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Lecture Schedule 
Week Date Lecture (W: 3:05p-4:50, 7-222) 

1 26-Jul 
Introduction +  

Representing Position & Orientation & State 

2 2-Aug 
Robot Forward Kinematics 

(Frames, Transformation Matrices & Affine Transformations) 

3 9-Aug Robot Inverse Kinematics & Dynamics (Jacobians) 

4 16-Aug Ekka Day (Robot Kinematics & Kinetics Review) 

5 23-Aug Jacobians & Robot Sensing Overview 

6 30-Aug Robot Sensing: Single View Geometry & Lines 

7 6-Sep Robot Sensing: Basic Feature Detection 

8 13-Sep Robot Sensing: Scalable Feature Detection & Multiple View Geometry 

9 20-Sep Mid-Semester Exam 

  27-Sep Study break 

10 4-Oct Motion Planning 

11 11-Oct Probabilistic Robotics: Localization & SLAM 

12 18-Oct 
Probabilistic Robotics: Planning & Control  

(State-Space/Shaping the Dynamic Response/LQR)  

13 25-Oct The Future of Robotics/Automation + Challenges + Course Review 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US


2 

Follow Along Reading: 

Robotics, Vision & Control  

by Peter Corke  

 

Also online:SpringerLink 

 

UQ Library eBook: 

364220144X   

  Multiple View Geometry  

• RVC 

– §14.1-14.4: Multiple Images 

 

(Next week: MidTerm Exam too!) 

 

 

 • Planning 
– pp. 91-103 

(Yup!  That’s all Peter Corke has to say 
on that – which explains why there is  
no planning at ACRV ). 

Today 

Reference Material 

UQ Library/ 

SpringerLink UQ Library 

(ePDF) 

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b3087948~S7
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Feature Detection 

 

“A Rose By Any Other Name? 

 

 3 8 1 7 6 7 4 7 8 3 5 9 5 3 6 3 7 4 4 6 9 3 8 7 9 0 3 6 3 2 6 6 5 6 0 3 4 2 6 8 3 8 1… 

 7 6 7 4 7 8 3 5 9 5 3 6 3 7 4 4 6 9 3 8 7 9 0 3 6 3 2 6 6 5 6 0 3 4 2 6 8 

 
– SIFT 
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How to get Matching Points? Features 

•  Colour   

• Corners 

• Edges 

• Lines 

• Statistics on Edges:  SIFT, SURF, ORB… 
In OpenCV: The following detector types are supported: 

–     "FAST" – FastFeatureDetector 

–     "STAR" – StarFeatureDetector 

–     "SIFT" – SIFT (nonfree module) 

–     "SURF" – SURF (nonfree module) 

–     "ORB" – ORB 

–     "BRISK" – BRISK 

–     "MSER" – MSER 

–     "GFTT" – GoodFeaturesToTrackDetector 

–     "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled 

–     "Dense" – DenseFeatureDetector 

–     "SimpleBlob" – SimpleBlobDetector 

 

Why extract features? 

• Object detection  

• Robot Navigation  

• Scene Recognition 

 

 

 

 

 

 

• Steps: 

– Extract Features 

– Match Features Adopted drom   S. Lazebnik, Gang Hua (CS 558) 

 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Why extract features? [2] 

• Panorama stitching… 

Step 3: Align images   

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

 

Characteristics of good features 

• Repeatability 

– The same feature can be found in several images despite 

geometric and photometric transformations  

• Saliency 

– Each feature is distinctive 

• Compactness and efficiency 

– Many fewer features than image pixels 

• Locality 

– A feature occupies a relatively small area of the image; robust to 

clutter and occlusion 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Finding Corners 

• Key property: in the region around a corner, image 

gradient has two or more dominant directions 

• Corners are repeatable and distinctive 

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.   

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

 

Corner Detection: Basic Idea 

• Look through a window 

• Shifting a window in any direction should give a large 

change in intensity 

“edge”: 

no change along 

the edge direction 

“corner”: 

significant change 

in all directions 

“flat” region: 

no change in 

all directions 

Source: A. Efros 

 

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Corner Detection: Mathematics 

 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

Change in appearance of window w(x,y)  

for the shift [u,v]: 

I(x, y) 
E(u, v) 

E(3,2) 

w(x, y) 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

 

Corner Detection: Mathematics 

 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

I(x, y) 
E(u, v) 

E(0,0) 

w(x, y) 

Change in appearance of window w(x,y)  

for the shift [u,v]: 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Corner Detection: Mathematics 

 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

Intensity Shifted 
intensity 

Window 
function 

or Window function w(x,y) = 

Gaussian 1 in window, 0 outside 

Source: R. Szeliski 

Change in appearance of window w(x,y)  

for the shift [u,v]: 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

 

Corner Detection: Mathematics 

 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

We want to find out how this function behaves for small shifts 

Change in appearance of window w(x,y)  

for the shift [u,v]: 

E(u, v) 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Corner Detection: Mathematics 
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Local quadratic approximation of E(u,v) in the neighborhood of 

(0,0) is given by the second-order Taylor expansion: 

We want to find out how this function behaves for small shifts 

Change in appearance of window w(x,y)  

for the shift [u,v]: 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

 

Corner Detection: Mathematics 
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Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Corner Detection: Mathematics 
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Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

 

Harris detector: Steps 

• Compute Gaussian derivatives at each pixel 

• Compute second moment matrix M in a Gaussian window 

around each pixel  

• Compute corner response function R 

• Threshold R 

• Find local maxima of response function (nonmaximum 

suppression) 

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.   

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Harris Detector: Steps 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

Harris Detector: Steps 

Compute corner response R 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Harris Detector: Steps 

Find points with large corner response: R>threshold 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

Harris Detector: Steps 

Take only the points of local maxima of R 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Harris Detector: Steps 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

Invariance and covariance 

• We want corner locations to be invariant to photometric 

transformations and covariant to geometric 

transformations 

– Invariance: image is transformed and corner locations do not 

change 

– Covariance: if we have two transformed versions of the same 

image, features should be detected in corresponding locations 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Feature matching 

• Given a feature in I1, how to find the best match in I2? 

1. Define distance function that compares two descriptors 

2. Test all the features in I2, find the one with min distance 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Feature distance 

• How to define the difference between two features 

f1, f2? 

– Simple approach is SSD(f1, f2)  

• sum of square differences between entries of the two descriptors 

• can give good scores to very ambiguous (bad) matches  

I1 I2 

f1 f2 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Feature distance 

• How to define the difference between two features f1, f2? 

– Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’) 

• f2         is  best SSD match to f1 in I2 

• f2’        is  2nd   best SSD match to f1 in I2 

• gives small values for ambiguous matches 

I1 I2 

f1 f2 f2
' 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Evaluating the results 

• How can we measure the performance of a feature matcher? 

50 

75 

200 

feature distance 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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True/false positives 

 

 

 

 

 

 

 

 

 

• The distance threshold affects performance 

– True positives = # of detected matches that are correct 

• Suppose we want to maximize these—how to choose threshold? 

– False positives = # of detected matches that are incorrect 

• Suppose we want to minimize these—how to choose threshold? 

50 

75 

200 

feature distance 

false match 

true match 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Levenberg-Marquardt 

• Iterative non-linear least squares [Press’92] 

– Linearize measurement equations 

 

 

 

 

 

– Substitute into log-likelihood equation:   

quadratic cost function in Dm 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Levenberg-Marquardt 

• What if it doesn’t converge? 

– Multiply diagonal by (1 + l), increase l until it does 

– Halve the step size Dm (my favorite) 

– Use line search 

– Other ideas? 

• Uncertainty analysis:  covariance S = A-1 

• Is maximum likelihood the best idea? 

• How to start in vicinity of global minimum? 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

 

Example: SIFT 
(Many Others: ORB, MSER, 

CNN/Deep Learning, etc.) 

http://szeliski.org/Book/
http://szeliski.org/Book/
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SIFT: Scale Pyramid 

• D images are organised 

into a pyramid of 

progressively blurred 

images. 

• Separated into octaves 

and scale levels per 

octave. 

• Between octaves image 

is decimated by a factor 

of 2. 

Lowe, D. G. (2004). Distinctive image features from scale-invariant 

keypoints. International journal of computer vision, 60(2), 91-110. 

 

SIFT: Scale Pyramid 

Lowe, D. G. (2004). Distinctive image features from scale-invariant 

keypoints. International journal of computer vision, 60(2), 91-110. 

 



19 

Basic idea: 

• Take 16x16 square window around detected feature 

• Compute edge orientation (angle of the gradient - 90) for each pixel 

• Throw out weak edges (threshold gradient magnitude) 

• Create histogram of surviving edge orientations 

Scale Invariant Feature Transform 

Adapted from slide by David Lowe 

0 2 
angle histogram 

 

SIFT descriptor 

Full version 
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below) 

• Compute an orientation histogram for each cell 

• 16 cells * 8 orientations = 128 dimensional descriptor 

 

 

Adapted from slide by David Lowe 
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SIFT: Feature Description 
• Features are described 

using the pixel gradients 

in a 16x16 square 

centring on the feature 

point. 

• These gradients are then 

segmented into 4x4 

boxes. An 8 bin 

orientation histogram is 

created to define the box. 

 

Lowe, D. G. (2004). Distinctive image features from scale-invariant 

keypoints. International journal of computer vision, 60(2), 91-110. 

 

Scale Invariant Feature Transforms 

• Goal was to define an algorithm to 

describe an image with features 

 

• This would enable a number of 

different applications: 

– Feature Matching 

– Object / Image Matching 

– Orientation / Homography Resolution 

Wikipedia: Scale Invariant 

Feature Transforms (2014) 
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SIFT: Feature Definition 

• SIFT features are defined as the local extrema in a 

Difference of Gaussian (D) Scale Pyramid. 

 

𝐷 𝑥, 𝑦, 𝜎 = 𝐿 𝑥, 𝑦, 𝑘𝑖𝜎 − 𝐿(𝑥, 𝑦, 𝑘𝑖𝜎) 

Where 

𝐿 𝑥, 𝑦, 𝑘𝑖𝜎 = 𝐺 𝑥, 𝑦, 𝑘𝜎 ∗ 𝐼(𝑥, 𝑦) 

 

 

SIFT: Feature Detection 

• Each scale level in the image is 

evaluated for features. 

• A feature is defined as a local 

maximum or minimum. 

• For efficiency the 26 surrounding 

points are evaluated. 

Lowe, D. G. (2004). Distinctive image features from scale-invariant 

keypoints. International journal of computer vision, 60(2), 91-110. 
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SIFT: Feature Reduction 

• Initial feature detection over 

detects features descriptive 

of the image. 

• Initially remove features 

with low contrast. 

• Then evaluate features to 

remove any edge responses.  

Wikipedia: Scale Invariant 

Feature Transforms (2014) 

 

SIFT: Feature Matching 

• A match is defined as a pair 

of features with the closest 

Euclidian distance to each 

other. 

• Matches above a threshold 

are culled to improve match. 

OpenCV: Feature Matching (2014) 
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Properties of SIFT 
• Extraordinarily robust matching technique 

– Can handle changes in viewpoint 

• Up to about 60 degree out of plane rotation 

– Can handle significant changes in illumination 

• Sometimes even day vs. night (below) 

– Fast and efficient—can run in real time 

– Lots of code available 
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT  

From David Lowe and Szeliski, Computer Vision: Algorithms and Applications 

 

 
 

“Advanced” Examples: 
Some “Learned Approaches” 

 

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT
http://szeliski.org/Book/
http://szeliski.org/Book/
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Boosted Cascade Haar-like Weak Classifiers 

• Fast object detector designed 

primarily for use in face 

detection. 

• Uses a cascade of weak 

classifiers to define object 

match. 

 

Viola Jones: Feature Definition 

• Feature is classified as being the 

difference between the average 

intensity of two or more image 

sections. 

• Can be any arithmetic 

combination of section values. 
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Viola Jones: Efficient Calculation of Features 

• Fast calculation of the 

feature value is obtained 

by calculating the integral 

image. 

• This leaves at most 4 sum 

operations to calculate a 

feature.  

 

Viola Jones: Boosting 

• Iteratively selects best classifier 

for detection. 

• Assigns weights to each classifier 

to indicate likelihood of classifier 

indicating positive detection 

• If the sum of the weights of 

positive classifier responses is 

above a threshold then there is a 

positive detection. 

Viola, P., & Jones, M. (2001). Rapid object detection using a 

boosted cascade of simple features 
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Viola Jones: Boosted Cascades 

• Effective boosted classifiers 

require a high number of weak 

classifiers. 

• However, simple low count 

classifiers offer high rejection 

rate. 

• Solution is to use cascaded 

classifiers. 

 

 

 
Viola, P., & Jones, M. (2001). Rapid object detection using a 

boosted cascade of simple features 

 

More Generally: A Transform is “just” a Different Representation 

Source: Goodfellow, Bengio, Aaron Courville (Fig. 1.2)  
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Multiple View 

Geometry 

(“Notorious MVG”) 

 

 

Image Formation – Single View Geometry [I] 
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Image Formation – Single View Geometry [II] 

 Camera Projection Matrix 

• x = Image point 

• X = World point 

• K = Camera Calibration Matrix 

 

Perspective Camera as: 

 where: P is 3×4 and of rank 3 

 
 

Transformations  ✯ 

• x’:  New Image   &    x :  Old Image 

• Euclidean: 

(Distances preserved) 

 

• Similarity (Scaled Rotation):   

(Angles preserved) 

 Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 
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Transformations [2] 

• Affine : 

(|| lines remain ||) 

• Projective:   

(straight lines preserved) 

H: Homogenous 3x3 Matrix 

 

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 

 

2-D Transformations 

 x’ = point in the new (or 2nd) image 

 x = point in the old image 

 

• Translation  x’ = x + t 

• Rotation   x’ = R x + t 

• Similarity   x’ = sR x + t 

• Affine   x’ = A x 

• Projective   x’ = A x 

  here, x is an inhomogeneous pt (2-vector) 

   x’  is a homogeneous point 
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2-D Transformations 

 

 

3D Transformations 

 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Projection Models 

• Orthographic 

 

• Weak Perspective 

 

• Affine 

 

• Perspective 

 

• Projective 
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Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Properties of Projection 

• Preserves 

– Lines and conics 

– Incidence 

– Invariants (cross-ratio) 

 

• Does not preserve 

– Lengths 

– Angles 

– Parallelism 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/


32 

Planar Projective Transformations 

• Perspective projection of a plane 

– lots of names for this: 

• homography, colineation, planar projective map 

– Easily modeled using homogeneous coordinates 
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To apply a homography H 
• compute p’ = Hp 

• p’’ = p’/s    normalize by dividing by third component 

(0,0,0) 
(sx,sy,s) 

image plane 

(x,y

,1) 

y 

x z 
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Image Rectification 

 

 

To unwarp (rectify) an image 
• solve for H given p’’ and p 

• solve equations of the form:  sp’’ = Hp 

– linear in unknowns:  s and coefficients of H 

– need at least 4 points 
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3D Projective Geometry 

• These concepts generalize naturally to 3D 

– Homogeneous coordinates 

• Projective 3D points have four coords:  P = (X,Y,Z,W) 

– Duality 

• A plane L is also represented by a 4-vector 

• Points and planes are dual in 3D: L P=0 

– Projective transformations 

• Represented by 4x4 matrices T:  P’ = TP,    L’ = L T-1 

– Lines are a special case… 
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3D → 2D Perspective Projection 

(Image Formation Equations) 
 

 

u 

(Xc,Yc,Zc) 

uc f 
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3D → 2D Perspective Projection 

• Matrix Projection (camera matrix): 

ΠPp 























































1
****

****

****

Z

Y

X

s

sy

sx

It’s useful to decompose  into T  R  project  A 
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The Projective Plane 

• Why do we need homogeneous coordinates? 

– Represent points at infinity, homographies, perspective 

projection, multi-view relationships 

• What is the geometric intuition? 

– A point in the image is a ray in projective space 

(0,0,0) 

(sx,sy,s) 

image plane 

(x,y,1) 

y 

x z 

• Each point (x,y) on the plane is represented by a ray 

(sx,sy,s) 

– all points on the ray are equivalent:  (x, y, 1)  (sx, sy, s) 
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Projective Lines 

• What is a line in projective space? 

• A line is a plane of rays through origin 

• all rays (x,y,z) satisfying:  ax + by + cz = 0 

 


















z

y

x

cba0       :notationvectorin

• A line is represented as a homogeneous 3-vector l 

lT p 
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Ideal points and lines 

• Ideal point (“point at infinity”) 

– p  (x, y, 0) – parallel to image plane 

– It has infinite image coordinates 

(sx,sy,0) y 

x 

z image plane 

Line at infinity 
• l∞  (0, 0, 1) – parallel to image plane 

• Contains all ideal points 

(sx,sy,0) 

y 

x 

z image plane 

 

Point and Line Duality 

– A line l is a homogeneous 3-vector (a ray) 

– It is  to every point (ray) p on the line:  lT p=0 

 

• What is the intersection of two lines l1 and l2 ? 

• p is  to l1 and l2      p = l1  l2 

• Points and lines are dual in projective space 

• every property of points also applies to lines 

l 
p1 p2 

l1 

l2 

p 

• What is the line l spanned by rays p1 and p2 ? 

• l is  to p1 and p2      l = p1  p2  (l is the plane normal) 
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Point and Line Duality [II]  ✯ 

Homogeneous ⇔ Cartesian 

• Point: 

      |  

 

 

•  Line: 

– Is such that  𝑙 𝑇𝑝 = 0     

– Point Eq of a line is: 𝑦 = 𝑚𝑥 + 𝑏 

 

 

 

 

 

Point and Line Duality [III] 

• 2 Points Make a Line 

 

 

 

 

• 2 Lines Make  Point! 
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Vanishing Points 

• Vanishing point 

– projection of a point at infinity 

– whiteboard 

capture, 

architecture,…  

image plane 

camera 
center 

ground plane 

vanishing point 
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Extra  

 

Tips & Tricks! 
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SIFT / Corners for the {Frame} finder 

To find the Frame, Consider: 

• Structure 

– Corners 

– SIFT 

– ??? 

• Calibration Sequence 

• Thought Experiment: 

How do you make this 

traceable back to the 

{camera frame} 

 

Camera matrix calibration 

• Advantages: 

– very simple to formulate and solve 

– can recover K [R | t] from M using  

QR decomposition [Golub & VanLoan 96] 

 

• Disadvantages: 

– doesn't compute internal parameters 

– more unknowns than true degrees of freedom 

– need a separate camera matrix for each new view 
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Multi-plane calibration 

• Use several images of planar target held at unknown 

orientations [Zhang 99] 

– Compute plane homographies 

 

 

– Solve for K-TK-1 from Hk’s 

• 1plane if only f unknown 

• 2 planes if (f,uc,vc) unknown 

• 3+ planes for full K 

– Code available from Zhang and OpenCV 
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