

Feature Detection

METR 4202: Robotics & Automation

Dr Surya Singh -- Lecture # 7

September 6, 2017

metr4202-staff@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~metr4202/

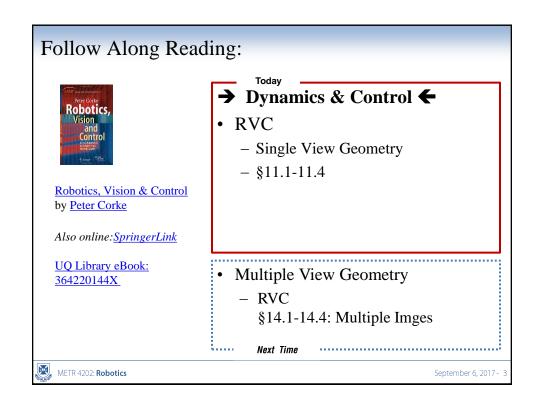
[http://metr4202.com]

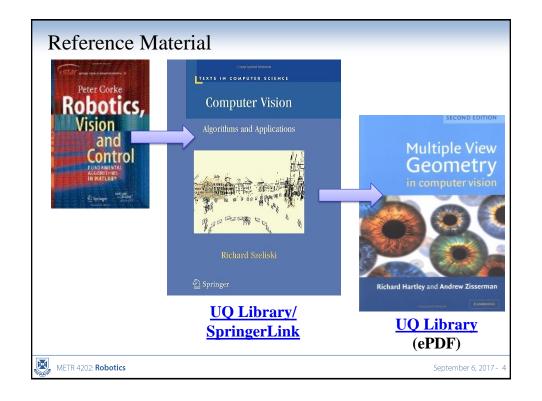
(CC))) BY-NC-SA

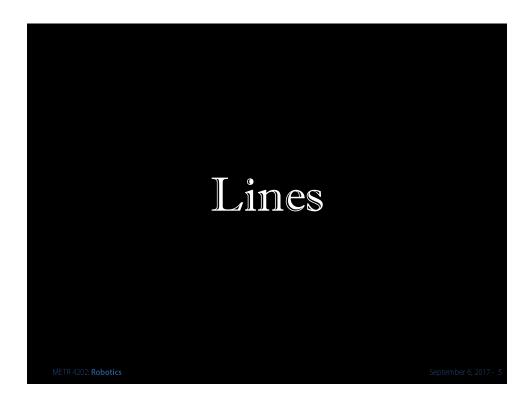
Lecture Schedule

Week	Date	Lecture (W: 3:05p-4:50, 7-222)
1	l 26-Inl	Introduction +
		Representing Position & Orientation & State
2	2-Aug	Robot Forward Kinematics
		(Frames, Transformation Matrices & Affine Transformations)
3	9-Aug	Robot Inverse Kinematics & Dynamics (Jacobians)
4	16-Aug	Ekka Day (Robot Kinematics & Kinetics Review)
5	23-Aug	Jacobians & Robot Sensing Overview
6		Robot Sensing: Single View Geometry & Lines
7		Robot Sensing: Feature Detection
8	13-Sep	Robot Sensing: Multiple View Geometry
9	20-Sep	Mid-Semester Exam
	27-Sep	Study break
10	4-Oct	Motion Planning
11	11-Oct	Probabilistic Robotics: Localization & SLAM
12	18-Oct	Probabilistic Robotics: Planning & Control
		(State-Space/Shaping the Dynamic Response/LQR)
13	25-Oct	The Future of Robotics/Automation + Challenges + Course Review

METR 4202: Robotics







How to get the Features? Still MANY Ways

• Canny edge detector:

METR 4202: Robotics

Edge Detection

- Laplacian of Gaussian
 - Gaussian (Low Pass filter)
 - Laplacian (Gradient)

- Prewitt
 - Discrete differentiation
 - Convolution

$$\mathbf{G}_{X} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix} * \mathbf{A} \qquad \mathbf{G}_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix} * \mathbf{A}$$

September 6, 2017 - 7

Edge Detection

- Canny edge detector
 - Finds the peak gradient magnitude orthogonal to the edge direction
 - Apply Gaussian filter to smooth the image in order to remove the noise
 - 2. Find the intensity gradients of the image
 - 3. Apply non-maximum suppression to get rid of spurious response to edge detection
 - 4. Apply double threshold to determine potential edges
 - Track edge by hysteresis: Finalize the detection of edges by suppressing all the other edges that are weak and not connected to strong edges.
 - Two Thresholds:
 - Non-maximum suppression
 - Hysteresis

METR 4202: Robotics

Edge Detection

- Canny edge detector:
 - Pepsi Sequence:

Image Data: http://www.cs.brown.edu/~black/mixtureOF.html and Szeliski, CS223B-L9

See also: Use of Temporal information to aid segmentation:

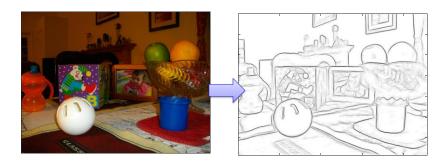
 $\underline{http://www.cs.toronto.edu/\sim}babalex/SpatiotemporalClosure/supplementary_material.html$

METR 4202: Robotics

September 6, 2017 - 9

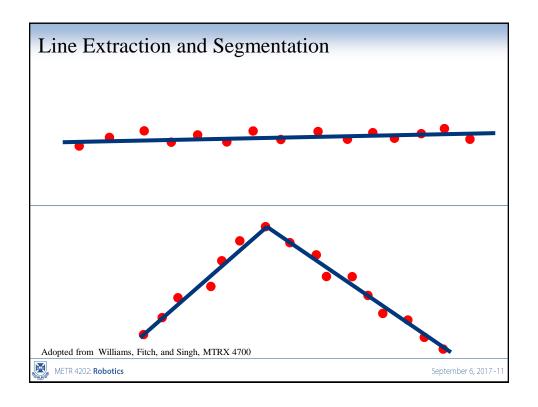
Edge Detection

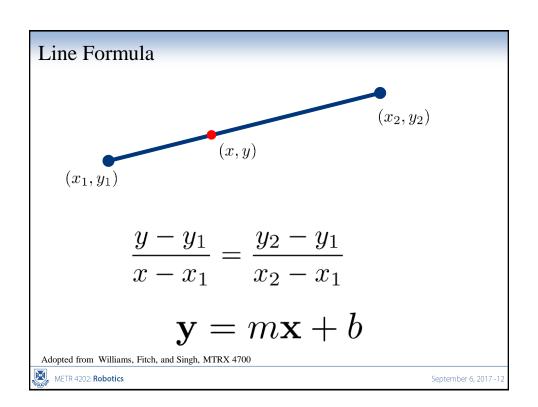
- Many, many more
 - → Structured Edge Detection Toolbox



Dollár and Zitnick, Structured Forests for Fast Edge Detection, ICCV 13 https://github.com/pdollar/edges

METR 4202: Robotics





Line Estimation

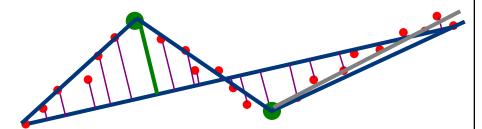
Least squares minimization of the line:

- Line Equation: $\mathbf{y} m\mathbf{x} b = 0$
- Error in Fit: $\sum_i \left(y_i mx_i b\right)^2$

Adopted from Williams, Fitch, and Singh, MTRX 4700

September 6, 2017-13

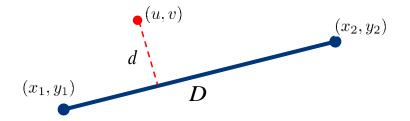
Line Splitting / Segmentation



- What about corners?
- → Split into multiple lines (via expectation maximization)
 - 1. Expect (assume) a number of lines N (say 3)
 - 2. Find "breakpoints" by finding nearest neighbours upto a threshold or simply at random (RANSAC)
 - 3. How to know N? (Also RANSAC)

Adopted from Williams, Fitch, and Singh, MTRX 4700

⊥ of a Point from a Line Segment



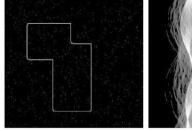
$$r = u(y_1 - y_2) + v(x_2 - x_1) + y_2 x_1 - y_1 x_2$$

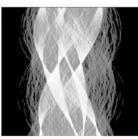
$$d = \frac{r}{D}$$

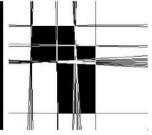
Adopted from Williams, Fitch, and Singh, MTRX 4700

September 6, 2017-15

Hough Transform







- Uses a voting mechanism
- Can be used for other lines and shapes (not just straight lines)

METR 4202: Robotics

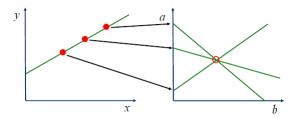
Hough Transform: Voting Space

$$y = ax + b \qquad a =$$

- Count the number of lines that can go through a point and move it from the "x-y" plane to the "a-b" plane
- There is only a one-"infinite" number (a line!) of solutions (not a two-"infinite" set a plane)

September 6, 2017-17

Hough Transform: Voting Space



- In practice, the polar form is often used
 - $a = x\cos a + y\sin b$
- This avoids problems with lines that are nearly vertical

Hough Transform: Algorithm

- 1. Quantize the parameter space appropriately.
- 2. Assume that each cell in the parameter space is an accumulator. Initialize all cells to zero.
- 3. For each point (x,y) in the (visual & range) image space, increment by 1 each of the accumulators that satisfy the equation.
- 4. Maxima in the accumulator array correspond to the parameters of model instances.

September 6, 2017 - 19

Line Detection – Hough Lines [1]

- A line in an image can be expressed as two variables:
 - Cartesian coordinate system: m,b
 - Polar coordinate system: r, θ
 - → avoids problems with vert. lines

$$y = \left(-\frac{\cos\theta}{\sin\theta}\right)x + \left(\frac{r}{\sin\theta}\right)$$
• For each point $(\mathbf{x}_1, \mathbf{y}_1)$ we can write:

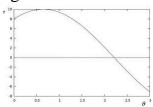
$$r = x_1 \cos \theta + y_1 \sin \theta$$

• Each pair (r,θ) represents a line that passes through (x_1, y_1)

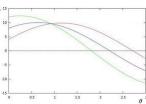
See also OpenCV documentation (cv::HoughLines)

Line Detection – Hough Lines [2]

• Thus a given point gives a sinusoid



• Repeating for all points on the image

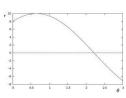


See also OpenCV documentation (cv::HoughLines)

September 6, 2017-21

Line Detection – Hough Lines [3]

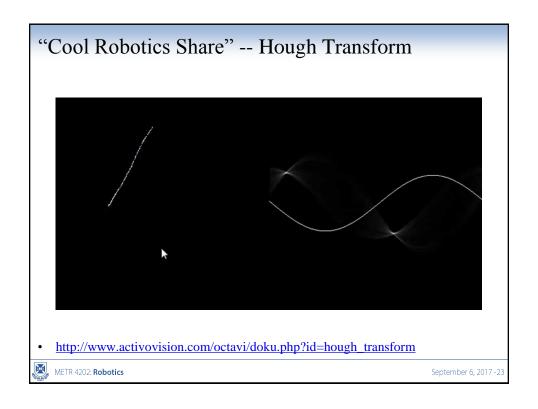
• Thus a given point gives a sinusoid

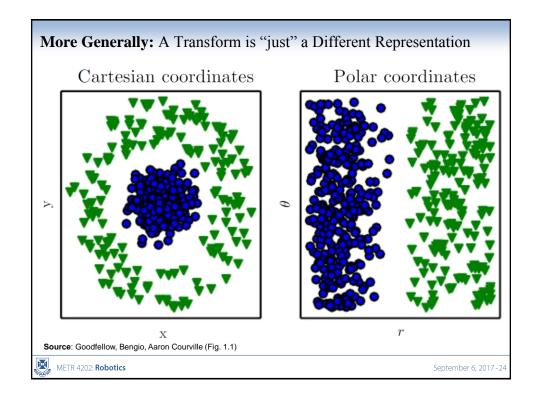


130 05 1 15 2 25 0

- Repeating for all points on the image
- NOTE that an intersection of sinusoids represents (a point) represents a line in which pixel points lay.
- → Thus, a line can be *detected* by finding the number of Intersections between curves

See also OpenCV documentation (cv::HoughLines)

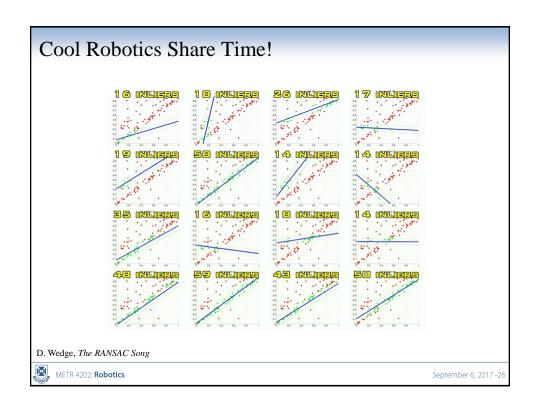




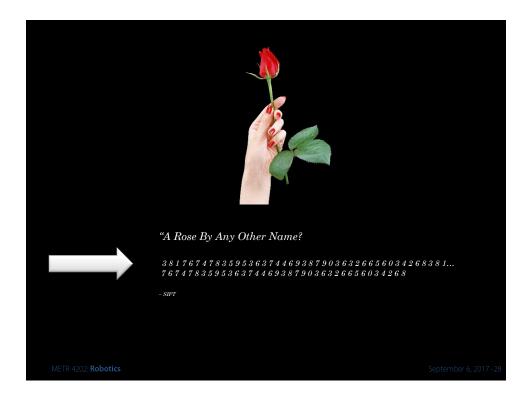
RANdom SAmple Consensus

- 1. Repeatedly select a small (minimal) subset of correspondences
- 2. Estimate a solution (in this case a the line)
- 3. Count the number of "inliers", $|e| < \Theta$ (for LMS, estimate med(|e|)
- 4. Pick the *best* subset of inliers
- 5. Find a complete least-squares solution
- Related to least median squares
- See also: MAPSAC (Maximum A Posteriori SAmple Consensus)

From Szeliski, Computer Vision: Algorithms and Applications



Feature Detection METR 4202 Robotics September 6, 2017-27



How to get Matching Points? Features

- Colour
- Corners
- Edges
- Lines
- Statistics on Edges: SIFT, SURF, ORB...

In OpenCV: The following detector types are supported:

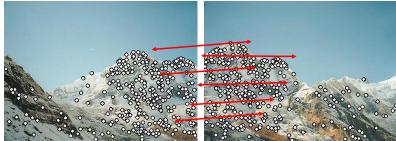
- "FAST" FastFeatureDetector
- "STAR" StarFeatureDetector
- "SIFT" SIFT (nonfree module)
- "SURF" SURF (nonfree module)
- "ORB" ORB
- "BRISK" BRISK
- "MSER" MSER
- "GFTT" GoodFeaturesToTrackDetector
- "HARRIS" GoodFeaturesToTrackDetector with Harris detector enabled
- "Dense" DenseFeatureDetector
 - "SimpleBlob" SimpleBlobDetector

METR 4202: Robotics

September 6, 2017-29

Why extract features?

- Object detection
- Robot Navigation
- Scene Recognition

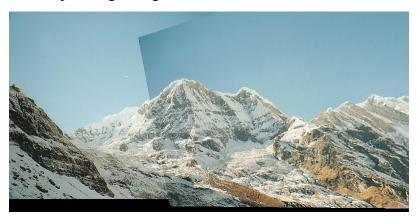


- Steps:
 - Extract Features
 - Match Features

Adopted drom S. Lazebnik, Gang Hua (CS 558)

Why extract features? [2]

- Panorama stitching...
 - → Step 3: Align images



Adopted from S. Lazebnik, Gang Hua (CS 558)

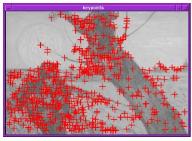
September 6, 2017-31

Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Adopted from S. Lazebnik, Gang Hua (CS 558)

Finding Corners





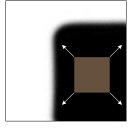
- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive
 C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Adopted from S. Lazebnik, Gang Hua (CS 558)

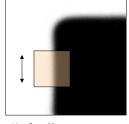
September 6, 2017 - 33

Corner Detection: Basic Idea

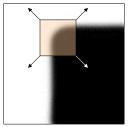
- Look through a window
- Shifting a window in any direction should give a large change in intensity



"flat" region: no change in all directions

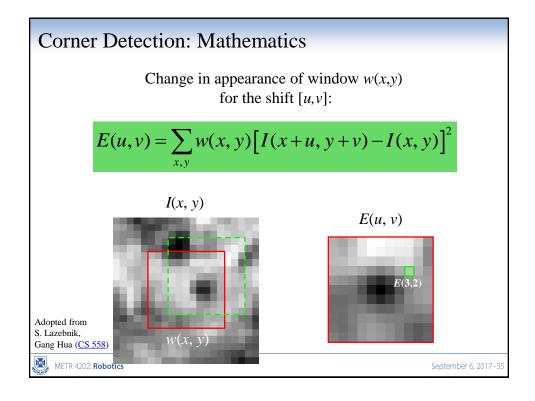


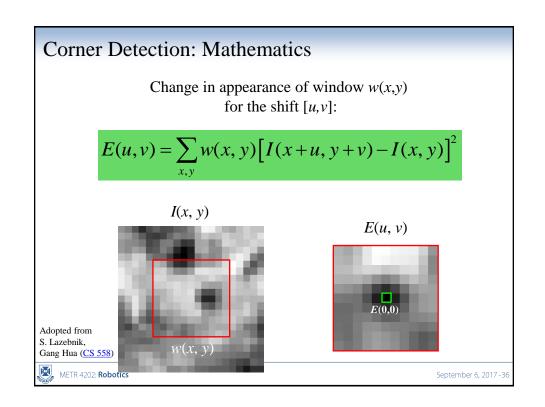
"edge": no change along the edge direction

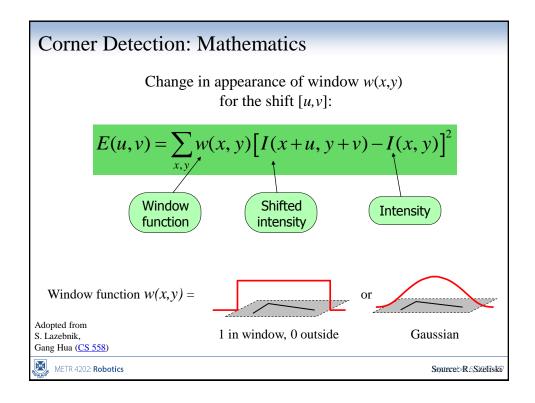


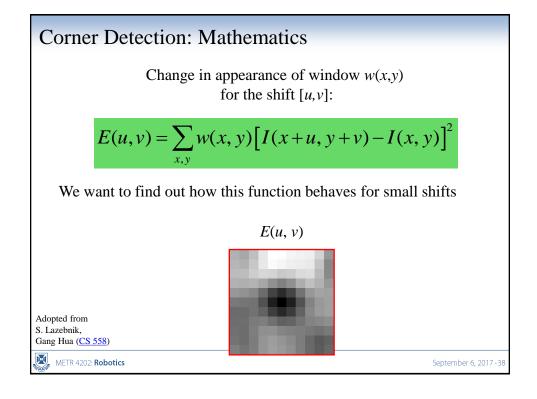
"corner": significant change in all directions

Source: A. Efros









Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the *second-order Taylor expansion*:

Adopted from S. Lazebnik, Gang Hua (CS 558)

METR 4202: Robotics

September 6, 2017 - 39

Corner Detection: Mathematics

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E_{(u,v) \approx E(0,0) + [u \ v \Big[E_u(0,0) \Big] + \frac{1}{2} [u \ v \Big[E_{ux}(0,0) \ E_{w}(0,0) \Big] u \Big]}{E_v(0,0) E_w(0,0) \Big[v \Big]}$$

$$E_u(u,v) = \sum_{x,y} 2w(x,y) \big[I(x+u,y+v) - I(x,y) \big] I_x(x+u,y+v)$$

$$E_{uu}(u,v) = \sum_{x,y} 2w(x,y) I_x(x+u,y+v) I_x(x+u,y+v)$$

$$+ \sum_{x,y} 2w(x,y) \big[I(x+u,y+v) - I(x,y) \big] I_{xx}(x+u,y+v)$$

$$E_{uv}(u,v) = \sum_{x,y} 2w(x,y) I_y(x+u,y+v) - I(x,y) I_x(x+u,y+v)$$
Adopted from S. Lazebnik,
$$+ \sum_{x,y} 2w(x,y) \big[I(x+u,y+v) - I(x,y) \big] I_{xy}(x+u,y+v)$$

M

METR 4202: Robotics

Gang Hua (CS 558)

Corner Detection: Mathematics

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx [u \ v] \begin{bmatrix} \sum_{x,y} w(x,y)I_x^2(x,y) & \sum_{x,y} w(x,y)I_x(x,y)I_y(x,y) \\ \sum_{x,y} w(x,y)I_x(x,y)I_y(x,y) & \sum_{x,y} w(x,y)I_y^2(x,y) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \\ E(0,0) = 0 \\ E_u(0,0) = 0 \\ E_v(0,0) = 0 \\ E_{uu}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y)I_x(x,y) \\ E_{vv}(0,0) = \sum_{x,y} 2w(x,y)I_y(x,y)I_y(x,y) \\ E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y)I_y(x,y) \\ E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y)I_x(x,y) \\ E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y) \\ E_{uv}(0,0) = \sum_{x$$

Adopted from S. Lazebnik, Gang Hua (CS 558)

September 6, 2017-41

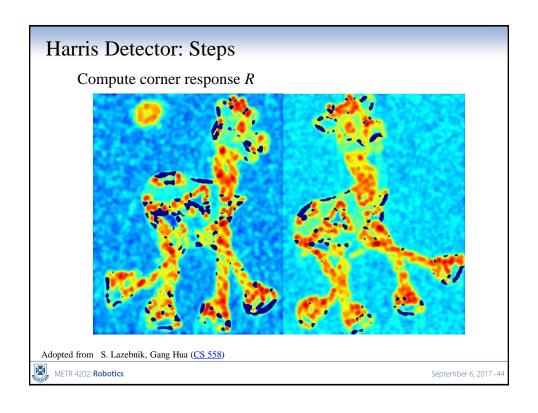
Harris detector: Steps

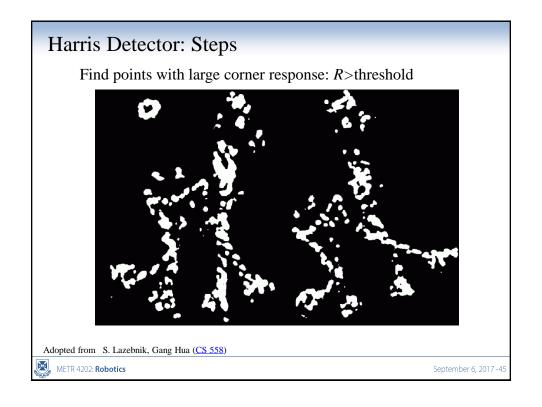
- Compute Gaussian derivatives at each pixel
- Compute second moment matrix M in a Gaussian window around each pixel
- Compute corner response function R
- Threshold R
- Find local maxima of response function (nonmaximum suppression)

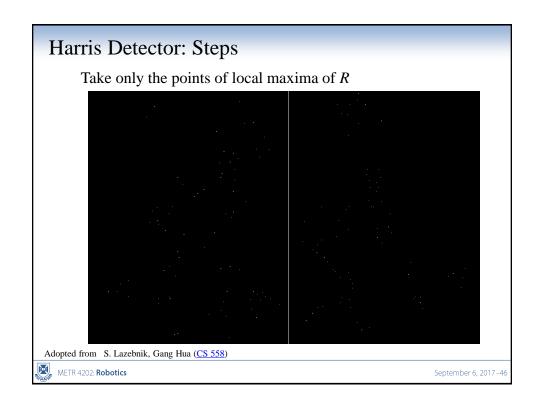
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Adopted from S. Lazebnik, Gang Hua (<u>CS 558</u>)

METR 4202: Robotics







Harris Detector: Steps

Adopted from S. Lazebnik, Gang Hua (CS 558)

September 6, 2017 - 47

Invariance and covariance

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Adopted from S. Lazebnik, Gang Hua (CS 558)

Feature matching

- Given a feature in I_1 , how to find the best match in I_2 ?
 - 1. Define distance function that compares two descriptors
 - 2. Test all the features in I₂, find the one with min distance

From Szeliski, Computer Vision: Algorithms and Applications

September 6, 2017-49

Feature distance

- How to define the difference between two features f_1, f_2 ?
 - Simple approach is $SSD(f_1, f_2)$
 - sum of square differences between entries of the two descriptors
 - can give good scores to very ambiguous (bad) matches

 I_2

From Szeliski, Computer Vision: Algorithms and Applications

Feature distance

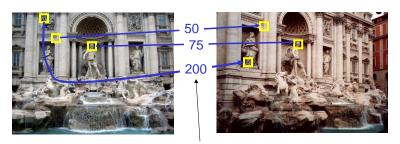
- How to define the difference between two features f_1 , f_2 ?
 - Better approach: ratio distance = $SSD(f_1, f_2) / SSD(f_1, f_2')$
 - f_2 is best SSD match to f_1 in I_2
 - f_2 ' is 2^{nd} best SSD match to f_1 in I_2
 - gives small values for ambiguous matches

From Szeliski, Computer Vision: Algorithms and Applications

September 6, 2017-51

Evaluating the results

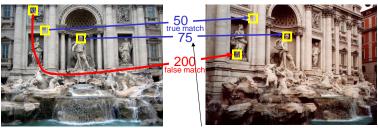
• How can we measure the performance of a feature matcher?



feature distance

From Szeliski, Computer Vision: Algorithms and Applications

True/false positives



feature distance

- The distance threshold affects performance
 - True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
 - False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

From Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

September 6, 2017 - 53

Levenberg-Marquardt

- Iterative non-linear least squares [Press'92]
 - Linearize measurement equations

$$\hat{u}_i = f(\mathbf{m}, \mathbf{x}_i) + \frac{\partial f}{\partial \mathbf{m}} \Delta \mathbf{m}$$

$$\hat{v}_i = g(\mathbf{m}, \mathbf{x}_i) + \frac{\partial g}{\partial \mathbf{m}} \Delta \mathbf{m}$$

- Substitute into log-likelihood equation: quadratic cost function in Dm

$$\sum_{i} \sigma_{i}^{-2} (\hat{u}_{i} - u_{i} + \frac{\partial f}{\partial \mathbf{m}} \Delta \mathbf{m})^{2} + \cdots$$

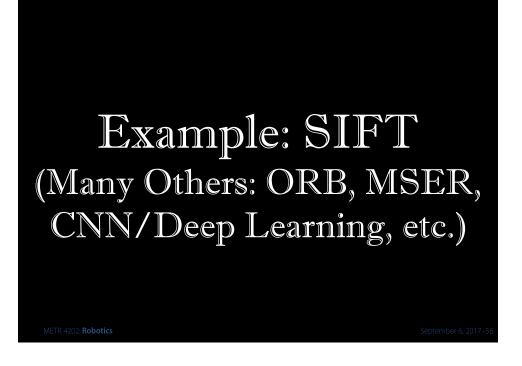
From Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

Levenberg-Marquardt

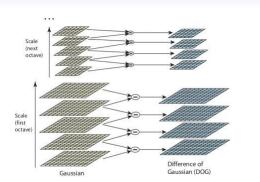
- What if it doesn't converge?
 - Multiply diagonal by (1 + l), increase l until it does
 - Halve the step size Dm (my favorite)
 - Use line search
 - Other ideas?
- Uncertainty analysis: covariance S = A-1
- Is maximum likelihood the best idea?
- How to start in vicinity of global minimum?

From Szeliski, Computer Vision: Algorithms and Applications

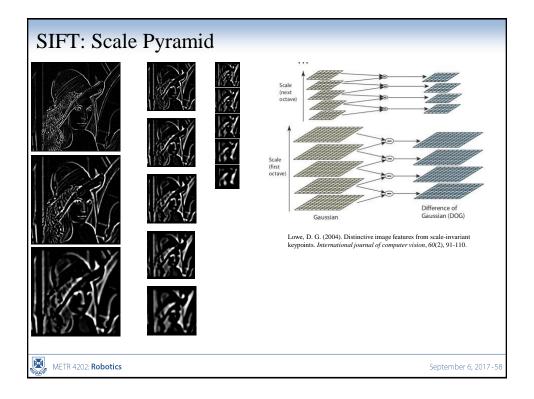


SIFT: Scale Pyramid

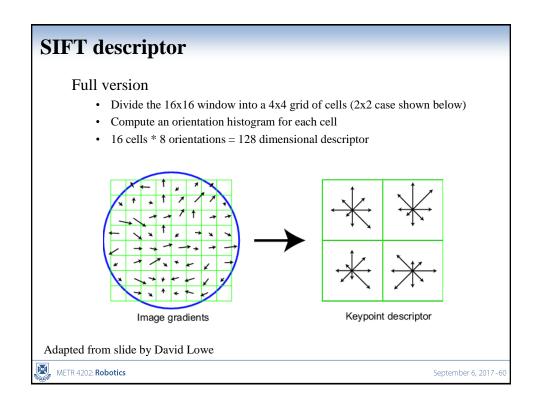
- D images are organised into a pyramid of progressively blurred images.
- Separated into octaves and scale levels per octave.
- Between octaves image is decimated by a factor of 2.

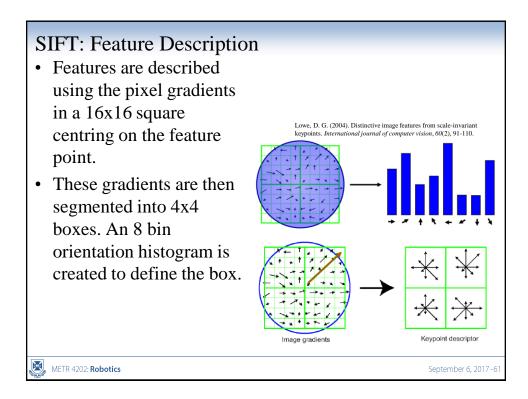


Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.



Scale Invariant Feature Transform Basic idea: • Take 16x16 square window around detected feature • Compute edge orientation (angle of the gradient - 90°) for each pixel • Throw out weak edges (threshold gradient magnitude) • Create histogram of surviving edge orientations Image gradients Adapted from slide by David Lowe





Scale Invariant Feature Transforms

- Goal was to define an algorithm to describe an image with features
- This would enable a number of different applications:
 - Feature Matching
 - Object / Image Matching
 - Orientation / Homography Resolution

METR 4202: Robotics

SIFT: Feature Definition

• SIFT features are defined as the local extrema in a Difference of Gaussian (D) Scale Pyramid.

$$D(x, y, \sigma) = L(x, y, k_i \sigma) - L(x, y, k_i \sigma)$$

Where

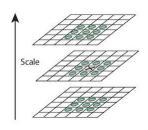
$$L(x, y, k_i \sigma) = G(x, y, k\sigma) * I(x, y)$$

METR 4202: Robotics

September 6, 2017-63

SIFT: Feature Detection

- Each scale level in the image is evaluated for features.
- A feature is defined as a local maximum or minimum.
- For efficiency the 26 surrounding points are evaluated.



 $Lowe,\ D.\ G.\ (2004).\ Distinctive\ image\ features\ from\ scale-invariant\ keypoints.\ International\ journal\ of\ computer\ vision,\ 60(2),\ 91-110.$

METR 4202: Robotics

SIFT: Feature Reduction

- Initial feature detection over detects features descriptive of the image.
- Initially remove features with low contrast.
- Then evaluate features to remove any edge responses.

METR 4202: Robotics

September 6, 2017 - 65

SIFT: Feature Matching

- A match is defined as a pair of features with the closest Euclidian distance to each other.
- Matches above a threshold are culled to improve match.

OpenCV: Feature Matching (2014)

METR 4202: Robotics

Properties of SIFT

- Extraordinarily robust matching technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
 - $\bullet \quad \underline{http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT$

From David Lowe and Szeliski, Computer Vision: Algorithms and Applications

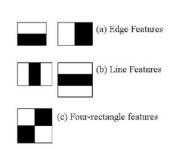
Boosted Cascade Haar-like Weak Classifiers

- Fast object detector designed primarily for use in face detection.
- Uses a cascade of weak classifiers to define object match.

September 6, 2017-69

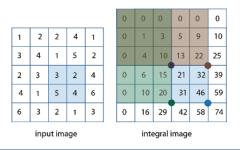
Viola Jones: Feature Definition

- Feature is classified as being the difference between the average intensity of two or more image sections.
- Can be any arithmetic combination of section values.



Viola Jones: Efficient Calculation of Features

- Fast calculation of the feature value is obtained by calculating the integral image.
- This leaves at most 4 sum operations to calculate a feature.



METR 4202: Robotics

September 6, 2017-71

Viola Jones: Boosting

- Iteratively selects best classifier for detection.
- Assigns weights to each classifier to indicate likelihood of classifier indicating positive detection
- If the sum of the weights of positive classifier responses is above a threshold then there is a positive detection.

- Given example images (x1, y1),...,(xn, yn) where yi = 0,1 for negative and positive examples respectively.
- Initialize weights w_{1,i} = \frac{1}{2m}, \frac{1}{2l} \text{ for } y_i = 0, 1 \text{ respectively, where } m \text{ and } l \text{ are the number of negatives and positives respectively.}
- For $t=1,\ldots,T$:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t, ε_j = ∑_i w_i |h_j (x_i) − y_i|.
- 3. Choose the classifier , $h_{\rm c}$, with the lowest error ϵ_t
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i=0$ if example x_i is classified correctly, $e_i=1$ otherwise, and $\beta_t=\frac{\epsilon_t}{1-\epsilon_t}$.

• The final strong classifier is:

where $\alpha_t = \log \frac{1}{\beta_t}$

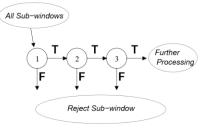
$$h(x) = \left\{ \begin{array}{ll} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \geq \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{array} \right.$$

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features

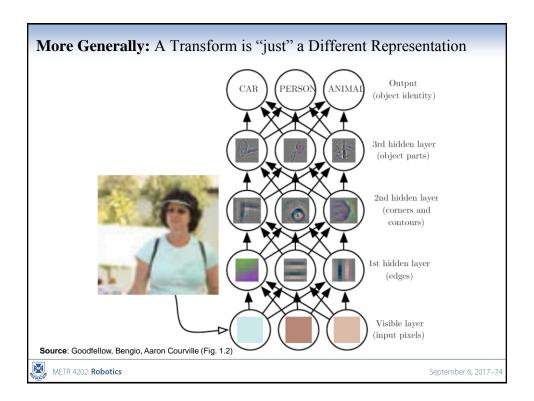
METR 4202: Robotics

Viola Jones: Boosted Cascades

- Effective boosted classifiers require a high number of weak classifiers.
- However, simple low count classifiers offer high rejection rate.
- Solution is to use cascaded classifiers.



Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features



What's the Difference Between Feature-Based & "Direct Methods"?

- Good Question ☺
- · Let's Discuss...

