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Lecture Schedule 
Week Date Lecture (W: 3:05p-4:50, 7-222) 

1 26-Jul 
Introduction +  

Representing Position & Orientation & State 

2 2-Aug 
Robot Forward Kinematics 

(Frames, Transformation Matrices & Affine Transformations) 

3 9-Aug Robot Inverse Kinematics & Dynamics (Jacobians) 

4 16-Aug Ekka Day (Robot Kinematics & Kinetics Review) 

5 23-Aug Jacobians & Robot Sensing Overview 

6 30-Aug Robot Sensing: Single View Geometry & Lines 

7 6-Sep Robot Sensing: Basic Feature Detection 

8 13-Sep Robot Sensing: Scalable Feature Detection 

9 20-Sep 
Mid-Semester Exam  

& Multiple View Geometry 

  27-Sep Study break 

10 4-Oct Motion Planning 

11 11-Oct 
Probabilistic Robotics: Planning & Control  

(Sample-Based Planning/State-Space/LQR)  

12 18-Oct Probabilistic Robotics: Localization & SLAM 

13 25-Oct The Future of Robotics/Automation + Challenges + Course Review 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Reference Material 

UQ Library / Online (PDF) 

UQ Library 

(TJ211.4 .L38 1991) 

 

Recap:  

Simple Planners! 
 

 

http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA51161329990003131
planning.cs.uiuc.edu
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA2185663660003131
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Motion Planning Problem in General 

• Motion planning problem: 

 

 

 

 

• Last Week: 

– Configuration space 

– Cell decomposition 

– Guided search using A* 

– Potential fields 

 

 

 

 

 

Motion Planning Problem in General 

• Given:  

– Robot's dynamics 

– A map of the environment 

–     (perfect information, but discovered online) 

– Robot's pose in the map 

– A goal pose in the map 

• Find a sequence of  

– Actuation commands  

–  (such as steer, gas/brake, transmission) 

– In real time (requires efficient algorithms) 

  … that drive system to the goal pose 

• Problem is essential in almost all robotics applications 
irrespective of size, type of actuation, sensor suite, task 
domain, etc.   

 
 

 



4 

Connectivity 

• 8-Point Connectivity 

 4-Point Connectivity 

 

 

The Wavefront Planner: Setup 
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The Wavefront in Action (Part 1) 

• Starting with the goal, set all adjacent cells with “0” to the 

current cell + 1 

– 4-Point Connectivity or 8-Point Connectivity? 

– Your Choice.  We’ll use 8-Point Connectivity in our example 

 

 

The Wavefront in Action (Part 2) 

• Now repeat with the modified cells 

– This will be repeated until no 0’s are adjacent to cells with values 

>= 2 

• 0’s will only remain when regions are unreachable 
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The Wavefront in Action (Part 3) 

• Repeat again... 

 

 

The Wavefront in Action (Part 4) 

• And again... 
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The Wavefront in Action (Part 5) 

• And again until... 

 

 

The Wavefront in Action (Done) 

• You’re done 

– Remember, 0’s should only remain if unreachable regions exist 
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The Wavefront, Now What? 

• To find the shortest path, according to your metric, simply 

always move toward a cell with a lower number 

– The numbers generated by the Wavefront planner are roughly 

proportional to their distance from the goal 

Two 

possible 

shortest 

paths 

shown 

 

 

Sample-Based 

Motion Planning! 
 

 

 

https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
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Limits of Geometric Planning Methods 

• How does this scale to high 

degrees of freedom? 

 

• What about “dynamic 

constraints”? 

 

• What about optimality? 

 

• How to tie this to learning 

and optimization  

Start 

Goal 

 

Sample-Based Motion Planning 

• PRMs • RRTs 
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Random Sampling in C-Space 

 

1. Link start and goal poses into roadmap  

Plan Generation (Query processing) 
start 

goal 

C-obst 

C-obst 

C-obst 

C-obst 

Roadmap Construction (Pre-processing) 

2. Connect pairs of nodes to form roadmap edges 

     - Use simple, deterministic local planner 

     - Discard invalid edges (how?) 

1. Randomly generate robot configurations (nodes) 

     - Discard invalid nodes (how?) 

C-obst 

C-space 

2. Find path from start to goal within roadmap 

3. Generate motion plan for each edge used 

Primitives Required: 

1. Method for sampling C-Space points 

2. Method for “validating” C-space points and edges 
 

 

Sampling-Based Methods 

• (Randomly) construct a set of 

feasible (that is, collision-free) 

trajectories 

• Quite efficient; methods scale 

well with increasing dimension, # 

of obstacles 

 

• “Probabilistically complete”  

(if run long enough, very likely 

to find a solution) 
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Incremental Sampling-based Motion Planning 

• Sometimes building a roadmap a priori  
might be inefficient (or even impractical) 
– Assumes that all regions of c-space 

will be utilized during actual motions 

 

• Building a roadmap requires global knowledge 
– But in real settings, obstacles are not known  

a priori; rather, they are discovered online 

 

• We desire an incremental method: 
– Generate motion plans for a single start, goal pose 

– Expending more CPU yields better motion plans 
 

• The Rapidly-exploring Random Tree (RRT)  
algorithm meets these requirements 

 

 

RRT 
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Rapidly Exploring Random Trees (RRT) 

q(m) 

  
  
 

q
(m

/s
) 

x init  
s(m) 

r(
m

) 

x goal x rand  

Sampling and the “Bug Trap” Problem  
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RRT Components 

• X = Configuration Space or more general 

• X = C-space + Velocity + Acceleration + …. 

 

 

RRT Components 
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Basic RRT algorithm 

 

 

Basic Extend 
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Example in holonomic empty space 

 

Why “Rapidly Exploring”? 

• What is the probability that a vertex will be extended? 

– Proportional to the area of its Voronoi region 

• If just choose a vertex at random and extend, then it would act 

like random walk instead 

– Biased towards start vertex  
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Refinement vs. Expansion 

• Where will the random sample fall?  

• How to control the behaviour of RRT? 

 

refinement expansion 

 

Determining the Boundary 

• The tradeoff depends on the size of the bounding box 

 

Expansion 

dominates 

Balanced refinement and 

expansion 
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Extension to Non-Holonomic 

• The new_state computation 
handles all the complicated parts 

• Given a state 𝒙 and inputs 𝒖 

 

• Integrate numerically to get new 
position 

• What input 𝒖 do we use? 
 All |  One  |  Heuristic | ? 

• Problems: 

– Non-biased RRT explores in all 
directions Not aimed at the goal 

– Use a small percentage of targets 
to be the goal or its neighborhood 

 

 

Example: Simple RRT Planner  

• Problem: ordinary RRT explores X uniformly 

• Solution: bias distribution towards the goal 
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How it Works 

• Build a rapidly-exploring random tree in state space (X), 

starting at sstart 

• Stop when tree gets sufficiently close to sgoal 

Goal 

Start 

 

Building an RRT 

• To extend an RRT: 

– Pick a random point a in X 

– Find b, the node of the tree closest to a 

– Find control inputs u to steer the robot from b to a 

a 

b 
u 
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Building an RRT 

• To extend an RRT (cont.) 

– Apply control inputs u for time d, so robot reaches c 

– If no collisions occur in getting from a to c, add c to RRT and 

record u with new edge 

a 

b 
u 

c 

 

Bidirectional Planner Algorithm 
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RRT* & Extensions 

 

 

Limitations of RRT 

 RRT algorithm is tailored to find a feasible 

solution very quickly.  
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Limitations of RRT 

 RRT algorithm is tailored to find a feasible 

solution very quickly.  

 

 However, our simulation results suggest that, if 
kept running, the solution is not improved in 

terms of quality. 

 

 

Limitations of RRT 

 RRT algorithm is tailored to find a feasible 

solution very quickly.  

 

 However, our simulation results suggest that, if 
kept running, the solution is not improved in 

terms of quality. 

 
 Can we formalize this claim? 

 Let s* be an optimal path and c* denote its 
cost. 

 Let Xn be a random variable that denotes the 
cost of the best path in the RRT at the end of 
iteration n. 

 

 

 That is, the probability that RRT will get closer 
to an optimal solution is zero. 

 In other words, the RRT will get stuck. 
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Limitations of RRT 
 

 

 That is, the probability that RRT will get closer 
to an optimal solution is zero. 

 In other words, the RRT will get stuck. 

Why? 

•The RRT greedily explores the c-space exponentially fast. 

 

•Once a path is found, the RRT traps itself because of  

    fast greedy exploration. 

 

•How about: 

• running the RRT multiple times? 

• deleting parts of the tree and rebuilding?  

• new sampling strategies, better nearest neighbor? 

• All these may improve the performance,  

     but they will not make the RRT optimal. 

 

• For optimality, we need to rethink the RRT algorithm… 

 

 

Extension to RRT* 
(Karaman, Frazzoli, RSS’10) 

 Intuitively, 
 Run an RRT 

 Consider rewiring for all the nodes 

that are inside a ball of radius rm 

centered at the new sample  

Volume of the ball: 
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Extension to RRT* 

The body of the algorithm is 

     very similar to the RRT. 

Extend the nearest 

If obstacle-free segment, 

Then add the node to the tree 

Compute the nodes inside the ball 

Determine the closest node to the sample 

in terms of the cost 

Extend back to the tree – extend to  

all the nodes inside the balls 

 

RRT* on simulation examples 

• The obstacle-free case: 
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RRT* on simulation examples 

• With some obstacles 

 

RRT* on simulation examples 

• With some obstacles 

• Cost color coded: 
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RRT* on simulation examples 

• Upper rectangle is high cost 

• Lower rectangle is low cost 

 

Summary 

• Studied the Rapidly-exploring Random Tree (RRT) 

algorithm 

• Discussed challenges for motion planning  

methods in real-world applications 

• Discussed magic behind sampling-based methods 

• Looked at two applications:  

– Urban Challenge vehicle, Agile Robotics forklift 

• Studied the optimality properties of the RRT and the 

RRT* algorithm. 
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RRT*: why it works?  

And how much time does it take to run? 
• It can be shown that the RRT* converges to the optimum 

cost with probability one, that is 

 

 

 
• Then, how about computational complexity?  

 The number of nodes in the ball is around log(m), where m is the number of nodes. 

 Hence, we need to do log(m) more extensions at each iteration. 

 However, finding the nearest neighbor in a tree with m nodes takes around log(m) time anyway 

 

 

RRT RRT* 

Nearest neighbor 

Number of extensions 

Close Nodes 

Total:  

O(log m) O(log m) 

O(log m) - 

O(log m) 1 

O(log m) O(log m) 
 

RRT*: why does it work?  

And how much time does it take to run? 
 

• RRT* converges to the optimum cost with probability one 

• RRT* has the same asymptotic computational complexity 

with the RRT. 

 

 

 Some experimental evidence for the theoretical claims: 

 

Running time of the RRT* / running time of the RRT vs. number of iterations  
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Multiple Points & Sequencing 

• Sequencing 

– Determining the “best” order to go in  

 Travelling Salesman Problem 
 

A salesman has to visit each city on a given list exactly once. 

In doing this, he starts from his home city and in the end he has to 

return to his home city. It is plausible for him to select the order in 

which he visits the cities so that the total of the distances travelled 

in his tour is as small as possible.  

 

 

Multi-Goal Problem 
 

A salesman has to visit each city on a given list exactly once. 

In doing this, he starts from his home city and in the end he has to 

return to his home city. It is plausible for him to select the order in 

which he visits the cities so that the total of the distances travelled 

in his tour is as small as possible.  

 

 

 

 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 

Travelling Salesman Problem 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 

• Given a  distance 

matrix C=(cij) 

 

• Minimize: 

 

 
• Note that this problem is NP-Hard  

 

 

 

 

 

  BUT, Special Cases are Well-Solvable! 

 

 



28 

Travelling Salesman Problem [2] 

• This problem is NP-Hard  

 

 

 

 

 BUT,  

 Special Cases are  

 Well-Solvable! 

 

 

 

For the Euclidean case  

(where the points are on the 2D Euclidean plane) : 

• The shortest TSP tour does not intersect itself, and thus 

geometry makes the problem somewhat easier. 

• If all cities lie on the boundary of a convex polygon, the 

optimal tour is a cyclic walk along the boundary of the 

polygon (in clockwise or counterclockwise direction). 

 

The k-line TSP 

• The a special case where the cities lie on k parallel (or 

almost parallel) lines in the Euclidean plane. 

• EG:  Fabrication of printed circuit boards 

• Solvable in O(n3) time by Dynamic Programming  

(Rote's algorithm) 

 

The necklace TSP 

• The special Euclidean TSP case  

where there exist n circles around  

the n cities such that every cycle  

intersects exactly two adjacent  

circles 

 

Integrated 

Planning & Control 
 

 

(Hooray!!!) 
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Integrated Planning and Control Methods… 

• A motivating problem (for agility) 

– Cart and pole in a cluttered workspace … 
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Trajectory Generation with Constraints: 

Solutions from the Robotics Domain 

 

Trajectory Optimization: 

 Integrated Planning & Feedback: 

Planning 

Methods 
Trajectory 

Optimization 

 

• Direct Collocation  

(x: pchip poly, u: lin poly) 

• Lyapunov f (POTools) 

• SNOPT 

• exploits: LQR can be 

solved efficiently 

LQG Control 

Functions 
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Few Questions Before Starting… 

• Can it possibly be this hard?  

 Yes! 
 (1) Dynamic systems are nonlinear  

 (2) Decision-theoretic planning problems are combinatorial 

 

• Underactuated system?  
 [≜ control input cannot drive the state to any arbitrary direction] 

  DOF>actuators: car-like robot, airplane, cart and pole, etc   
   Actuator saturation! 

 

• Why Now? 

1. State-of-the-art  (LQR-Trees 2009 RSS best paper, kNitro, 
SDPARA).   

2. Convex Optimization (c/o relaxation) is ~ “online-able” 

 

Viewing This From a Controls & Policy Perspective 

Core Idea: 
Feedback motion planning (Assistance function) built from a prior model 
and updated online  
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Gain-Scheduled RRT 

• Rapidly Exploring Random Trees (RRT) (Background): 

 

Features (+): 

1. Solve a control problem 

2. Scalable 

3. Constrained environments 

 

Concerns (--): 

4. Works poorly under  

differential constraints 

5. Hard to avoid the connection gap 

 

𝑞(𝑚) 

𝑞  (𝑚) 

 

Gain-Scheduled RRT: RRT Connection Gap 

• A RRT solution rarely reaches the goal (or connect the 

two trees) with zero error 
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Gain-Scheduled RRT: Relaxing the Search 

Backwards tree 

Forward tree 

goal 

Feedback system 

 

Gain-Scheduled RRT: RoA & Verification 

• Find a candidate 

 

•  

Maximize candidate ( ρ ) 

 

 

 

 

• Verify candidate  

**R. Tedrake, “LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees”, RSS 2009 

V(x) = 

In the LQR case:   J: optimal cost-to-go S: Algebraic Ricatti Eq. 

Sum of squares relaxation 

goal 
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Gain-Scheduled RRT: Result 

• Cart and pole in a cluttered workspace … 

 

Same initial and final conditions. 

Every solution is different due to the random sampling 

obstacle 

Cart stopper Cart stopper 

 

Gain-Scheduled RRT: Result 

• Cart and pole in a cluttered workspace … 

 

 

RRT_vs_GS_sim10.mpg
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Cool Robotics Share 

 

 


