
1

© 2017 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: AAAAA

Lecture Schedule
Week Date Lecture (W: 3:05p-4:50, 7-222)

1 26-Jul
Introduction +

Representing Position & Orientation & State

2 2-Aug
Robot Forward Kinematics

(Frames, Transformation Matrices & Affine Transformations)

3 9-Aug Robot Inverse Kinematics & Dynamics (Jacobians)

4 16-Aug Ekka Day (Robot Kinematics & Kinetics Review)

5 23-Aug Jacobians & Robot Sensing Overview

6 30-Aug Robot Sensing: Single View Geometry & Lines

7 6-Sep Robot Sensing: Basic Feature Detection

8 13-Sep Robot Sensing: Scalable Feature Detection & Multiple View Geometry

9 20-Sep Mid-Semester Exam

 27-Sep Study break

10 4-Oct Motion Planning

11 11-Oct Probabilistic Robotics: Localization & SLAM

12 18-Oct
Probabilistic Robotics: Planning & Control

(State-Space/Shaping the Dynamic Response/LQR)

13 25-Oct The Future of Robotics/Automation + Challenges + Course Review

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

2

Follow Along Reading:

Robotics, Vision & Control

by Peter Corke

Also online:SpringerLink

UQ Library eBook:

364220144X

 Multiple View Geometry 

• RVC

– §14.1-14.4: Multiple Images

(Next week: MidTerm Exam too!)

 • Planning
– pp. 91-103

(Yup! That’s all Peter Corke has to say
on that – which explains why there is
no planning at ACRV ).

Today

Reference Material

UQ Library/

SpringerLink UQ Library

(ePDF)

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b3087948~S7

3

Feature Detection

“A Rose By Any Other Name?

 3 8 1 7 6 7 4 7 8 3 5 9 5 3 6 3 7 4 4 6 9 3 8 7 9 0 3 6 3 2 6 6 5 6 0 3 4 2 6 8 3 8 1…

 7 6 7 4 7 8 3 5 9 5 3 6 3 7 4 4 6 9 3 8 7 9 0 3 6 3 2 6 6 5 6 0 3 4 2 6 8

– SIFT

4

How to get Matching Points? Features

• Colour

• Corners

• Edges

• Lines

• Statistics on Edges: SIFT, SURF, ORB…
In OpenCV: The following detector types are supported:

– "FAST" – FastFeatureDetector

– "STAR" – StarFeatureDetector

– "SIFT" – SIFT (nonfree module)

– "SURF" – SURF (nonfree module)

– "ORB" – ORB

– "BRISK" – BRISK

– "MSER" – MSER

– "GFTT" – GoodFeaturesToTrackDetector

– "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled

– "Dense" – DenseFeatureDetector

– "SimpleBlob" – SimpleBlobDetector

Why extract features?

• Object detection

• Robot Navigation

• Scene Recognition

• Steps:

– Extract Features

– Match Features Adopted drom S. Lazebnik, Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/

5

Why extract features? [2]

• Panorama stitching…

Step 3: Align images

Adopted from S. Lazebnik, Gang Hua (CS 558)

Characteristics of good features

• Repeatability

– The same feature can be found in several images despite

geometric and photometric transformations

• Saliency

– Each feature is distinctive

• Compactness and efficiency

– Many fewer features than image pixels

• Locality

– A feature occupies a relatively small area of the image; robust to

clutter and occlusion

Adopted from S. Lazebnik, Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

6

Finding Corners

• Key property: in the region around a corner, image

gradient has two or more dominant directions

• Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Adopted from S. Lazebnik, Gang Hua (CS 558)

Corner Detection: Basic Idea

• Look through a window

• Shifting a window in any direction should give a large

change in intensity

“edge”:

no change along

the edge direction

“corner”:

significant change

in all directions

“flat” region:

no change in

all directions

Source: A. Efros

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

7

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

Change in appearance of window w(x,y)

for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)

Adopted from

S. Lazebnik,

Gang Hua (CS 558)

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y)

for the shift [u,v]:

Adopted from

S. Lazebnik,

Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

8

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

Intensity Shifted
intensity

Window
function

or Window function w(x,y) =

Gaussian 1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y)

for the shift [u,v]:

Adopted from

S. Lazebnik,

Gang Hua (CS 558)

Corner Detection: Mathematics

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

We want to find out how this function behaves for small shifts

Change in appearance of window w(x,y)

for the shift [u,v]:

E(u, v)

Adopted from

S. Lazebnik,

Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

9

Corner Detection: Mathematics




























v

u

EE

EE
vu

E

E
vuEvuE

vvuv

uvuu

v

u

)0,0()0,0(

)0,0()0,0(
][

2

1

)0,0(

)0,0(
][)0,0(),(

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

Local quadratic approximation of E(u,v) in the neighborhood of

(0,0) is given by the second-order Taylor expansion:

We want to find out how this function behaves for small shifts

Change in appearance of window w(x,y)

for the shift [u,v]:

Adopted from

S. Lazebnik,

Gang Hua (CS 558)

Corner Detection: Mathematics




























v

u

EE

EE
vu

E

E
vuEvuE

vvuv

uvuu

v

u

)0,0()0,0(

)0,0()0,0(
][

2

1

)0,0(

)0,0(
][)0,0(),(

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

Second-order Taylor expansion of E(u,v) about (0,0):

 

 

 ),(),(),(),(2

),(),(),(2),(

),(),(),(),(2

),(),(),(2),(

),(),(),(),(2),(

,

,

,

,

,

vyuxIyxIvyuxIyxw

vyuxIvyuxIyxwvuE

vyuxIyxIvyuxIyxw

vyuxIvyuxIyxwvuE

vyuxIyxIvyuxIyxwvuE

xy

yx

xy

yx

uv

xx

yx

xx

yx

uu

x

yx

u





















Adopted from

S. Lazebnik,

Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

10

Corner Detection: Mathematics































v

u

yxIyxwyxIyxIyxw

yxIyxIyxwyxIyxw

vuvuE

yx

y

yx

yx

yx

yx

yx

x

,

2

,

,,

2

),(),(),(),(),(

),(),(),(),(),(

][),(

 
2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y   

Second-order Taylor expansion of E(u,v) about (0,0):

),(),(),(2)0,0(

),(),(),(2)0,0(

),(),(),(2)0,0(

0)0,0(

0)0,0(

0)0,0(

,

,

,

yxIyxIyxwE

yxIyxIyxwE

yxIyxIyxwE

E

E

E

yx

yx

uv

yy

yx

vv

xx

yx

uu

v

u



















Adopted from

S. Lazebnik,

Gang Hua (CS 558)

Harris detector: Steps

• Compute Gaussian derivatives at each pixel

• Compute second moment matrix M in a Gaussian window

around each pixel

• Compute corner response function R

• Threshold R

• Find local maxima of response function (nonmaximum

suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Adopted from

S. Lazebnik,

Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

11

Harris Detector: Steps

Adopted from S. Lazebnik, Gang Hua (CS 558)

Harris Detector: Steps

Compute corner response R

Adopted from S. Lazebnik, Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

12

Harris Detector: Steps

Find points with large corner response: R>threshold

Adopted from S. Lazebnik, Gang Hua (CS 558)

Harris Detector: Steps

Take only the points of local maxima of R

Adopted from S. Lazebnik, Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

13

Harris Detector: Steps

Adopted from S. Lazebnik, Gang Hua (CS 558)

Invariance and covariance

• We want corner locations to be invariant to photometric

transformations and covariant to geometric

transformations

– Invariance: image is transformed and corner locations do not

change

– Covariance: if we have two transformed versions of the same

image, features should be detected in corresponding locations

Adopted from S. Lazebnik, Gang Hua (CS 558)

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/

14

Feature matching

• Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors

2. Test all the features in I2, find the one with min distance

From Szeliski, Computer Vision: Algorithms and Applications

Feature distance

• How to define the difference between two features

f1, f2?

– Simple approach is SSD(f1, f2)

• sum of square differences between entries of the two descriptors

• can give good scores to very ambiguous (bad) matches

I1 I2

f1 f2

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/

15

Feature distance

• How to define the difference between two features f1, f2?

– Better approach: ratio distance = SSD(f1, f2) / SSD(f1, f2’)

• f2 is best SSD match to f1 in I2

• f2’ is 2nd best SSD match to f1 in I2

• gives small values for ambiguous matches

I1 I2

f1 f2 f2
'

From Szeliski, Computer Vision: Algorithms and Applications

Evaluating the results

• How can we measure the performance of a feature matcher?

50

75

200

feature distance

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/

16

True/false positives

• The distance threshold affects performance

– True positives = # of detected matches that are correct

• Suppose we want to maximize these—how to choose threshold?

– False positives = # of detected matches that are incorrect

• Suppose we want to minimize these—how to choose threshold?

50

75

200

feature distance

false match

true match

From Szeliski, Computer Vision: Algorithms and Applications

Levenberg-Marquardt

• Iterative non-linear least squares [Press’92]

– Linearize measurement equations

– Substitute into log-likelihood equation:

quadratic cost function in Dm

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/

17

Levenberg-Marquardt

• What if it doesn’t converge?

– Multiply diagonal by (1 + l), increase l until it does

– Halve the step size Dm (my favorite)

– Use line search

– Other ideas?

• Uncertainty analysis: covariance S = A-1

• Is maximum likelihood the best idea?

• How to start in vicinity of global minimum?

From Szeliski, Computer Vision: Algorithms and Applications

Example: SIFT
(Many Others: ORB, MSER,

CNN/Deep Learning, etc.)

http://szeliski.org/Book/
http://szeliski.org/Book/

18

SIFT: Scale Pyramid

• D images are organised

into a pyramid of

progressively blurred

images.

• Separated into octaves

and scale levels per

octave.

• Between octaves image

is decimated by a factor

of 2.

Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International journal of computer vision, 60(2), 91-110.

SIFT: Scale Pyramid

Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International journal of computer vision, 60(2), 91-110.

19

Basic idea:

• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2
angle histogram

SIFT descriptor

Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

20

SIFT: Feature Description
• Features are described

using the pixel gradients

in a 16x16 square

centring on the feature

point.

• These gradients are then

segmented into 4x4

boxes. An 8 bin

orientation histogram is

created to define the box.

Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International journal of computer vision, 60(2), 91-110.

Scale Invariant Feature Transforms

• Goal was to define an algorithm to

describe an image with features

• This would enable a number of

different applications:

– Feature Matching

– Object / Image Matching

– Orientation / Homography Resolution

Wikipedia: Scale Invariant

Feature Transforms (2014)

21

SIFT: Feature Definition

• SIFT features are defined as the local extrema in a

Difference of Gaussian (D) Scale Pyramid.

𝐷 𝑥, 𝑦, 𝜎 = 𝐿 𝑥, 𝑦, 𝑘𝑖𝜎 − 𝐿(𝑥, 𝑦, 𝑘𝑖𝜎)

Where

𝐿 𝑥, 𝑦, 𝑘𝑖𝜎 = 𝐺 𝑥, 𝑦, 𝑘𝜎 ∗ 𝐼(𝑥, 𝑦)

SIFT: Feature Detection

• Each scale level in the image is

evaluated for features.

• A feature is defined as a local

maximum or minimum.

• For efficiency the 26 surrounding

points are evaluated.

Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International journal of computer vision, 60(2), 91-110.

22

SIFT: Feature Reduction

• Initial feature detection over

detects features descriptive

of the image.

• Initially remove features

with low contrast.

• Then evaluate features to

remove any edge responses.

Wikipedia: Scale Invariant

Feature Transforms (2014)

SIFT: Feature Matching

• A match is defined as a pair

of features with the closest

Euclidian distance to each

other.

• Matches above a threshold

are culled to improve match.

OpenCV: Feature Matching (2014)

23

Properties of SIFT
• Extraordinarily robust matching technique

– Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

From David Lowe and Szeliski, Computer Vision: Algorithms and Applications

“Advanced” Examples:
Some “Learned Approaches”

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT
http://szeliski.org/Book/
http://szeliski.org/Book/

24

Boosted Cascade Haar-like Weak Classifiers

• Fast object detector designed

primarily for use in face

detection.

• Uses a cascade of weak

classifiers to define object

match.

Viola Jones: Feature Definition

• Feature is classified as being the

difference between the average

intensity of two or more image

sections.

• Can be any arithmetic

combination of section values.

25

Viola Jones: Efficient Calculation of Features

• Fast calculation of the

feature value is obtained

by calculating the integral

image.

• This leaves at most 4 sum

operations to calculate a

feature.

Viola Jones: Boosting

• Iteratively selects best classifier

for detection.

• Assigns weights to each classifier

to indicate likelihood of classifier

indicating positive detection

• If the sum of the weights of

positive classifier responses is

above a threshold then there is a

positive detection.

Viola, P., & Jones, M. (2001). Rapid object detection using a

boosted cascade of simple features

26

Viola Jones: Boosted Cascades

• Effective boosted classifiers

require a high number of weak

classifiers.

• However, simple low count

classifiers offer high rejection

rate.

• Solution is to use cascaded

classifiers.

Viola, P., & Jones, M. (2001). Rapid object detection using a

boosted cascade of simple features

More Generally: A Transform is “just” a Different Representation

Source: Goodfellow, Bengio, Aaron Courville (Fig. 1.2)

27

Multiple View

Geometry

(“Notorious MVG”)

Image Formation – Single View Geometry [I]

28

Image Formation – Single View Geometry [II]

 Camera Projection Matrix

• x = Image point

• X = World point

• K = Camera Calibration Matrix

Perspective Camera as:

 where: P is 3×4 and of rank 3

Transformations ✯

• x’: New Image & x : Old Image

• Euclidean:

(Distances preserved)

• Similarity (Scaled Rotation):

(Angles preserved)

 Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

29

Transformations [2]

• Affine :

(|| lines remain ||)

• Projective:

(straight lines preserved)

H: Homogenous 3x3 Matrix

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

2-D Transformations

 x’ = point in the new (or 2nd) image

 x = point in the old image

• Translation x’ = x + t

• Rotation x’ = R x + t

• Similarity x’ = sR x + t

• Affine x’ = A x

• Projective x’ = A x

 here, x is an inhomogeneous pt (2-vector)

 x’ is a homogeneous point

30

2-D Transformations

3D Transformations

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

31

Projection Models

• Orthographic

• Weak Perspective

• Affine

• Perspective

• Projective



















1000

Π



















1000

yzyx

xzyx

tjjj

tiii

Π

 tRΠ 



















Π



















1000

yzyx

xzyx

tjjj

tiii

fΠ

Slide from Szeliski, Computer Vision: Algorithms and Applications

Properties of Projection

• Preserves

– Lines and conics

– Incidence

– Invariants (cross-ratio)

• Does not preserve

– Lengths

– Angles

– Parallelism

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

32

Planar Projective Transformations

• Perspective projection of a plane

– lots of names for this:

• homography, colineation, planar projective map

– Easily modeled using homogeneous coordinates



















































1***

'

'

y

x

s

sy

sx

H p p’

To apply a homography H
• compute p’ = Hp

• p’’ = p’/s normalize by dividing by third component

(0,0,0)
(sx,sy,s)

image plane

(x,y

,1)

y

x z

Slide from Szeliski, Computer Vision: Algorithms and Applications

Image Formation – Two-View Geometry [Stereopsis]

 Fundamental Matrix

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

33

Image Rectification

To unwarp (rectify) an image
• solve for H given p’’ and p

• solve equations of the form: sp’’ = Hp

– linear in unknowns: s and coefficients of H

– need at least 4 points

Slide from Szeliski, Computer Vision: Algorithms and Applications

3D Projective Geometry

• These concepts generalize naturally to 3D

– Homogeneous coordinates

• Projective 3D points have four coords: P = (X,Y,Z,W)

– Duality

• A plane L is also represented by a 4-vector

• Points and planes are dual in 3D: L P=0

– Projective transformations

• Represented by 4x4 matrices T: P’ = TP, L’ = L T-1

– Lines are a special case…

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

34

3D → 2D Perspective Projection

(Image Formation Equations)

u

(Xc,Yc,Zc)

uc f

Slide from Szeliski, Computer Vision: Algorithms and Applications

3D → 2D Perspective Projection

• Matrix Projection (camera matrix):

ΠPp 























































1

Z

Y

X

s

sy

sx

It’s useful to decompose  into T  R  project  A






























































11

0100

0010

0001

100

0

0

31

1333

31

1333

x

xx

x

xx
yy

xx

f

ts

ts

00

0 TIRΠ

projection intrinsics orientation position

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

35

The Projective Plane

• Why do we need homogeneous coordinates?

– Represent points at infinity, homographies, perspective

projection, multi-view relationships

• What is the geometric intuition?

– A point in the image is a ray in projective space

(0,0,0)

(sx,sy,s)

image plane

(x,y,1)

y

x z

• Each point (x,y) on the plane is represented by a ray

(sx,sy,s)

– all points on the ray are equivalent: (x, y, 1)  (sx, sy, s)
Slide from Szeliski, Computer Vision: Algorithms and Applications

Projective Lines

• What is a line in projective space?

• A line is a plane of rays through origin

• all rays (x,y,z) satisfying: ax + by + cz = 0

 


















z

y

x

cba0 :notationvectorin

• A line is represented as a homogeneous 3-vector l

lT p

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

36

Ideal points and lines

• Ideal point (“point at infinity”)

– p  (x, y, 0) – parallel to image plane

– It has infinite image coordinates

(sx,sy,0) y

x

z image plane

Line at infinity
• l∞  (0, 0, 1) – parallel to image plane

• Contains all ideal points

(sx,sy,0)

y

x

z image plane

Point and Line Duality

– A line l is a homogeneous 3-vector (a ray)

– It is  to every point (ray) p on the line: lT p=0

• What is the intersection of two lines l1 and l2 ?

• p is  to l1 and l2  p = l1  l2

• Points and lines are dual in projective space

• every property of points also applies to lines

l
p1 p2

l1

l2

p

• What is the line l spanned by rays p1 and p2 ?

• l is  to p1 and p2  l = p1  p2 (l is the plane normal)

37

Point and Line Duality [II] ✯

Homogeneous ⇔ Cartesian

• Point:

 |

• Line:

– Is such that 𝑙 𝑇𝑝 = 0

– Point Eq of a line is: 𝑦 = 𝑚𝑥 + 𝑏

Point and Line Duality [III]

• 2 Points Make a Line

• 2 Lines Make Point!

38

Vanishing Points

• Vanishing point

– projection of a point at infinity

– whiteboard

capture,

architecture,…

image plane

camera
center

ground plane

vanishing point

Slide from Szeliski, Computer Vision: Algorithms and Applications

Extra 

Tips & Tricks!

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

39

SIFT / Corners for the {Frame} finder

To find the Frame, Consider:

• Structure

– Corners

– SIFT

– ???

• Calibration Sequence

• Thought Experiment:

How do you make this

traceable back to the

{camera frame}

Camera matrix calibration

• Advantages:

– very simple to formulate and solve

– can recover K [R | t] from M using

QR decomposition [Golub & VanLoan 96]

• Disadvantages:

– doesn't compute internal parameters

– more unknowns than true degrees of freedom

– need a separate camera matrix for each new view

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/

40

Multi-plane calibration

• Use several images of planar target held at unknown

orientations [Zhang 99]

– Compute plane homographies

– Solve for K-TK-1 from Hk’s

• 1plane if only f unknown

• 2 planes if (f,uc,vc) unknown

• 3+ planes for full K

– Code available from Zhang and OpenCV

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/

