
1 

 

© 2017 School of Information Technology and Electrical Engineering at the University of Queensland 

TexPoint fonts used in EMF.  

Read the TexPoint manual before you delete this box.: AAAAA 

Lecture Schedule 
Week Date Lecture (W: 3:05p-4:50, 7-222)

1 26-Jul
Introduction + 

Representing Position & Orientation & State

2 2-Aug
Robot Forward Kinematics

(Frames, Transformation Matrices & Affine Transformations)

3 9-Aug Robot Inverse Kinematics & Dynamics (Jacobeans)

4 16-Aug Ekka Day  (Robot Kinematics & Kinetics Review)

5 23-Aug Robot Sensing: Perception & Linear Observers

6 30-Aug Robot Sensing: Single View Geometry & Lines

7 6-Sep Robot Sensing: Multiple View Geometry

8 13-Sep Robot Sensing: Feature Detection

9 20-Sep Mid-Semester Exam

27-Sep Study break

10 4-Oct Motion Planning

11 11-Oct Probabilistic Robotics: Localization & SLAM

12 18-Oct
Probabilistic Robotics: Planning & Control 

(State-Space/Shaping the Dynamic Response/LQR) 

13 25-Oct The Future of Robotics/Automation + Challenges + Course Review

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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First thing about structure  

 Space 

Today’s Lecture is about: 

Frames & Their Mathematics 

y
pitch

roll

yaw

z

x

• Make one (online): 

– SpnS Template 

 

 

 

 

 

– Peter Corke’s template 

 ¸ !’  ±!’ !’

Z

X

Y

http :/ / www.p$t$rcork$.com/ ax$s.pdf

Roboti cs Toolbox for Matl ab



3 

Don’t Confuse a Frame with a Point 

• Points 

– Position Only –  

Doesn’t Encode Orientation 

 

 

 

• Frame 

– Encodes both position  

and orientation 

– Has a “handedness” 

 

Kinematics Definition 

• Kinematics: The study of motion in space  

(without regard to the forces which cause it) 

 

• Assume:  

– Points with right-hand Frames 

– Rigid-bodies  in  3D-space  (6-dof) 

– 1-dof joints: Rotary  (R) or Prismatic (P) (5 constraints) 

 

 

 

The ground is also a link 

N links 

M joints 

DOF = 6N-5M  

 If N=M, then DOF=N.   

A 

B 

 



4 

Kinematics 

• Kinematic modelling is one of the most important analytical tools of 

robotics. 

• Used for modelling mechanisms, actuators and sensors 

• Used for on-line control and off-line programming and simulation 

• In mobile robots kinematic models are used for: 

– steering (control, simulation) 

– perception (image formation) 

– sensor head and communication antenna pointing 

– world modelling (maps, object models) 

– terrain following (control feedforward) 

– gait control of legged vehicles 

 

Basic Terminology 

point 

Frame 

Coordinate 

System 

y 

x 

origin 

axis 
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Coordinate System 

• The position and orientation as specified only make sense with respect to 

some coordinate system 

AP 

{A} 

XA 

YA 

ZA 

iB jB 

kB 

 

Frames of Reference 

• A frame of reference defines a coordinate system relative 

to some point in space 

• It can be specified by a position and orientation relative to 

other frames 

• The inertial frame is taken to be a point that is assumed to 

be fixed in space 

 

• Two types of motion: 

– Translation 

– Rotation 
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Translation 

• A motion in which a straight line with in the body keeps 

the same direction during the 

– Rectilinear Translation:  Along straight lines 

– Curvilinear Translation: Along curved lines 

A 

B 

A 

B 

1 

2 

 

Rotation  

• The particles forming the rigid body move in parallel 

planes along circles centered around the same fixed axis 

(called the axis of rotation).   

• Points on the axis of rotation have zero velocity and 

acceleration 

 

A
 B

 

A 

B 

A 

B 

A
 B
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Rotation: Representations 

• Orientation are not “Cartesian” 

– Non-commutative 

– Multiple representations 

 

• Some representations: 

– Rotation Matrices: Homegenous Coordinates 

– Euler Angles: 3-sets of rotations in sequence 

– Quaternions: a 4-paramameter representation  

that exploits ½ angle properties 

– Screw-vectors  (from Charles Theorem) : a canonical 

representation, its reciprocal is a “wrench” (forces) 

 

Euler Angles 

• Minimal representation of orientation (α,β,γ) 

• Represent a rotation about an axis of a moving coordinate 
frame 
        : Moving frame B w/r/t fixed A 

• The location of the axis of each successive rotation 
depends on the previous one! … 

• So, Order Matters  (12 combinations, why?) 

• Often Z-Y-X: 

– α: rotation about the z axis 

– β: rotation about the rotated y axis 

– γ: rotation about the twice rotated x axis 

• Has singularities!  … (e.g., β=±90°) 
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Fixed Angles 

• Represent a rotation about an axis of a fixed coordinate frame. 

 

• Again 12 different orders 

 

• Interestingly: 

3 rotations about 3 axes of a fixed frame define the same orientation as the 

same 3 rotations taken in the opposite order of the moving frame 

 

• For X-Y-Z: 

– ψ: rotation about xA   (sometimes called “yaw”) 

– θ: rotation about yA   (sometimes called “pitch”) 

– φ: rotation about zA  (sometimes called “roll”) 

 

 

Roll – Pitch – Yaw 

• In many Kinematics  

References: 

 

 

• In many Engineering 

Applications: 

 Be careful:   

This name is given to other conventions too! 

y

roll

yaw

pitch

z

x

y
pitch

roll

yaw

z

x
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Euler Angles [1]: X-Y-Z Fixed Angles 

(Roll-Pitch-Yaw) 
• One method of describing the orientation of a Frame {B} is: 

– Start with the frame coincident with a known reference {A}.  Rotate 

{B} first about XA by an angle g, then about YA by an angle b and 

finally about ZA by an angle a. 

 

Euler Angles [2]:  

Z-Y-X Euler Angles 
• Another method of describing the orientation of {B} is: 

– Start with the frame coincident with a known reference {A}.  Rotate 

{B} first about ZB by an angle a, then about YB by an angle b and 

finally about XB by an angle g. 
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Unit Quaternion (ϵ0, ϵ1, ϵ2, ϵ3) [1] 

• Does not suffer from singularities  

 

• Uses a “4-number” to represent orientation 

 

 

• Product: 

 

 

 

• Conjugate: 

 

 

Unit Quaternion [2]: Describing Orientation 

• Set ϵ0 = 0 

Then p=(px,py,pz)    

 

• Then given ϵ 

the operation          : rotates p about (ϵ1, ϵ2, ϵ3) 

 

• Unit Quaternion  Rotation Matrix 
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Direction Cosine 

• Uses the Direction Cosines (read dot products) of the 

Coordinate Axes of the moving frame with respect to the 

fixed frame 

 

 

 

• It forms a rotation matrix! 

 

 

Screw Displacements  

• Comes from the notion that all motion 

can be viewed as a rotation 

(Rodrigues formula) 

 

• Define a vector along the axis of motion 

(screw vector) 

– Rotation (screw angle) 

– Translation (pitch) 

– Summations  via the screw triangle! 
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Generalizing 

Special Orthogonal & Special Euclidean Lie Algebras 

• SO(n):  Rotations 

 

 

 

• SE(n): Transformations of EUCLIDEAN space 

 

 

 

Position and Orientation [1] 

• A position vectors specifies the  

location of a point in 3D (Cartesian) space 

 

 

 

 

 

 

 

 

 

• BUT we also concerned with its orientation in 3D space. 

 This is specified as a matrix based on each frame’s unit vectors 

A 

B 

O 

 



13 

Position and Orientation [2] 
• Orientation in 3D space: 

 This is specified as a matrix based on each frame’s unit vectors 

 

 

 

 

 

 

 

• Describes {B} relative to {A} 

  The orientation of frame {B} relative to coordinate frame {A} 

• Written “from {A} to {B}” or “given {A} getting to {B}” 

 

 

 

• Columns are {B} written in {A} 

A 

B 

O 

 

Position and Orientation [3] ✯ 

• The rotations can be analysed based on the unit components … 

• That is: the components of the orientation matrix are the unit vectors 

projected onto the unit directions of the reference frame 
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Position and Orientation [4] 

• Rotation is orthonormal 

 

 

 

• The of a rotation matrix inverse  = the transpose 

 

 

 thus, the rows are {A} written in {B}  

 

Position and Orientation [5]: A note on orientations 

 

• Orientations, as defined earlier, are represented by three 

orthonormal vectors 

 

• Only three of these values are unique and we often wish to 

define a particular rotation using three values (it’s easier 

than specifying 9 orthonormal values) 

 

• There isn’t a unique method of specifying the angles that 

define these transformations 
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Position and Orientation [6]: 

 “Proof” of Principal Rotation Matrix Terms 
• Geometric: 

x 

y 

a 
c 

θ 

b 

d 

x 

y 

θ 

 

Position and Orientation [7] 

• Shortcut Notation: 
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Position and Orientation [8] 

• Rotation Formula about the 3 Principal Axes by θ 

 

X: 

 
 

 

Y: 

 

 

Z: 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 
𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

0
1
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Homogenous Coordinates 

• ρ is a scaling value 

 

Homogenous Transformation ✯ 

  

 

•  γ is a projective transformation 

• The Homogenous Transformation is a linear operation  

(even if projection is not) 
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Projective Transformations … 

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 

Projective Transformations &  

Other Transformations of 3D Space 

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 
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Coordinate Transformations [1] 

• Translation Again: 

 If {B} is translated with respect to {A} without rotation, then it is a 

vector sum 

{A} 

XA 

YA 

ZA 

{B} 

XB 

YB 

ZB 

AP 

APB 

BP 

 

Coordinate Transformations [2] 

• Rotation Again: 

 {B} is rotated with respect to {A}  then  

use rotation matrix to determine new components 

 

 

• NOTE: 

– The Rotation matrix’s subscript 

matches the position vector’s 

superscript 

 

 

 

– This gives Point Positions of {B} ORIENTED in {A} 

{A} 

XA 

YA 

ZA 

BP 
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Coordinate Transformations [3] 

• Composite transformation: 

 {B} is moved with respect to {A}: 

{A} 

XA 

YA 

ZA 
AP 

APB 

BP 

 

General Coordinate Transformations [1] 

• A compact representation of the translation and rotation is known as the 
Homogeneous Transformation 

 

 

 

 

 

• This allows us to cast the rotation and translation of the general transform 
in a single matrix form 
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General Coordinate Transformations [2] 
• Similarly, fundamental orthonormal transformations can be represented in 

this form too: 

 

General Coordinate Transformations [3] ✯ 

• Multiple transformations compounded as a chain 

{A} 

XA 

YA 

ZA 
AP 

APB 

CP 

BPC 
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Inverse of a Homogeneous Transformation Matrix 

• The inverse of the transform is not equal to its transpose 

because this 4×4 matrix is not orthonormal (𝑇−1 ≠ 𝑇𝑇) 

•  Invert by parts to give: 

 

 

Tutorial Problem ✍ 

The origin of frame {B}  is translated  

to a position [0 3 1]  

with respect to frame {A}.  

 

We would like to find: 

1. The homogeneous transformation between the two 

frames in the figure. 

2. For a point P defined as as [0 1 1] in frame {B}, we 

would like to find the vector describing this point with 

respect to frame {A}. 
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Tutorial Solution ✔ 

• The matrix 𝑇𝐵
𝐴 is formed as defined earlier: 

 

 

 

• Since P in the frame is:  

 

• We find vector p in frame {A} using the relationship 

 

 

 

 

Cool Robotics Share 

 

 

file:///D:/RAPID/Temp/@Cool Robotics Share/Inside Bot and Dolly-276830823-720p.mp4
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Forward  

Kinematics 

   

 

Forward Kinematics [1] 

• Forward kinematics is the process of chaining 
homogeneous transforms together.  For example to: 

– Find the articulations of a mechanism, or 

– the fixed transformation between two frames which is known in 
terms of linear and rotary parameters. 

• Calculates the final position from  
the machine (joint variables) 

  

 

• Unique for an open kinematic chain (serial arm) 

• “Complicated” (multiple solutions, etc.) for a closed 
kinematic chain (parallel arm) 
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Forward Kinematics [2] 

• Can think of this as “spaces”: 

– Workspace (x,y,z,α,β,γ):  

 The robot’s position & orientation 

 

– Joint  space (θ1 … θn): 

 A state-space vector of joint variables  

 

Joint Limits 

Workspace 

qf 

Forward Kinematics 
xf 

xfi 
qi 

q’i 

Inverse Kinematics 

 

Forward Kinematics [3] 

• Consider a planar RRR manipular 

• Given the joint angles and link lengths, we can determine the end effector 

pose: 

 

 

 

 

 

 

 

 

• This isn’t too difficult to determine  

for a simple, planar manipulator.  BUT … 
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Forward Kinematics [4]: The PUMA 560! 

• What about a more complicated mechanism? 

 

• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous 

transforms for articulated mechanisms 

 (But B. Roth, introduced it to robotics) 

 

• A kinematics “short-cut” that reduced the number of parameters by adding 

a structure to frame selection 

 

• For two frames positioned in space, the first can be moved into 

coincidence with the second by a sequence of 4 operations: 

– rotate around the xi-1 axis by an angle ai 

– translate along the xi-1 axis by a distance ai 

– translate along the new z axis by a distance di 

– rotate around the new z axis by an angle qi 
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Denavit-Hartenberg Convention 

• link length ai the offset distance between the zi-1 and zi axes along the xi 
axis; 

• link twist ai the angle from the zi-1 axis to the zi axis about the xi axis; 

 

 

• link offset di the distance 
from the origin of frame i-1 
to the xi axis along the zi-1 
axis; 

• joint angle qi the angle 
between the xi-1 and xi axes 
about the zi-1 axis. 

 

Art  c/o P. Corke 

 

DH: Where to place frame? 

1. Align an axis along principal motion 

1. Rotary (R): align rotation axis along the z axis 

2. Prismatic (P): align slider travel along x axis 

 

2. Orient  so as to position x axis towards next frame 

 

3. θ (rot z)  d (trans z)  a (trans x)  α (rot x) 
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Denavit-Hartenberg  Rotation Matrix 

• Each transformation is a product of 4 “basic”  

transformations (instead of 6) 

 

DH Example [1]: RRR Link Manipulator 

1. Assign the frames at the joints … 

2. Fill DH Table … 

θ1 

θ2 

θ3 

{0} 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 2 3

1 2 30 1 2

1 2 3

0 0 0

0 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c c s L c

s c L s s c L s s c L s
A A A

q q q q q q q q q

q q q q q q q q q

       
     
       
     
     
     

123 123 1 12 123

123 123 1 12 123

0 0 1 2

3 1 2 3

1 2 3

1 2 3

0

0

0 0 1 0

0 0 0 1

T A A A

c s L c L c L c

s c L s L s L s

q q q q q

q q q q q



   
 

 
 
 
 
 
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DH Example [2]: RRP Link Manipulator 

1. Assign the frames at the joints … 

2. Fill DH Table … 

1 1 1 2 2 2

1 1 1 2 2 2

1 2 3

1 20 1 2

1 2 3

0 0 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c L

s c L s s c L s
A A A

q q q q q q

q q q q q q

      
     
       
     
     
     

θ1 

θ2 {0} 

 

 
12 12 1 12

12 12 1 12

0 0 1 2

3 1 2 3

1 2 3

1 2 3

0

0

0 0 1 0

0 0 0 1

T A A A

c s L c L L c

s c L s L L s

q q q q

q q q q



    
 

  
 
 
  

DH Example [3]: Puma 560 

• “Simple” 6R robot exercise for the reader … 

Image: J. Craig, Introduction to Robotics 

3rd Ed., 2005 
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DH Example [3]: Puma 560 [2] 

Modified DH 

• Made “popular” by Craig’s Intro. to Robotics book 

• Link coordinates attached to the near by joint 

 

 

 

 

 

 

 

• a (trans x-1)  α (rot x-1)  θ (rot z)  d (trans z)  

 

Art  c/o P. Corke 
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Modified DH [2] 

• Gives a similar result 

(but it’s not commutative) 

 

 

 

 

• Refactoring Standard  to Modified 

 

 

• The “central” Kinematic 

structure is made up of 

closed-loop chain(s) 

 

• Compared to Serial 

Mechanisms: 

+ Higher Stiffness 

+ Higher Payload 

+ Less Inertia 

– Smaller Workspace 

– Coordinated Drive System 

– More Complex & $$$ 

 

Sources: Wikipedia, “Delta Robot”, ParallelMic.Org, “Delta Parallel Robot”, and  

US Patent 4,976,582 

https://www.google.com/patents/US4976582
https://www.google.com/patents/US4976582
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Symmetrical Parallel Manipulator 

A sub-class of Parallel Manipulator: 
o # Limbs (m) = # DOF (F) 

o The joints are arranged in an identical pattern 

o The # and location of actuated joints are the same  

 

Thus: 
o Number of Loops (L): One less than # of limbs 

 

 

o Connectivity (Ck) 

 

 

 
Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 

 

 

 
 

 

Cool Robotics Share 

 


