

Week	Date	Lecture (W: 3:05p-4:50, 7-222)			
1	26-Jul	Introduction + Representing Position & Orientation & State			
2	2-Aug	Robot Forward Kinematics (Frames, Transformation Matrices & Affine Transformations)			
3	9-Aug	Robot Inverse Kinematics & Dynamics (Jacobeans)			
4	16-Aug	Ekka Day (Robot Kinematics & Kinetics Review)			
5	23-Aug	Robot Sensing: Perception & Linear Observers			
6	30-Aug	Robot Sensing: Single View Geometry & Lines			
7	6-Sep	Robot Sensing: Multiple View Geometry			
8	13-Sep	Robot Sensing: Feature Detection			
9	20-Sep	Mid-Semester Exam			
	27-Sep	Study break			
10	4-Oct	Motion Planning			
11	11-Oct	Probabilistic Robotics: Localization & SLAM			
12	18-Oct	Probabilistic Robotics: Planning & Contro (State-Space/Shaping the Dynamic Response/LQR)			
13	25-Oct	The Future of Robotics/Automation + Challenges + Course Review			

Space A friendly reminder –Aug/21

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$	$[]{}$	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{rrrr} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area

 Tutorial Solution
 • The matrix $_BT^A$ is formed as defined earlier:

 $_{B}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ • Since P in the frame is:

 $_{B}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ • We find vector p in frame (A) using the relationship

 • Since P in the frame is:
 $^{B}p = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

 • We find vector p in frame (A) using the relationship

 $Ap = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}$

Denavit Hartenberg [DH] Notation

• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous transforms for articulated mechanisms

(But B. Roth, introduced it to robotics)

- A kinematics "short-cut" that reduced the number of parameters by adding a structure to frame selection
- For two frames positioned in space, the first can be moved into coincidence with the second by a sequence of 4 operations:
 - rotate around the x_{i-1} axis by an angle α_i
 - translate along the x_{i-1} axis by a distance a_i
 - translate along the new z axis by a distance d_i
 - rotate around the new z axis by an angle θ_i

METR 4202: Robotics

Symmetrical Parallel Manipulator

A sub-class of Parallel Manipulator:

 \circ # Limbs (*m*) = # DOF (*F*)

 $\circ\,$ The joints are arranged in an identical pattern

 $\circ\,$ The # and location of actuated joints are the same

Thus:

○ Number of Loops (L): One less than # of limbs

$$L = m - 1 = F - 1$$

 \circ Connectivity (C_k)

$$\sum_{k=1}^{m} C_k = (\lambda + 1) F - \lambda$$

Where: λ : The DOF of the space that the system is in (e.g., λ =6 for 3D space).

METR 4202: Robotics

Example: 3R Planar Arm [2] Position Analysis: 3·Planar 1-R Arm rotating about Z [2] ${}^{0}A_{3} = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3}$ Substituting gives: ${}^{0}A_{3} = \begin{bmatrix} C_{0123} & -S_{0123} & 0 & a_{1}C_{01} + a_{2}C_{012} + a_{3}C_{0123} \\ S_{0123} & C_{0123} & 0 & a_{1}S_{01} + a_{2}S_{012} + a_{3}S_{0123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Inverse Kinematics

Symmetrical Parallel Manipulator

A sub-class of Parallel Manipulator:

○ # Limbs (*m*) = # DOF (*F*)

 $\circ\,$ The joints are arranged in an identical pattern

 $\circ\,$ The # and location of actuated joints are the same

Thus:

○ Number of Loops (L): One less than # of limbs

$$L = m - 1 = F - 1$$

 \circ Connectivity (C_k)

$$\sum_{k=1}^{m} C_k = (\lambda + 1) F - \lambda$$

Where: λ : The DOF of the space that the system is in (e.g., λ =6 for 3D space).

METR 4202: Robotics

Velocity

• Recall that we can specify a point in one frame relative to another as

$${}^{A}\mathbf{P} = {}^{A}\mathbf{P}_{B} + {}^{A}_{B}\mathbf{R}^{B}\mathbf{P}$$

• Differentiating w/r/t to **t** we find

$${}^{A}\mathbf{V}_{P} = \frac{d}{dt}{}^{A}\mathbf{P} = \lim_{\Delta t \to 0} \frac{{}^{A}\mathbf{P}(t + \Delta t) - {}^{A}\mathbf{P}(t)}{\Delta t}$$
$$= {}^{A}\dot{\mathbf{P}}_{B} + {}^{A}_{B}\mathbf{R}^{B}\dot{\mathbf{P}} + {}^{A}_{B}\dot{\mathbf{R}}^{B}\mathbf{P}$$

• This can be rewritten as

$${}^{A}\mathbf{V}_{P} = {}^{A}\mathbf{V}_{BORG} + {}^{A}\mathbf{R}_{B}{}^{B}\mathbf{V}_{P} + {}^{A}\boldsymbol{\Omega}_{B} \times {}^{A}\mathbf{R}_{B}{}^{B}\mathbf{P}$$

METR 4202: Robotics

Differential Motion [2]
• Viewing this as a matrix
$$\rightarrow$$
 Jacobian
 $d\mathbf{x} = Jd\theta$
 $J = \begin{bmatrix} -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$
 $J = \begin{bmatrix} [J_1] & [J_2] \end{bmatrix}$
 $v = J_1\dot{\theta}_1 + J_2\dot{\theta}_2$

Infinitesimal Rotations • $\cos(d\phi) = 1, \sin(d\phi) = d\phi$ $R_x(d\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cd\phi & -sd\phi \\ 0 & sd\phi & cd\phi \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -d\phi \\ 0 & d\phi & 1 \end{bmatrix}$ $R_y(d\phi) = \begin{bmatrix} cd\phi & 0 & sd\phi \\ 0 & 1 & 0 \\ -sd\phi & 0 & cd\phi \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & d\phi \\ 0 & 1 & 0 \\ -d\phi & 0 & 1 \end{bmatrix}$ $R_z(d\phi) = \begin{bmatrix} cd\phi & -sd\phi & 0 \\ sd\phi & cd\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & -d\phi z & 0 \\ d\phi z & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ • Note that: $R_x(d\phi)R_y(d\phi) = R_y(d\phi)R_x(d\phi)$ \Rightarrow Therefore ... they <u>commute</u>

Summary

• Many ways to view a rotation

- Rotation matrix
- Euler angles
- Quaternions
- Direction Cosines
- Screw Vectors

• Homogenous transformations

- Based on homogeneous coordinates

METR 4202: Robotics