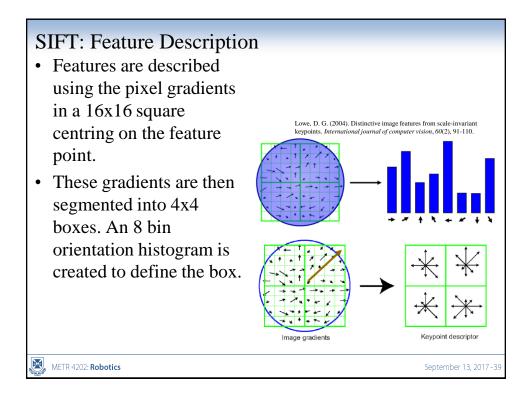
- D images are organised into a pyramid of progressively blurred images.
- Separated into octaves and scale levels per octave.
- Between octaves image is decimated by a factor of 2.



Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. *International journal of computer vision*, 60(2), 91-110.







Scale Invariant Feature Transforms

- Goal was to define an algorithm to describe an image with features
- This would enable a number of different applications:
 - Feature Matching
 - Object / Image Matching
 - Orientation / Homography Resolution

SIFT: Feature Definition

• SIFT features are defined as the local extrema in a Difference of Gaussian (D) Scale Pyramid.

$$D(x, y, \sigma) = L(x, y, k_i \sigma) - L(x, y, k_i \sigma)$$

Where

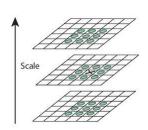
$$L(x, y, k_i \sigma) = G(x, y, k\sigma) * I(x, y)$$

METR 4202: Robotics

September 13, 2017 - 41

SIFT: Feature Detection

- Each scale level in the image is evaluated for features.
- A feature is defined as a local maximum or minimum.
- For efficiency the 26 surrounding points are evaluated.



 $Lowe,\ D.\ G.\ (2004).\ Distinctive\ image\ features\ from\ scale-invariant\ keypoints.\ International\ journal\ of\ computer\ vision,\ 60(2),\ 91-110.$

METR 4202: Robotics

SIFT: Feature Reduction

- Initial feature detection over detects features descriptive of the image.
- Initially remove features with low contrast.
- Then evaluate features to remove any edge responses.

September 13, 2017 -43

SIFT: Feature Matching

- A match is defined as a pair of features with the closest Euclidian distance to each other.
- Matches above a threshold are culled to improve match.

OpenCV: Feature Matching (2014)

Properties of SIFT

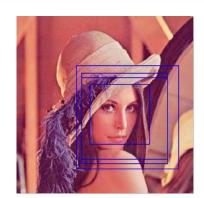
- Extraordinarily robust matching technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
 - $\bullet \quad \underline{http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT$

From David Lowe and Szeliski, Computer Vision: Algorithms and Applications



Boosted Cascade Haar-like Weak Classifiers

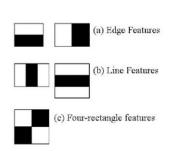
- Fast object detector designed primarily for use in face detection.
- Uses a cascade of weak classifiers to define object match.



September 13, 2017 - 47

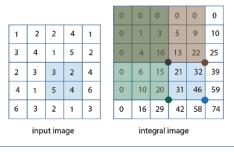
Viola Jones: Feature Definition

- Feature is classified as being the difference between the average intensity of two or more image sections.
- Can be any arithmetic combination of section values.



Viola Jones: Efficient Calculation of Features

- Fast calculation of the feature value is obtained by calculating the integral image.
- This leaves at most 4 sum operations to calculate a feature.



METR 4202: Robotics

September 13, 2017 - 49

Viola Jones: Boosting

- Iteratively selects best classifier for detection.
- Assigns weights to each classifier to indicate likelihood of classifier indicating positive detection
- If the sum of the weights of positive classifier responses is above a threshold then there is a positive detection.

- Given example images (x₁, y₁),..., (x_n, y_n) where y_i = 0,1 for negative and positive examples respectively.
- Initialize weights w_{1,i} = \frac{1}{2m}, \frac{1}{2l} \text{ for } y_i = 0, 1 \text{ respectively, where } m \text{ and } l \text{ are the number of negatives and positives respectively.}
- For $t=1,\ldots,T$:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- For each feature, j, train a classifier h_i which
 is restricted to using a single feature. The
 error is evaluated with respect to w_t, ε_j =
 ∑_i w_i |h_i(x_i) − y_i|.
- 3. Choose the classifier , $h_{\rm c}$, with the lowest error ϵ_t
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1-\epsilon_t}$.

• The final strong classifier is:

where $\alpha_t = \log \frac{1}{\beta_t}$

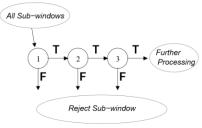
$$h(x) = \left\{ \begin{array}{ll} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \geq \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{array} \right.$$

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features

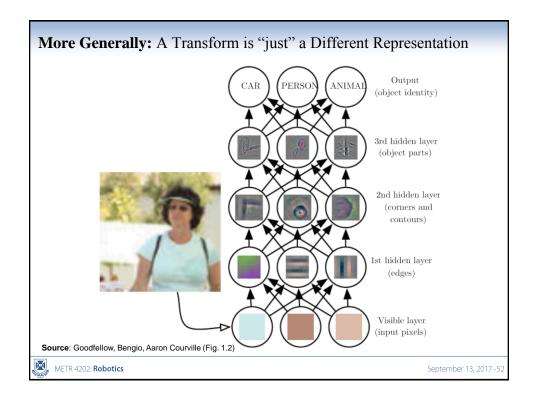
METR 4202: Robotics

Viola Jones: Boosted Cascades

- Effective boosted classifiers require a high number of weak classifiers.
- However, simple low count classifiers offer high rejection rate.
- Solution is to use cascaded classifiers.



Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features



Multiple View Geometry ("Notorious MVG")

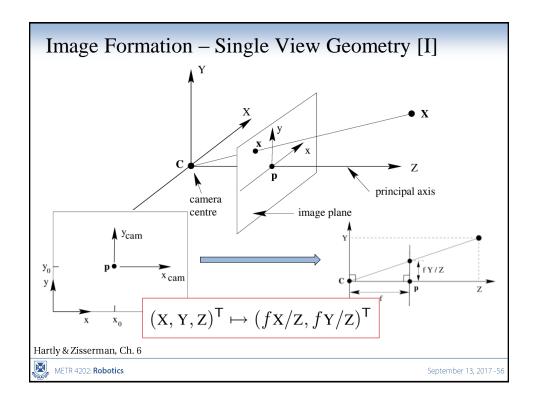


Image Formation – Single View Geometry [II]

→ Camera Projection Matrix

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ \mathbf{1} \\ \text{world} \end{pmatrix} \mapsto \begin{pmatrix} f\mathbf{X} + \mathbf{Z}p_x \\ f\mathbf{Y} + \mathbf{Z}p_y \\ \mathbf{Z} \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ & f & p_y & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{pmatrix}$$

- x =Image point
- $\mathbf{X} =$ World point
- K = Camera Calibration Matrix

$$\mathbf{K} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix}$$
$$\mathbf{x} = \mathbf{K}[\mathbf{I} \mid \mathbf{0}] \mathbf{X}_{\text{cam}}.$$

→ Perspective Camera as:

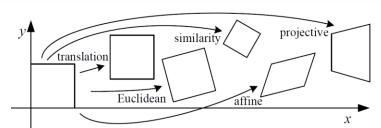
where: P is 3×4 and of rank 3

$$P = K[R \mid \mathbf{t}]$$

METR 4202: Robotics

September 13, 2017 - 57

Transformations



- x': New Image & x: Old Image
- Euclidean: (Distances preserved)

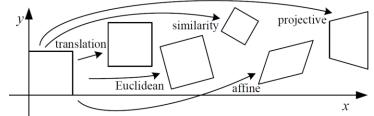
$$x' = \left[\begin{array}{cc} R & t \end{array} \right] \underline{x}$$

• Similarity (Scaled Rotation): (Angles preserved)

$$x' = [sR \ t] \underline{x}$$

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

Transformations [2]



- Affine: $x' = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{02} \end{bmatrix}$
- Projective: (straight lines preserved)H: Homogenous 3x3 Matrix

$$x' = \mathbf{H}\underline{x}$$

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}$$

$$y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

September 13, 2017 - 59

2-D Transformations

- \rightarrow x' = point in the **new** (or 2nd) image
- \rightarrow x = point in the old image
- Translation x' = x + t
- Rotation x' = R x + t
- Similarity x' = sR x + t
- Affine x' = A x
- Projective x' = A x

here, x is an inhomogeneous pt (2-vector)

x' is a homogeneous point

METR 4202: Robotics

2-D Transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} I & t \end{bmatrix}_{2 imes 3}$	2	orientation + · · ·	
rigid (Euclidean)	$\left[egin{array}{c c} R & t\end{array} ight]_{2 imes 3}$	3	lengths +···	\Diamond
similarity	$\left[\begin{array}{c c} sR \mid t\end{array}\right]_{2 \times 3}$	4	angles +···	\Diamond
affine	$\left[\begin{array}{c}A\end{array} ight]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

September 13, 2017 - 61

3D Transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} I & t \end{bmatrix}_{3 imes 4}$	3	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} \right]_{3 imes4}$	6	lengths +···	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{3\times 4}$		angles +···	\Diamond
affine	$\left[egin{array}{c} A \end{array} ight]_{3 imes4}$	12	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{\scriptscriptstyle{A imes A}}$	15	straight lines	

Slide from Szeliski, Computer Vision: Algorithms and Applications

Projection Models

- Orthographic
- Weak Perspective

$$\mathbf{\Pi} = \begin{bmatrix} i_x & i_y & i_z & t_x \\ j_x & j_y & j_z & t_y \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Affine

• Perspective

$$\Pi = \begin{bmatrix} * & * & * & * \\ * & * & * & * \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Projective

 $\Pi = [R \ t]$

Slide from Szeliski, Computer Vision: Algorithms and Applications

September 13, 2017 -63

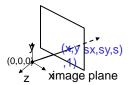
Properties of Projection

- Preserves
 - Lines and conics
 - Incidence
 - Invariants (cross-ratio)
- Does not preserve
 - Lengths
 - Angles
 - Parallelism

METR 4202: Robotics

Planar Projective Transformations

- Perspective projection of a plane
 - lots of names for this:
 - homography, colineation, planar projective map
 - Easily modeled using homogeneous coordinates



$$\begin{bmatrix} sx' \\ sy' \\ s \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{p}^{2} \qquad \mathbf{H} \qquad \mathbf{p}$$

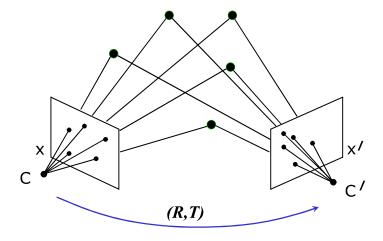
To apply a homography **H**

- compute p' = Hp
- $\mathbf{p}'' = \mathbf{p}'/\mathbf{s}$ normalize by dividing by third component

Slide from Szeliski, Computer Vision: Algorithms and Applications

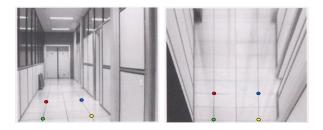
September 13, 2017 - 65

→ Fundamental Matrix



METR 4202: Robotics

Image Rectification



To unwarp (rectify) an image

- solve for **H** given **p**" and **p**
- solve equations of the form: sp" = Hp
 - linear in unknowns: s and coefficients of H
 - need at least 4 points

Slide from Szeliski, Computer Vision: Algorithms and Applications

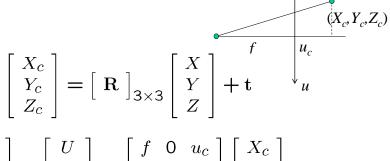
September 13, 2017 - 67

3D Projective Geometry

- These concepts generalize naturally to 3D
 - Homogeneous coordinates
 - Projective 3D points have four coords: P = (X,Y,Z,W)
 - Duality
 - A plane L is also represented by a 4-vector
 - Points and planes are dual in 3D: L P=0
 - Projective transformations
 - Represented by 4x4 matrices T: P' = TP, L' = L T-1
 - Lines are a special case...

Slide from Szeliski, Computer Vision: Algorithms and Applications

3D → 2D Perspective Projection (Image Formation Equations)



$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} U \\ V \\ W \end{bmatrix} = \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

Slide from Szeliski, Computer Vision: Algorithms and Applications

September 13, 2017-69

$3D \rightarrow 2D$ Perspective Projection

• Matrix Projection (camera matrix):

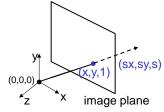
It's useful to decompose \prod into $T \to R \to \text{project} \to A$

$$\mathbf{\Pi} = \begin{bmatrix} s_x & 0 & -t_x \\ 0 & s_y & -t_y \\ 0 & 0 & 1/f \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$
intrinsics projection orientation position

Slide from Szeliski, Computer Vision: Algorithms and Applications

The Projective Plane

- Why do we need homogeneous coordinates?
 - Represent points at infinity, homographies, perspective projection, multi-view relationships
- What is the geometric intuition?
 - A point in the image is a ray in projective space



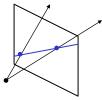
- Each point (x,y) on the plane is represented by a ray (sx,sy,s)
 - all points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

Slide from Szeliski, Computer Vision: Algorithms and Applications

September 13, 2017 - 71

Projective Lines

• What is a line in projective space?



- A line is a *plane* of rays through origin
 - all rays (x,y,z) satisfying: ax + by + cz = 0

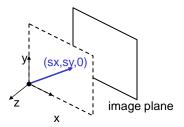
in vector notation: $0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

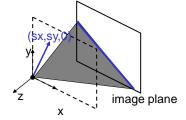
• A line is represented as a homogeneous 3-vector I

Slide from Szeliski, Computer Vision: Algorithms and Applications

Ideal points and lines

- Ideal point ("point at infinity")
 - $p \cong (x, y, 0)$ parallel to image plane
 - It has infinite image coordinates





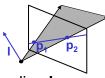
Line at infinity

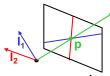
- $I_{\infty} \cong (0, 0, 1)$ parallel to image plane
- · Contains all ideal points

September 13, 2017 - 73

Point and Line Duality

- A line 1 is a homogeneous 3-vector (a ray)
- It is \perp to every point (ray) p on the line: IT p=0





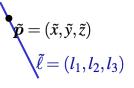
- What is the line I spanned by rays p₁ and p₂?
 - I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$ (I is the plane normal)
- What is the intersection of two lines I₁ and I₂?
 - \mathbf{p} is \perp to $\mathbf{l_1}$ and $\mathbf{l_2} \Rightarrow \mathbf{p} = \mathbf{l_1} \times \mathbf{l_2}$
- Points and lines are dual in projective space
 - · every property of points also applies to lines

Point and Line Duality [II]

Homogeneous ⇔ Cartesian

• Point:

$$\tilde{\boldsymbol{P}} = (\tilde{x}, \tilde{y}, \tilde{z}) \quad | \quad \boldsymbol{P} = (x, y) \quad x = \frac{\tilde{x}}{\tilde{z}}, y = \frac{\tilde{y}}{\tilde{z}}$$



- Line:
 - Is such that $\tilde{l}^T \tilde{p} = 0$
 - Point Eq of a line is: y = mx + b

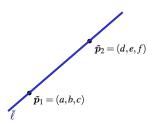
Image/Notation from: Corke, Ch. 11

METR 4202: Robotics

September 13, 2017 - 75

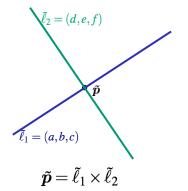
Point and Line Duality [III]

• 2 Points Make a Line



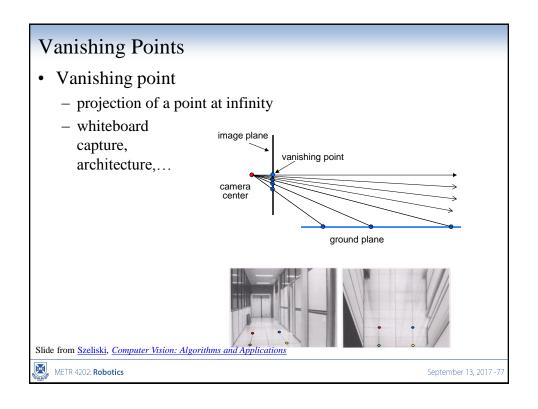
$$\tilde{\ell} = \tilde{\boldsymbol{p}}_1 \times \tilde{\boldsymbol{p}}_2$$

• 2 Lines Make Point!



Image/Notation from: Corke, Ch. 11

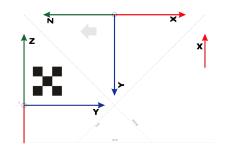
METR 4202: Robotics



SIFT / Corners for the {Frame} finder

To find the Frame, Consider:

- Structure
 - Corners
 - SIFT
 - ???
- Calibration Sequence
- Thought Experiment:
 How do you make this
 traceable back to the
 {camera frame}



September 13, 2017 - 79

Camera matrix calibration

- Advantages:
 - very simple to formulate and solve
 - can recover K [R | t] from M usingQR decomposition [Golub & VanLoan 96]
- Disadvantages:
 - doesn't compute internal parameters
 - more unknowns than true degrees of freedom
 - need a separate camera matrix for each new view

From Szeliski, Computer Vision: Algorithms and Applications

Multi-plane calibration

- Use several images of planar target held at unknown orientations [Zhang 99]
 - Compute plane homographies

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \sim \mathbf{K} \begin{bmatrix} \mathbf{r_1} & \mathbf{r_2} & \mathbf{t} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \sim \mathbf{HX}$$

- Solve for K-TK-1 from Hk's
 - 1plane if only f unknown
 - 2 planes if (f,uc,vc) unknown
 - 3+ planes for full K
- Code available from Zhang and OpenCV

From Szeliski, Computer Vision: Algorithms and Applications

