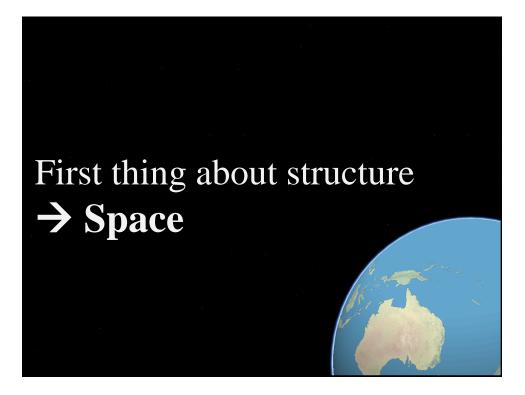
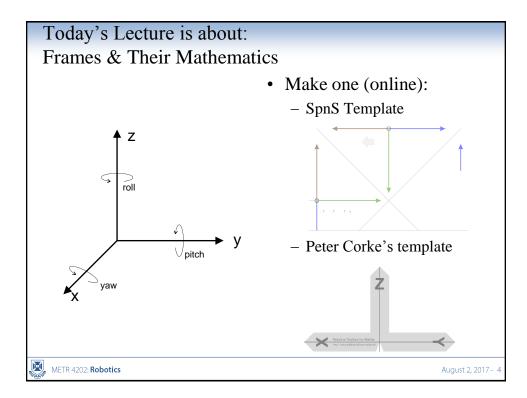
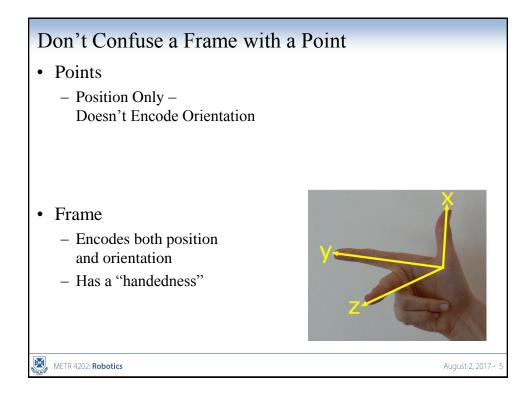
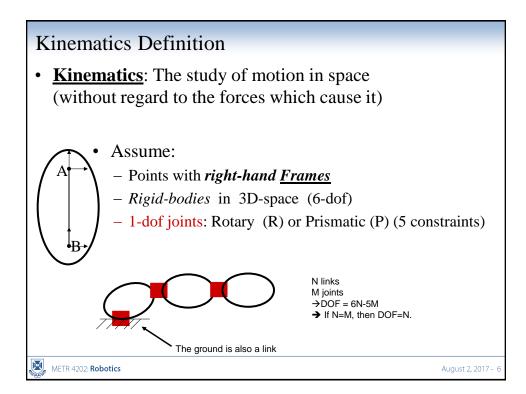


Week	Date	Lecture (W: 3:05p-4:50, 7-222)	
1	26-Jul	Introduction +	
		Representing Position & Orientation & State	
2	2-Aug	Robot Forward Kinematics	
		(Frames, Transformation Matrices & Affine Transformations)	
3	9-Aug	Robot Inverse Kinematics & Dynamics (Jacobeans)	
4	16-Aug	Ekka Day (Robot Kinematics & Kinetics Review)	
5	23-Aug	Robot Sensing: Perception & Linear Observers	
6	30-Aug	Robot Sensing: Single View Geometry & Lines	
7	6-Sep	Robot Sensing: Multiple View Geometry	
8	13-Sep	Robot Sensing: Feature Detection	
9	20-Sep	Mid-Semester Exam	
	27-Sep	Study break	
10	4-Oct	Motion Planning	
11	11-Oct	Probabilistic Robotics: Localization & SLAM	
12	18-Oct	Probabilistic Robotics: Planning & Control	
		(State-Space/Shaping the Dynamic Response/LQR)	
13	25-Oct	The Future of Robotics/Automation + Challenges + Course Review	





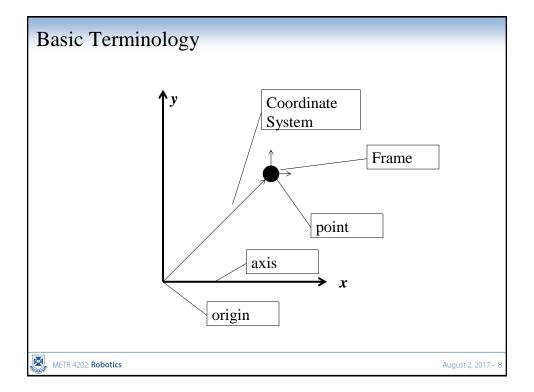




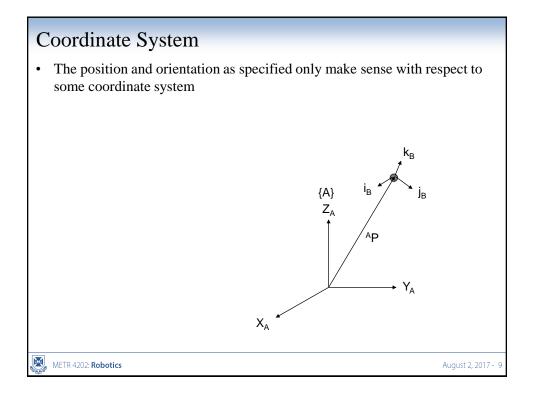
Kinematics

- Kinematic modelling is one of the most important analytical tools of robotics.
- Used for modelling mechanisms, actuators and sensors
- Used for on-line control and off-line programming and simulation
- In mobile robots kinematic models are used for:
 - steering (control, simulation)
 - perception (image formation)
 - sensor head and communication antenna pointing
 - world modelling (maps, object models)
 - terrain following (control feedforward)
 - gait control of legged vehicles

METR 4202: Robotics



August 2, 2017 -



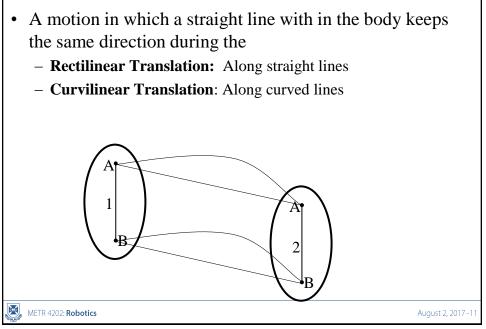
Frames of Reference

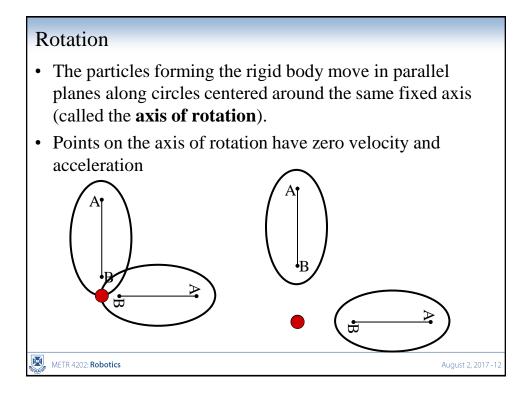
- A frame of reference defines a coordinate system relative to some point in space
- It can be specified by a position and orientation relative to other frames
- The *inertial frame* is taken to be a point that is assumed to be fixed in space
- Two types of motion:
 - Translation
 - Rotation

METR 4202: Robotics

August 2, 2017-10

Translation





Rotation: Representations

- Orientation are not "Cartesian"
 - Non-commutative
 - Multiple representations

• Some representations:

- Rotation Matrices: Homegenous Coordinates
- Euler Angles: 3-sets of rotations in sequence
- Quaternions: a 4-paramameter representation that exploits ¹/₂ angle properties
- Screw-vectors (from Charles Theorem) : a canonical representation, its reciprocal is a "wrench" (forces)

METR 4202: Robotics

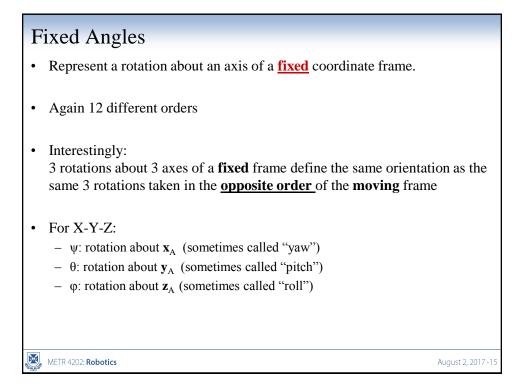
Euler Angles

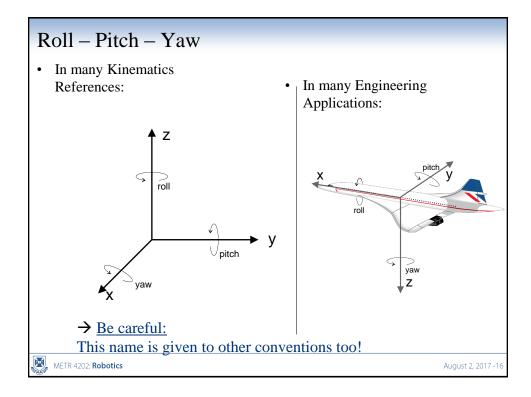
- Minimal representation of orientation (α, β, γ)
- Represent a rotation about an axis of a <u>moving</u> coordinate frame
 - $\rightarrow A_B^{\mathbf{R}}$: Moving frame **<u>B</u>** w/r/t fixed A
- The location of the axis of each successive rotation depends on the previous one! ...
- So, Order Matters (12 combinations, why?)
- Often Z-Y-X:
 - $-\alpha$: rotation about the z axis
 - $-\beta$: rotation about the rotated **y** axis
 - $-\gamma$: rotation about the twice rotated **x** axis
- Has singularities! ... (e.g., $\beta=\pm90^{\circ}$)

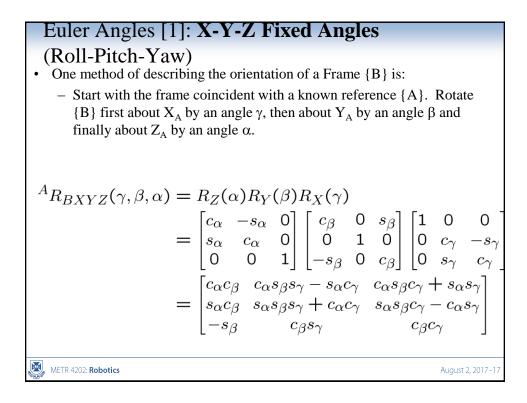
METR 4202: Robotics

August 2, 2017-14

August 2, 2017-13







Euler Angles [2]: Z-Y-X Euler Angles • Another method of describing the orientation of {B} is: - Start with the frame coincident with a known reference {A}. Rotate {B} first about Z_B by an angle α , then about Y_B by an angle β and finally about X_B by an angle γ . $AR_{BZ'Y'X'}(\gamma, \beta, \alpha) = R_Z(\alpha)R_Y(\beta)R_X(\gamma)$ $= \begin{bmatrix} c_{\alpha} - s_{\alpha} & 0 \\ s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\beta} & 0 & s_{\beta} \\ 0 & 1 & 0 \\ -s_{\beta} & 0 & c_{\beta} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\gamma} & -s_{\gamma} \\ 0 & s_{\gamma} & c_{\gamma} \end{bmatrix}$ $= \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} - s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$

Unit Quaternion ($\epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3$) [1] • Does not suffer from singularities $\epsilon \equiv \epsilon_0 + \left(\epsilon_1 \hat{\mathbf{i}} + \epsilon_2 \hat{\mathbf{j}} + \epsilon_3 \hat{\mathbf{k}}\right)$ • Uses a "4-number" to represent orientation ii = jj = kk = -1ij = k, jk = i, ki = j, ji = -k, kj = -1, ik = -j• Product: $ab = (a_0b_0 - a_1b_1 - a_2b_2 + a_3b_3)$ $+(a_0b_1+a_1b_0+a_2b_3-a_3b_2)\hat{i}$ $+(a_0b_2+a_2b_0+a_3b_1+a_1b_3)\hat{j}$ $+(a_0b_3+a_3b_0+a_1b_2-a_2b_1)\hat{k}$ Conjugate: $\tilde{\epsilon} \equiv \epsilon_0 - \epsilon_1 \hat{\mathbf{i}} - \epsilon_2 \hat{\mathbf{j}} - \epsilon_3 \hat{\mathbf{k}}$ $\epsilon \tilde{\epsilon} = \tilde{\epsilon} \epsilon = \epsilon_0^2 + \epsilon_1^2 + \epsilon_2^2 + \epsilon_2^2$ METR 4202 Robotics August 2, 2017 - 19

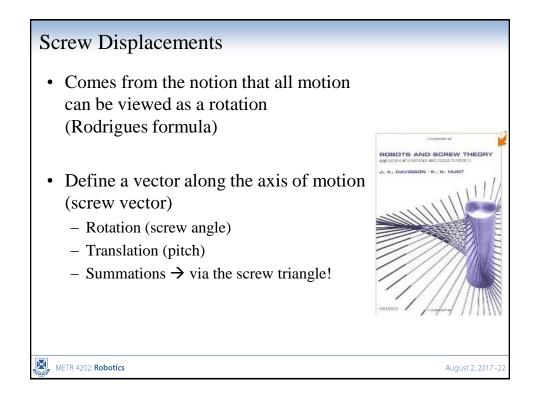
Unit Quaternion [2]: Describing Orientation • Set $\epsilon_0 = 0$ Then $\mathbf{p} = (\mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z) \rightarrow \mathbf{p} = p_x \hat{\mathbf{i}} + p_y \hat{\mathbf{j}} + p_z \hat{\mathbf{k}}$ • Then given ϵ the operation $\epsilon \mathbf{p} \tilde{\epsilon}$: rotates \mathbf{p} about $(\epsilon_1, \epsilon_2, \epsilon_3)$ • Unit Quaternion \rightarrow Rotation Matrix $\mathbf{R} = \begin{pmatrix} 1 - 2(\epsilon_2^2 + \epsilon_3^2) & 2(\epsilon_1 \epsilon_2 - \epsilon_0 \epsilon_3) & 2(\epsilon_1 \epsilon_3 - \epsilon_0 \epsilon_2) \\ 2(\epsilon_1 \epsilon_2 - \epsilon_0 \epsilon_3) & 1 - 2(\epsilon_1^2 + \epsilon_3^2) & 2(\epsilon_2 \epsilon_3 - \epsilon_0 \epsilon_1) \\ 2(\epsilon_1 \epsilon_3 - \epsilon_0 \epsilon_2) & 2(\epsilon_2 \epsilon_3 - \epsilon_0 \epsilon_1) & 1 - 2(\epsilon_1^2 + \epsilon_2^2) \end{pmatrix}$

Direction Cosine

• Uses the Direction Cosines (read dot products) of the Coordinate Axes of the moving frame with respect to the fixed frame $A\mathbf{u} = u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k}$ $A\mathbf{v} = v_x\mathbf{i} + v_y\mathbf{j} + v_z\mathbf{k}$

$${}^{A}\mathbf{w} = w_x \mathbf{i} + w_y \mathbf{j} + w_z \mathbf{k}$$
• It forms a rotation matrix!

$^A_B R$	$(b_x)\widehat{i}_B$	$(b_y)\widehat{j}_B$	$(b_z) \widehat{k}_B$	
$egin{aligned} (a_x) \widehat{i}_A\ (a_y) \widehat{j}_A\ (a_z) \widehat{k}_A \end{aligned}$	$\left[egin{array}{c} \hat{i}_B\cdot\hat{i}_A\ \hat{i}_B\cdot\hat{j}_A\ \hat{i}_B\cdot\hat{k}_A \end{array} ight.$	$egin{array}{l} \widehat{j}_B\cdot\widehat{i}_A\ \widehat{j}_B\cdot\widehat{j}_A\ \widehat{j}_B\cdot\widehat{k}_A \end{array}$	$egin{array}{c} \widehat{k}_B \cdot \widehat{i}_A \ \widehat{k}_B \cdot \widehat{j}_A \ \widehat{k}_B \cdot \widehat{k}_A \end{array} \end{bmatrix}$	
METR 4202: Robotics	1		August 2, 2017 -	21



Generalizing

Special Orthogonal & Special Euclidean Lie Algebras

• SO(n): Rotations

 $SO(n) = \{ R \in \mathbb{R}^{n \times n} : RR^T = I, \det R = +1 \}.$ $\exp(\widehat{\omega}\theta) = e^{\widehat{\omega}\theta} = I + \theta \widehat{\omega} + \frac{\theta^2}{21} \widehat{\omega}^2 + \frac{\theta^3}{21} \widehat{\omega}^3 + \dots$

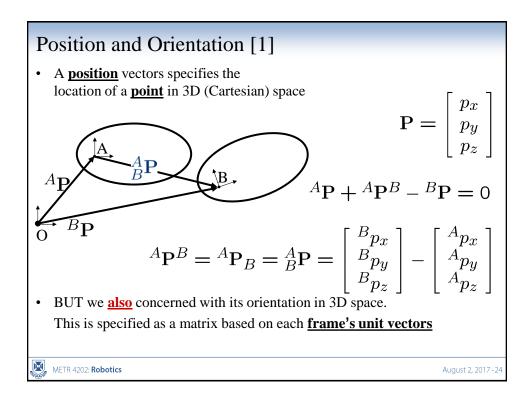
• SE(n): Transformations of EUCLIDEAN space

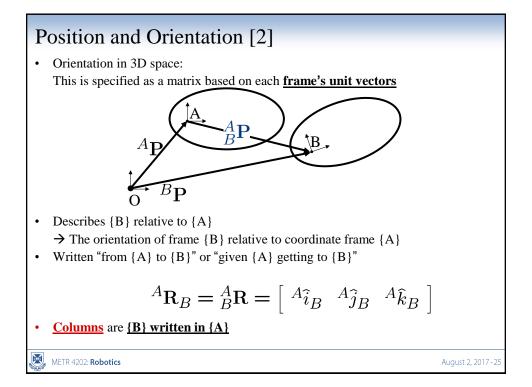
 $SE(n) := \mathbb{R}^n \times SO(n).$

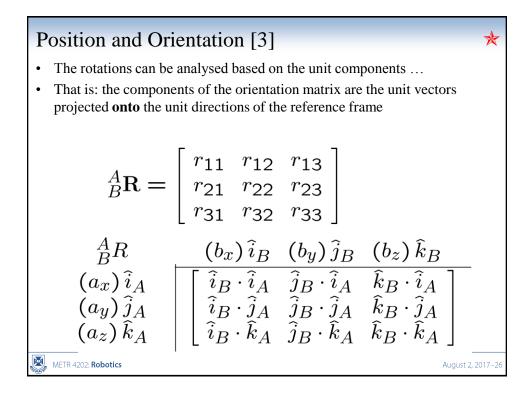
 $SE(3) = \{(p, R) : p \in \mathbb{R}^3, R \in SO(3)\} = \mathbb{R}^3 \times SO(3).$

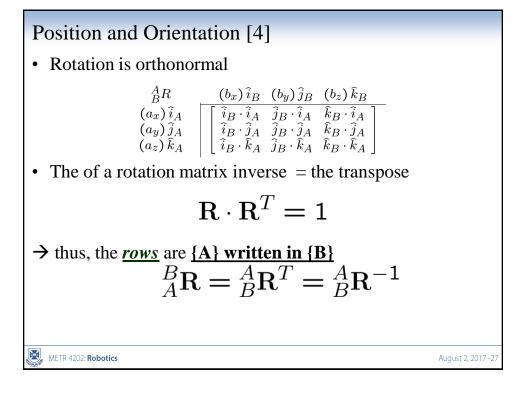
August 2, 2017-23

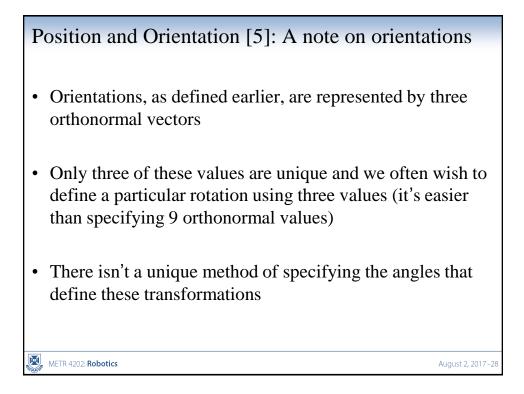
METR 4202: Robotics

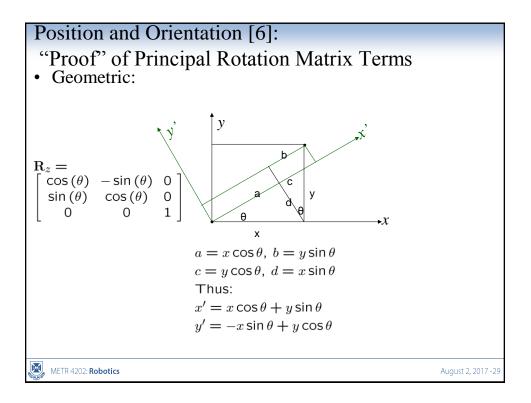


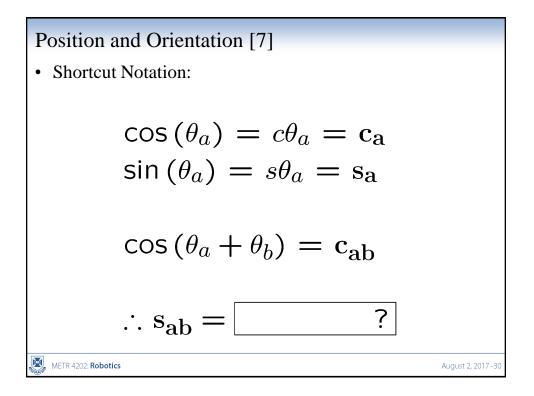










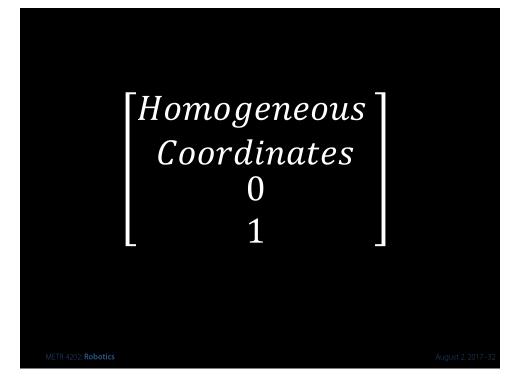


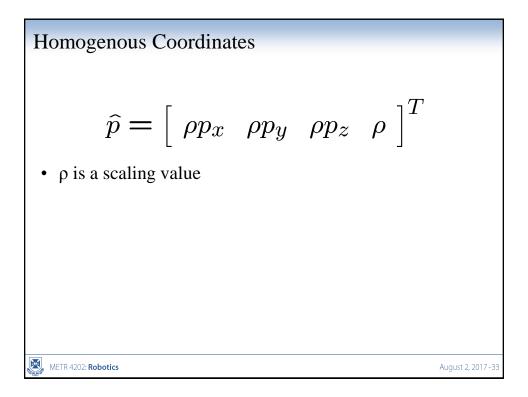
Position and Orientation [8]

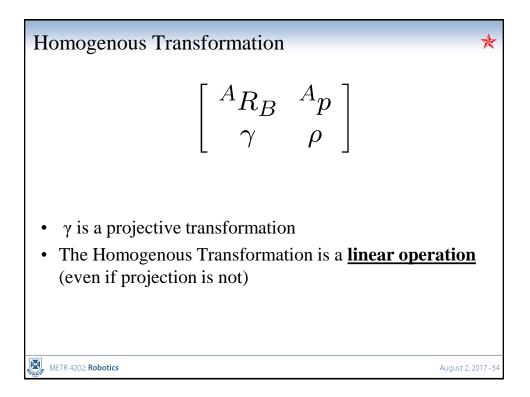
• Rotation Formula about the 3 Principal Axes by $\boldsymbol{\theta}$

X:
$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$
Y:
$$\mathbf{R}_{y} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$
Z:
$$\mathbf{R}_{z} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\underbrace{\mathbb{R}_{z}}{\mathbb{R}_{z}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

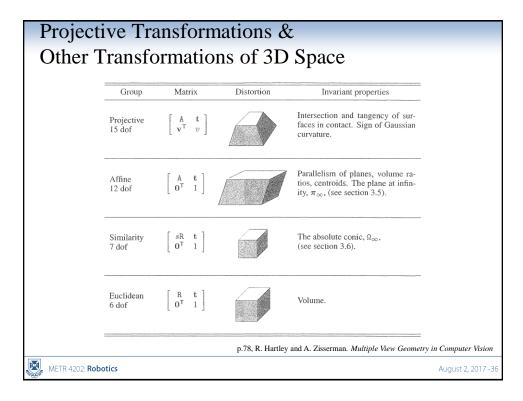


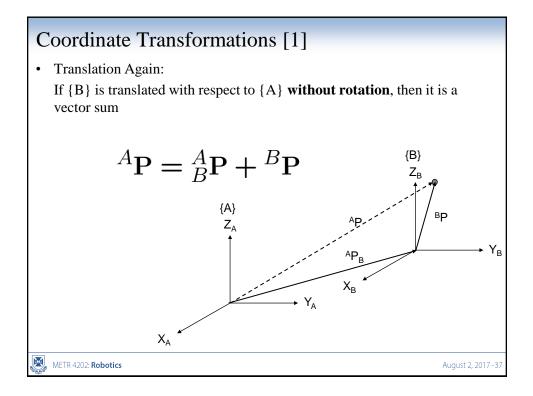


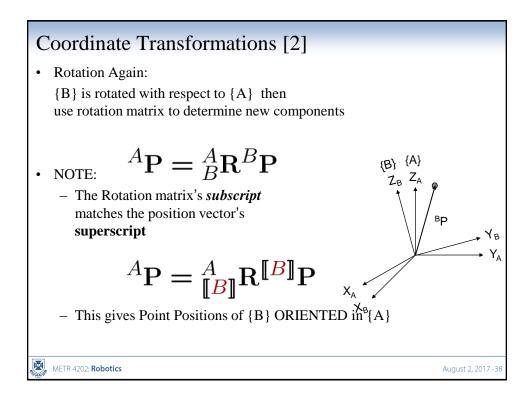


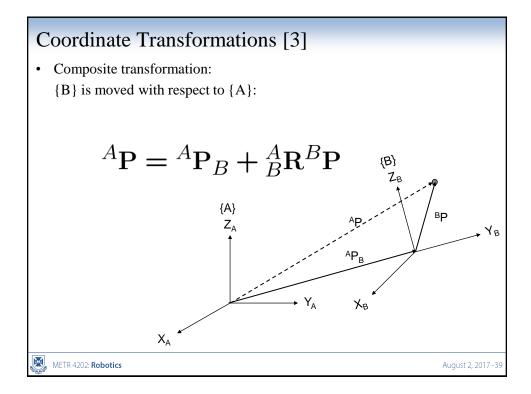
Projective Transformations ...

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$		Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I , J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area
		p.44, R	. Hartley and A. Zisserman. Multiple View Geometry in Computer V.
METR 4202: Rob	otics		August 2, 20







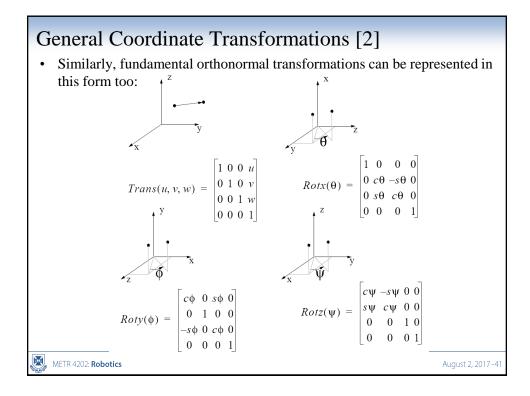


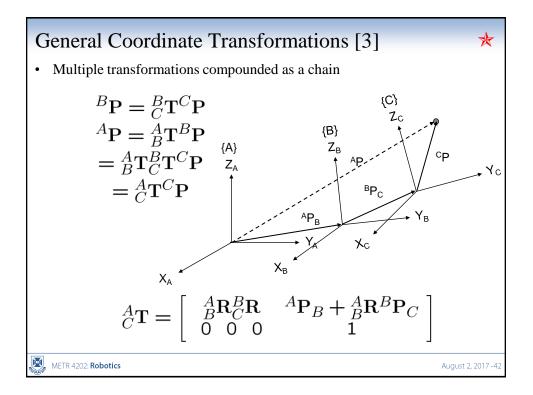
General Coordinate Transformations [1] • A compact representation of the translation and rotation is known as the Homogeneous Transformation ${}^{A}_{B}\mathbf{T} = \begin{bmatrix} A \mathbf{R} & A \mathbf{P}_{B} \\ 0 & 0 & 0 & 1 \end{bmatrix}$ • This allows us to cast the rotation and translation of the general transform in a single matrix form $\begin{bmatrix} A \mathbf{P} \end{bmatrix} = \begin{bmatrix} B \mathbf{P} \end{bmatrix}$

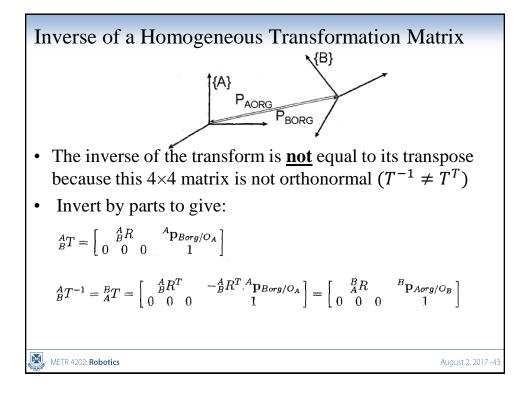
M

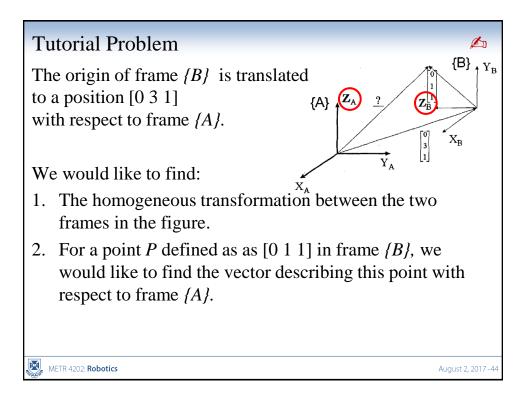
METR 4202: Robotics

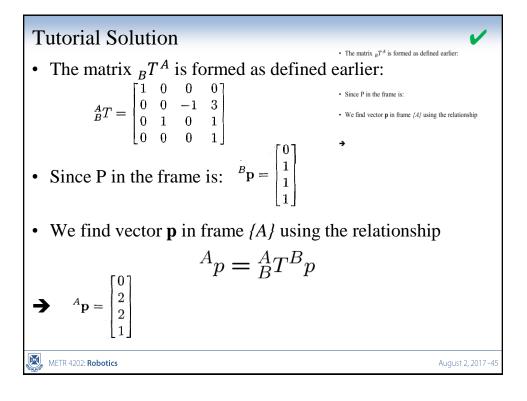
$$\begin{bmatrix} A\mathbf{P} \\ 1 \end{bmatrix} = {}^{A}_{B}\mathbf{T} \begin{bmatrix} B\mathbf{P} \\ 1 \end{bmatrix}$$

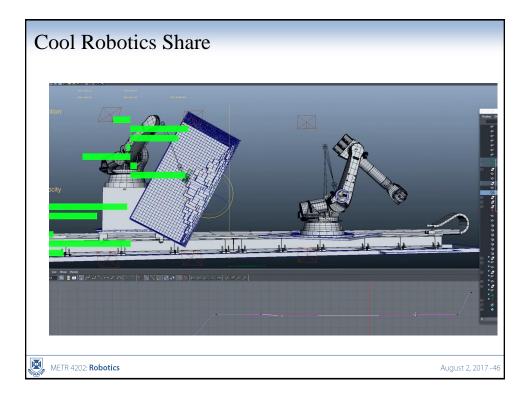


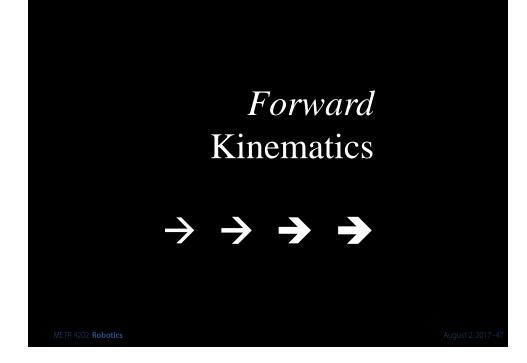


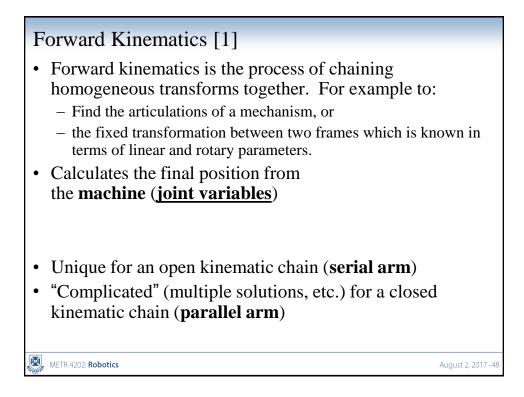


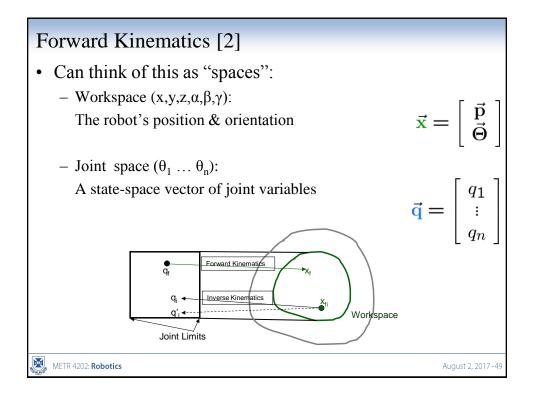


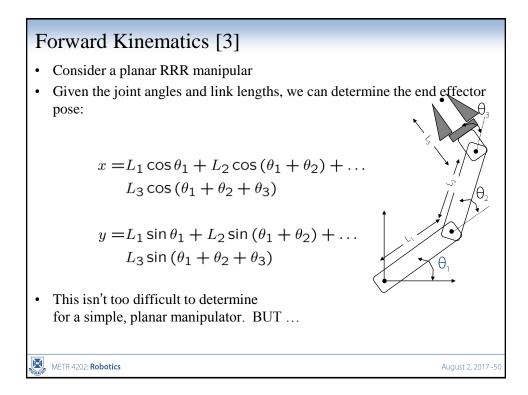


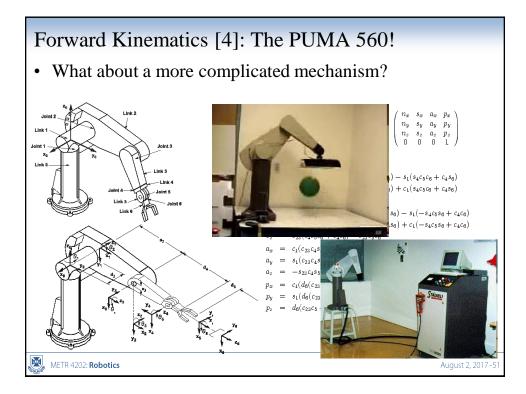












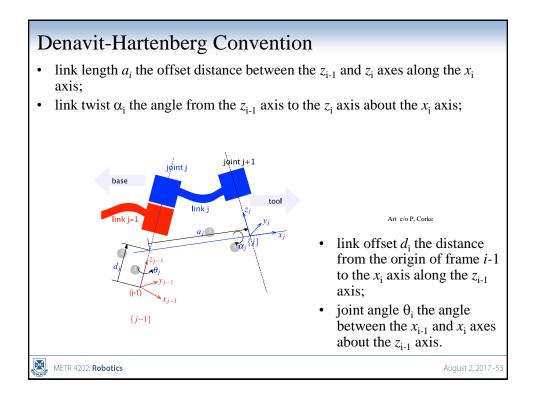
Denavit Hartenberg [DH] Notation

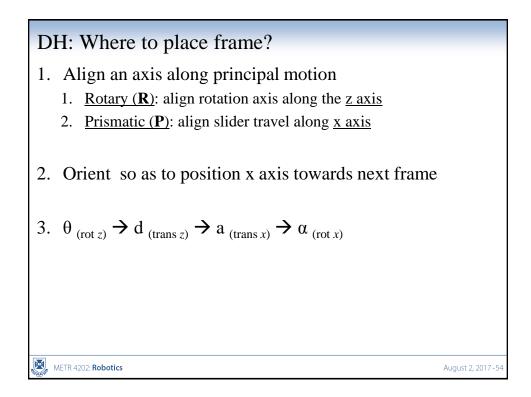
• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous transforms for articulated mechanisms

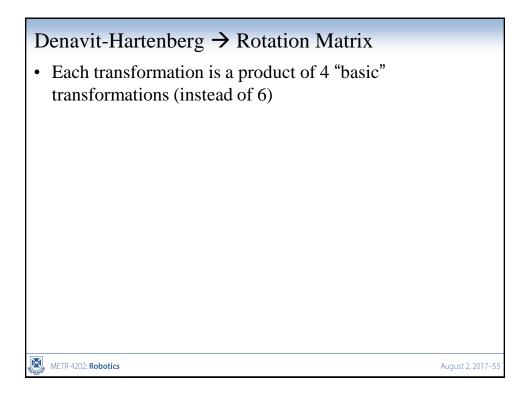
(But B. Roth, introduced it to robotics)

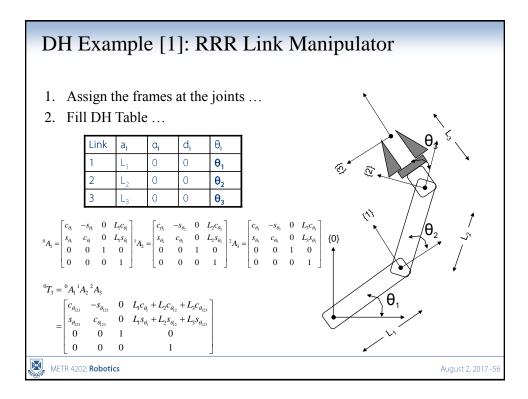
- A kinematics "short-cut" that reduced the number of parameters by adding a structure to frame selection
- For two frames positioned in space, the first can be moved into coincidence with the second by a sequence of 4 operations:
 - rotate around the $x_{i\text{-}1}$ axis by an angle α_i
 - translate along the x_{i-1} axis by a distance a_i
 - translate along the new z axis by a distance d_i
 - rotate around the new z axis by an angle θ_i

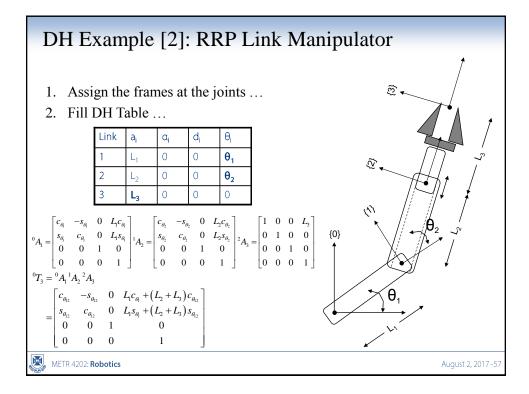
METR 4202: Robotics

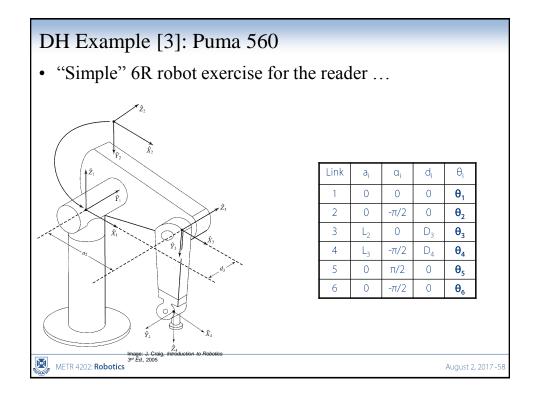


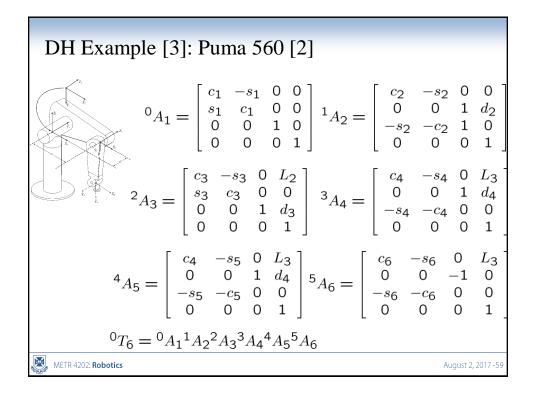


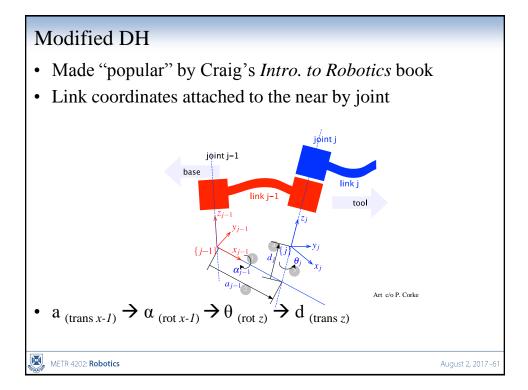


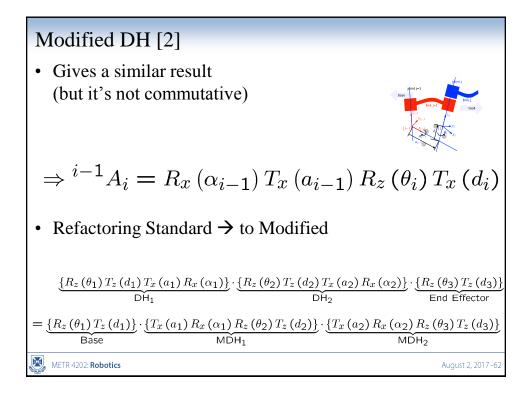


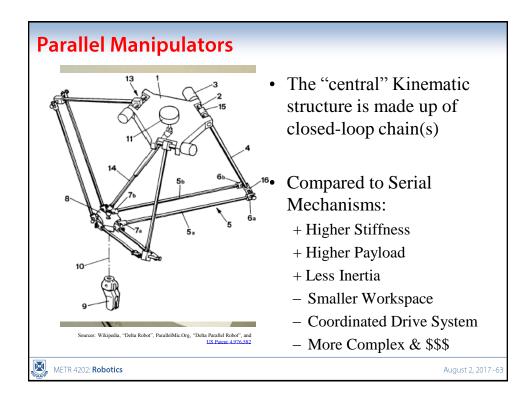












Symmetrical Parallel Manipulator

A sub-class of Parallel Manipulator:

 \circ # Limbs (*m*) = # DOF (*F*)

 \circ The joints are arranged in an identical pattern

 $\circ\,$ The # and location of actuated joints are the same

Thus:

○ Number of Loops (L): One less than # of limbs

$$L = m - 1 = F - 1$$

 \circ Connectivity (C_k)

$$\sum_{k=1}^{m} C_k = (\lambda + 1) F - \lambda$$

Where: λ : The DOF of the space that the system is in (e.g., λ =6 for 3D space).

METR 4202: Robotics

August 2, 2017-64

