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Lecture Schedule 

 

Week Date Lecture (W: 3:05p-4:50, 7-222) 

1 26-Jul 
Introduction +  

Representing Position & Orientation & State 

2 2-Aug 
Robot Forward Kinematics 

(Frames, Transformation Matrices & Affine Transformations) 

3 9-Aug Robot Inverse Kinematics & Dynamics (Jacobeans) 

4 16-Aug Ekka Day (Robot Kinematics & Kinetics Review) 

5 23-Aug Robot Sensing: Perception & Linear Observers 

6 30-Aug Robot Sensing: Single View Geometry & Lines 

7 6-Sep Robot Sensing: Multiple View Geometry 

8 13-Sep Robot Sensing: Feature Detection 

9 20-Sep Mid-Semester Exam 

  27-Sep Study break 

10 4-Oct Motion Planning 

11 11-Oct Probabilistic Robotics: Localization & SLAM 

12 18-Oct 
Probabilistic Robotics: Planning & Control  

(State-Space/Shaping the Dynamic Response/LQR)  

13 25-Oct The Future of Robotics/Automation + Challenges + Course Review 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Course Organization 

 
Computational Geometry 

Stochastic  
Processes 

(State Space) 
Control 

Systems 

Kinematics 

Vision 

Motion 
Planning 

Machine 
Learning 

Estimation 
(EKF)  

Design 

 

Follow Along Reading: 

Robotics, Vision & Control  

by Peter Corke  

 

Also online:SpringerLink 

 

UQ Library eBook: 

364220144X   

  Representing Space  

• RVC 

– Chapter 7: Robot Arm Kinematics 

–  

 

• Inverse Kinematics 

– RVC 

§7.3: Robot Arm Kinematics 

Today 

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
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Reference Material 

Online: 

http://ruina.tam.cornell.edu/Book/

RuinaPratap1-15-13.pdf  

Space  
A friendly reminder –Aug/21 

 

 

 

 

 

http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
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𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 
𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

0
1

 

 

Homogenous Coordinates 

• ρ is a scaling value 

 



5 

Homogenous Transformation ✯ 

  

 

•  γ is a projective transformation 

• The Homogenous Transformation is a linear operation  

(even if projection is not) 

 

Projective Transformations … 

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 
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Projective Transformations &  

Other Transformations of 3D Space 

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 

Coordinate Transformations [1] 

• Translation Again: 

 If {B} is translated with respect to {A} without rotation, then it is a 

vector sum 

{A} 

XA 

YA 

ZA 

{B} 

XB 

YB 

ZB 

AP 

APB 

BP 
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Coordinate Transformations [2] 

• Rotation Again: 

 {B} is rotated with respect to {A}  then  

use rotation matrix to determine new components 

 

 

• NOTE: 

– The Rotation matrix’s subscript 

matches the position vector’s 

superscript 

 

 

 

– This gives Point Positions of {B} ORIENTED in {A} 

{A} 

XA 

YA 

ZA 

BP 

 

Coordinate Transformations [3] 

• Composite transformation: 

 {B} is moved with respect to {A}: 

{A} 

XA 

YA 

ZA 
AP 

APB 

BP 
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General Coordinate Transformations [1] 

• A compact representation of the translation and rotation is known as the 
Homogeneous Transformation 

 

 

 

 

 

• This allows us to cast the rotation and translation of the general transform 
in a single matrix form 

 

General Coordinate Transformations [2] 
• Similarly, fundamental orthonormal transformations can be represented in 

this form too: 
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General Coordinate Transformations [3] ✯ 

• Multiple transformations compounded as a chain 

{A} 

XA 

YA 

ZA 
AP 

APB 

CP 

BPC 

 

Inverse of a Homogeneous Transformation Matrix 

• The inverse of the transform is not equal to its transpose 

because this 4×4 matrix is not orthonormal (𝑇−1 ≠ 𝑇𝑇) 

•  Invert by parts to give: 
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Tutorial Problem ✍ 

The origin of frame {B}  is translated  

to a position [0 3 1]  

with respect to frame {A}.  

 

We would like to find: 

1. The homogeneous transformation between the two 

frames in the figure. 

2. For a point P defined as as [0 1 1] in frame {B}, we 

would like to find the vector describing this point with 

respect to frame {A}. 

 

Tutorial Solution ✔ 

• The matrix 𝑇𝐵
𝐴 is formed as defined earlier: 

 

 

 

• Since P in the frame is:  

 

• We find vector p in frame {A} using the relationship 

 

 

 

 



11 

Forward  

Kinematics 

   

 

Forward Kinematics [1] 

• Forward kinematics is the process of chaining 
homogeneous transforms together.  For example to: 

– Find the articulations of a mechanism, or 

– the fixed transformation between two frames which is known in 
terms of linear and rotary parameters. 

• Calculates the final position from  
the machine (joint variables) 

  

 

• Unique for an open kinematic chain (serial arm) 

• “Complicated” (multiple solutions, etc.) for a closed 
kinematic chain (parallel arm) 
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Forward Kinematics [2] 

• Can think of this as “spaces”: 

– Workspace (x,y,z,α,β,γ):  

 The robot’s position & orientation 

 

– Joint  space (θ1 … θn): 

 A state-space vector of joint variables  

 

Joint Limits 

Workspace 

qf 

Forward Kinematics 
xf 

xfi 
qi 

q’i 

Inverse Kinematics 

 

Forward Kinematics [3] 

• Consider a planar RRR manipular 

• Given the joint angles and link lengths, we can determine the end effector 

pose: 

 

 

 

 

 

 

 

 

• This isn’t too difficult to determine  

for a simple, planar manipulator.  BUT … 
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Forward Kinematics [4]: The PUMA 560! 

• What about a more complicated mechanism? 

 

• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous 

transforms for articulated mechanisms 

 (But B. Roth, introduced it to robotics) 

 

• A kinematics “short-cut” that reduced the number of parameters by adding 

a structure to frame selection 

 

• For two frames positioned in space, the first can be moved into 

coincidence with the second by a sequence of 4 operations: 

– rotate around the xi-1 axis by an angle ai 

– translate along the xi-1 axis by a distance ai 

– translate along the new z axis by a distance di 

– rotate around the new z axis by an angle qi 
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Denavit-Hartenberg Convention 

• link length ai the offset distance between the zi-1 and zi axes along the xi 
axis; 

• link twist ai the angle from the zi-1 axis to the zi axis about the xi axis; 

 

 

• link offset di the distance 
from the origin of frame i-1 
to the xi axis along the zi-1 
axis; 

• joint angle qi the angle 
between the xi-1 and xi axes 
about the zi-1 axis. 

 

Art  c/o P. Corke 

 

DH: Where to place frame? 

1. Align an axis along principal motion 

1. Rotary (R): align rotation axis along the z axis 

2. Prismatic (P): align slider travel along x axis 

 

2. Orient  so as to position x axis towards next frame 

 

3. θ (rot z)  d (trans z)  a (trans x)  α (rot x) 
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Denavit-Hartenberg  Rotation Matrix 

• Each transformation is a product of 4 “basic”  

transformations (instead of 6) 

 

DH Example [1]: RRR Link Manipulator 

1. Assign the frames at the joints … 

2. Fill DH Table … 

θ1 

θ2 

θ3 

{0} 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 2 3

1 2 30 1 2

1 2 3

0 0 0

0 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c c s L c

s c L s s c L s s c L s
A A A

q q q q q q q q q

q q q q q q q q q

       
     
       
     
     
     

123 123 1 12 123

123 123 1 12 123

0 0 1 2

3 1 2 3

1 2 3

1 2 3

0

0

0 0 1 0

0 0 0 1

T A A A

c s L c L c L c

s c L s L s L s

q q q q q

q q q q q



   
 

 
 
 
 
 
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DH Example [2]: RRP Link Manipulator 

1. Assign the frames at the joints … 

2. Fill DH Table … 

1 1 1 2 2 2

1 1 1 2 2 2

1 2 3

1 20 1 2

1 2 3

0 0 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c L

s c L s s c L s
A A A

q q q q q q

q q q q q q

      
     
       
     
     
     

θ1 

θ2 {0} 

 

 
12 12 1 12

12 12 1 12

0 0 1 2

3 1 2 3

1 2 3

1 2 3

0

0

0 0 1 0

0 0 0 1

T A A A

c s L c L L c

s c L s L L s

q q q q

q q q q



    
 

  
 
 
  

DH Example [3]: Puma 560 

• “Simple” 6R robot exercise for the reader … 

Image: J. Craig, Introduction to Robotics 

3rd Ed., 2005 
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DH Example [3]: Puma 560 [2] 

Modified DH 

• Made “popular” by Craig’s Intro. to Robotics book 

• Link coordinates attached to the near by joint 

 

 

 

 

 

 

 

• a (trans x-1)  α (rot x-1)  θ (rot z)  d (trans z)  

 

Art  c/o P. Corke 
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Modified DH [2] 

• Gives a similar result 

(but it’s not commutative) 

 

 

 

 

• Refactoring Standard  to Modified 

 

 

• The “central” Kinematic 

structure is made up of 

closed-loop chain(s) 

 

• Compared to Serial 

Mechanisms: 

+ Higher Stiffness 

+ Higher Payload 

+ Less Inertia 

– Smaller Workspace 

– Coordinated Drive System 

– More Complex & $$$ 

 

Sources: Wikipedia, “Delta Robot”, ParallelMic.Org, “Delta Parallel Robot”, and  

US Patent 4,976,582 

https://www.google.com/patents/US4976582
https://www.google.com/patents/US4976582
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Symmetrical Parallel Manipulator 

A sub-class of Parallel Manipulator: 
o # Limbs (m) = # DOF (F) 

o The joints are arranged in an identical pattern 

o The # and location of actuated joints are the same  

 

Thus: 
o Number of Loops (L): One less than # of limbs 

 

 

o Connectivity (Ck) 

 

 

 
Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 

 

 

 
 

 

Cool Robotics Share 
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Inverse 

Kinematics 

   

 

Inverse Kinematics [More Generally] 
• Freudenstein (1973) referred to the inverse kinematics problem of the most 

general 6R manipulator as the “Mount Everest” of kinematic problems. 

 

• Tsai and Morgan (1985) and Primrose (1986) proved that this has at most 16 real 
solutions. 

  

• Duffy and Crane (1980) derived a closed-form solution for the general 7R single-
loop spatial mechanism.  

– The solution was obtained in the form of a 16 x 16 delerminant in which every element is a 
second-degree polynomial in one joint variable. The determinant, when expended, should 
yield a 32nd-degree polynomial equation and hence confirms the upper limit predicted by 
Roth et al. (1973). 

  

• Tsai and Morgan (1985) used the homotopy continuation method to solve the 
inverse kinematics of the general 6R manipulator and found only 16 solutions 

 

• Raghavan and Roth (1989, 1990) used the dyalitic elimination method to derive a 
16th-degree polynomial for the general 6R inverse kinematics problem.  
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Example: FK/IK of a 3R Planar Arm 

• Derived from Tsai (p. 63) 

 

Example: 3R Planar Arm [2] 

Position Analysis: 3·Planar 1-R Arm rotating about Z  [Ⓩ] 
0

𝐴3 =
0

𝐴1 ∙1 𝐴2 ∙2 𝐴3 

 

Substituting gives: 
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Example: 3R Planar Arm [2] 

Forward Kinematics  

(solve for x given θ  x = f (θ)) 

 

Fairly straight forward: 

 

 

 

 

 

Example: 3R Planar Arm [3] 

Inverse Kinematics  

(solve for θ given x  x = f (θ)) 

 

• Start with orientation φ: 

𝐶𝜃123 = 𝐶𝜙,  𝑆𝜃123 = 𝑆𝜙 

⇒ 𝜃123 =  𝜃1 + 𝜃2 + 𝜃3 = 𝜙 

 

• Get overall position 𝒒 = [𝑞𝑥 𝑞𝑦]: 

𝑞𝑥 − 𝑎3𝐶𝜙 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12  

𝑞𝑦 − 𝑎3𝑆𝜙 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12 … 
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Example: 3R Planar Arm [4] 

• Introduce 𝒑 = 𝑝𝑥 𝑝𝑦  before “wrist” 

𝑝𝑥 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12, 𝑝𝑦 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12  

⇒ 𝑝𝑥
2 + 𝑝𝑦

2 = 𝑎1
2 + 𝑎2

2 + 2𝑎1𝑎2𝐶𝜃2 

• Solve for θ2: 

𝜃2 = cos−1 𝜅, 𝜅 =
𝑝𝑥

2+𝑝𝑦
2−𝑎1

2−𝑎2
2

2𝑎1𝑎2
  (2 ℝ roots if |κ|<1) 

• Solve for θ1: 

𝐶𝜃1 =
𝑝𝑥 𝑎1+𝑎2𝐶𝜃2 +𝑝𝑦𝑎2𝑆𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
, 𝑆𝜃1 =

−𝑝𝑥𝑎2𝑆𝜃2+𝑝𝑦 𝑎1+𝑎2𝐶𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑆𝜃1, 𝐶𝜃1) 

 

 
 

Inverse Kinematics: Example I 

Planar Manipulator: 
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Inverse Kinematics: Example I 

• Forward Kinematics: 

[For the Frame {Q} at the end effector]: 

 

 

 
∵ 

 

• For an arbitrary point G in the end effector: 

 

 

 

Inverse Kinematics: Example I 

• Forward Kinematics: 

[For the Frame {Q} at the end effector]: 

 

 

 
∵ 

 

• For an arbitrary point G in the end effector: 
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Inverse Kinematics: Example I 

• Inverse Kinematics: 

– Set the final position equal to the  

Forward Transformation Matrix 0A3: 

 

 

 

 

• The solution strategy is to equate the elements of 0A3 to 

that of the given position (qx, qy) and orientation ϕ  

 

 

Inverse Kinematics: Example I 

• Orientation (ϕ): 

 

 

 

• Now Position of the 2DOF point P: 

 

 

∴ 

• Substitute: θ3 disappears and now we can eliminate θ1: 
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Inverse Kinematics: Example I 

• we can eliminate θ1… 

 

• Then solve for θ12:  

 

 

– This gives 2 real (ℝ) roots if |𝜅| < 1 

– One double root if |𝜅| = 1 

– No real roots if |𝜅| >1 

• Elbow up/down: 

– In general, if θ2 is a solution  

then -θ2 is a solution 

 

Inverse Kinematics: Example I 

• Solving for θ1… 

– Corresponding to each θ2, we can solve θ1 
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Inverse Kinematics: Example II 

Elbow Manipulator: 

 

Inverse Kinematics: Example II 

• Target Position: 

 

 

• Transformation Matrices: 
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Inverse Kinematics: Example II 

• Key Matrix Products: 

 

 

Inverse Kinematics: Example II 

• Inverse Kinematics: 
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Inverse Kinematics: Example II 

• Solving the System: 

 

Advanced Concept: Tendon-Driven Manipulators 

• Tendons may be modelled as a 

transmission line  

• in which the links are labeled 

sequentially from 0 to n and the 

pulleys are labeled from j to j + n -1 

• Let θji denote the angular 

displacement of link j with respect 

to link i.  

• We can write a circuit equation  

once for each pulley pair as follows: 
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Inverse Kinematics 

• What about a more complicated mechanism? 

 
» A sufficient condition for a serial manipulator to 

yield a closed-form inverse kinematics solution is to 

have any three consecutive joint axes intersecting at 

a common point or any three consecutive joint axes 

parallel to each other. (Pieper and Roth (1969) via 

4×4 matrix method) 

 

» Raghavan and Roth 1990  

“Kinematic Analysis of the 6R Manipulator of 

General Geometry”  

 

» Tsai and Morgan 1985, “Solving the Kinematics of 

the Most General Six  and Five-Dcgree-of-Freedom 

Manipulators by Continuation Methods”   

(posted online) 

 

 

 

 

Inverse Kinematics 

• What about a more complicated mechanism? 
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Symmetrical Parallel Manipulator 

A sub-class of Parallel Manipulator: 
o # Limbs (m) = # DOF (F) 

o The joints are arranged in an identical pattern 

o The # and location of actuated joints are the same  

 

Thus: 
o Number of Loops (L): One less than # of limbs 

 

 

o Connectivity (Ck) 

 

 

 
Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 
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Robot Dynamics 

 

Angular Velocity 

• If we look at a small timeslice as a frame rotates with a moving point, we 

find 
AΩB 

ΔP ΩΔt 

{B} 

P(t) 

P(t+Δt) 

θ 

|P|sinq 
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Velocity 

• Recall that we can specify a point in one frame relative to 

another as 

 

• Differentiating w/r/t to t we find 

 

 

 

• This can be rewritten as  

 

 

 

Skew – Symmetric Matrix 
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Velocity Representations 

• Euler Angles 

– For Z-Y-X  (α,β,γ): 

 

 

 

 

•  Quaternions 

 

 

 

Manipulator Velocities 

• Consider again the schematic of the planar 

manipulator shown.  We found that the end 

effector position is given by 

 

 

 

• Differentiating w/r/t to t  
 

 

 

 

 

• This gives the end effector velocity  

as a function of pose and joint velocities 

θ1 

θ2 

θ3 

v 
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Manipulator Velocities [2]  ✯ 

• Rearranging, we can recast this relation in 

matrix form 

 

 

 

• Or 

 

 

 

 

• The resulting matrix is called the Jacobian 

and provides us with a mapping from 

Joint Space to Cartesian Space.   

θ1 

θ2 

θ3 

v 

Moving On…Differential Motion 

• Transformations also encode differential relationships 

• Consider a manipulator (say 2DOF, RR) 

  

  

• Differentiating with respect to the angles gives: 
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Differential Motion [2] 

• Viewing this as a matrix  Jacobian  

1 1 2 2v J Jq q 

 

Infinitesimal Rotations 

•   

 

 

 

 

 

 

 

•  Note that: 

 

 

 Therefore … they commute 

 

 

       x y y xR d R d R d R d   
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Summary 

• Many ways to view a rotation 

– Rotation matrix 

– Euler angles 

– Quaternions 

– Direction Cosines 

– Screw Vectors 

 

• Homogenous transformations  

– Based on homogeneous coordinates 

 

 


