
1

© 2017 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: AAAAA

Lecture Schedule
Week Date Lecture (W: 3:05p-4:50, 7-222)

1 26-Jul
Introduction +

Representing Position & Orientation & State

2 2-Aug
Robot Forward Kinematics

(Frames, Transformation Matrices & Affine Transformations)

3 9-Aug Robot Inverse Kinematics & Dynamics (Jacobians)

4 16-Aug Ekka Day (Robot Kinematics & Kinetics Review)

5 23-Aug Jacobians & Robot Sensing Overview

6 30-Aug Robot Sensing: Single View Geometry & Lines

7 6-Sep Robot Sensing: Basic Feature Detection

8 13-Sep Robot Sensing: Scalable Feature Detection

9 20-Sep
Mid-Semester Exam

& Multiple View Geometry

 27-Sep Study break

10 4-Oct Motion Planning

11 11-Oct
Probabilistic Robotics: Planning & Control

(Sample-Based Planning/State-Space/LQR)

12 18-Oct Probabilistic Robotics: Localization & SLAM

13 25-Oct The Future of Robotics/Automation + Challenges + Course Review

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

2

Reference Material

UQ Library / Online (PDF)

UQ Library

(TJ211.4 .L38 1991)

Recap:

Simple Planners!

http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA51161329990003131
planning.cs.uiuc.edu
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA2185663660003131

3

Motion Planning Problem in General

• Motion planning problem:

• Last Week:

– Configuration space

– Cell decomposition

– Guided search using A*

– Potential fields

Motion Planning Problem in General

• Given:

– Robot's dynamics

– A map of the environment

– (perfect information, but discovered online)

– Robot's pose in the map

– A goal pose in the map

• Find a sequence of

– Actuation commands

– (such as steer, gas/brake, transmission)

– In real time (requires efficient algorithms)

 … that drive system to the goal pose

• Problem is essential in almost all robotics applications
irrespective of size, type of actuation, sensor suite, task
domain, etc.

4

Connectivity

• 8-Point Connectivity

 4-Point Connectivity

The Wavefront Planner: Setup

5

The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with “0” to the

current cell + 1

– 4-Point Connectivity or 8-Point Connectivity?

– Your Choice. We’ll use 8-Point Connectivity in our example

The Wavefront in Action (Part 2)

• Now repeat with the modified cells

– This will be repeated until no 0’s are adjacent to cells with values

>= 2

• 0’s will only remain when regions are unreachable

6

The Wavefront in Action (Part 3)

• Repeat again...

The Wavefront in Action (Part 4)

• And again...

7

The Wavefront in Action (Part 5)

• And again until...

The Wavefront in Action (Done)

• You’re done

– Remember, 0’s should only remain if unreachable regions exist

8

The Wavefront, Now What?

• To find the shortest path, according to your metric, simply

always move toward a cell with a lower number

– The numbers generated by the Wavefront planner are roughly

proportional to their distance from the goal

Two

possible

shortest

paths

shown

Sample-Based

Motion Planning!

https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg

9

Limits of Geometric Planning Methods

• How does this scale to high

degrees of freedom?

• What about “dynamic

constraints”?

• What about optimality?

• How to tie this to learning

and optimization

Start

Goal

Sample-Based Motion Planning

• PRMs • RRTs

10

Random Sampling in C-Space

1. Link start and goal poses into roadmap

Plan Generation (Query processing)
start

goal

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap edges

 - Use simple, deterministic local planner

 - Discard invalid edges (how?)

1. Randomly generate robot configurations (nodes)

 - Discard invalid nodes (how?)

C-obst

C-space

2. Find path from start to goal within roadmap

3. Generate motion plan for each edge used

Primitives Required:

1. Method for sampling C-Space points

2. Method for “validating” C-space points and edges

Sampling-Based Methods

• (Randomly) construct a set of

feasible (that is, collision-free)

trajectories

• Quite efficient; methods scale

well with increasing dimension, #

of obstacles

• “Probabilistically complete”

(if run long enough, very likely

to find a solution)

11

Incremental Sampling-based Motion Planning

• Sometimes building a roadmap a priori
might be inefficient (or even impractical)
– Assumes that all regions of c-space

will be utilized during actual motions

• Building a roadmap requires global knowledge
– But in real settings, obstacles are not known

a priori; rather, they are discovered online

• We desire an incremental method:
– Generate motion plans for a single start, goal pose

– Expending more CPU yields better motion plans

• The Rapidly-exploring Random Tree (RRT)
algorithm meets these requirements

RRT

12

Rapidly Exploring Random Trees (RRT)

q(m)

q
(m

/s
)

x init
s(m)

r(
m

)

x goal x rand

Sampling and the “Bug Trap” Problem

13

RRT Components

• X = Configuration Space or more general

• X = C-space + Velocity + Acceleration + ….

RRT Components

14

Basic RRT algorithm

Basic Extend

15

Example in holonomic empty space

Why “Rapidly Exploring”?

• What is the probability that a vertex will be extended?

– Proportional to the area of its Voronoi region

• If just choose a vertex at random and extend, then it would act

like random walk instead

– Biased towards start vertex

16

Refinement vs. Expansion

• Where will the random sample fall?

• How to control the behaviour of RRT?

refinement expansion

Determining the Boundary

• The tradeoff depends on the size of the bounding box

Expansion

dominates

Balanced refinement and

expansion

17

Extension to Non-Holonomic

• The new_state computation
handles all the complicated parts

• Given a state 𝒙 and inputs 𝒖

• Integrate numerically to get new
position

• What input 𝒖 do we use?
 All | One | Heuristic | ?

• Problems:

– Non-biased RRT explores in all
directions Not aimed at the goal

– Use a small percentage of targets
to be the goal or its neighborhood

Example: Simple RRT Planner

• Problem: ordinary RRT explores X uniformly

• Solution: bias distribution towards the goal

18

How it Works

• Build a rapidly-exploring random tree in state space (X),

starting at sstart

• Stop when tree gets sufficiently close to sgoal

Goal

Start

Building an RRT

• To extend an RRT:

– Pick a random point a in X

– Find b, the node of the tree closest to a

– Find control inputs u to steer the robot from b to a

a

b
u

19

Building an RRT

• To extend an RRT (cont.)

– Apply control inputs u for time d, so robot reaches c

– If no collisions occur in getting from a to c, add c to RRT and

record u with new edge

a

b
u

c

Bidirectional Planner Algorithm

20

RRT* & Extensions

Limitations of RRT

 RRT algorithm is tailored to find a feasible

solution very quickly.

21

Limitations of RRT

 RRT algorithm is tailored to find a feasible

solution very quickly.

 However, our simulation results suggest that, if
kept running, the solution is not improved in

terms of quality.

Limitations of RRT

 RRT algorithm is tailored to find a feasible

solution very quickly.

 However, our simulation results suggest that, if
kept running, the solution is not improved in

terms of quality.

 Can we formalize this claim?

 Let s* be an optimal path and c* denote its
cost.

 Let Xn be a random variable that denotes the
cost of the best path in the RRT at the end of
iteration n.

 That is, the probability that RRT will get closer
to an optimal solution is zero.

 In other words, the RRT will get stuck.

22

Limitations of RRT

 That is, the probability that RRT will get closer
to an optimal solution is zero.

 In other words, the RRT will get stuck.

Why?

•The RRT greedily explores the c-space exponentially fast.

•Once a path is found, the RRT traps itself because of

 fast greedy exploration.

•How about:

• running the RRT multiple times?

• deleting parts of the tree and rebuilding?

• new sampling strategies, better nearest neighbor?

• All these may improve the performance,

 but they will not make the RRT optimal.

• For optimality, we need to rethink the RRT algorithm…

Extension to RRT*
(Karaman, Frazzoli, RSS’10)

 Intuitively,
 Run an RRT

 Consider rewiring for all the nodes

that are inside a ball of radius rm

centered at the new sample

Volume of the ball:

23

Extension to RRT*

The body of the algorithm is

 very similar to the RRT.

Extend the nearest

If obstacle-free segment,

Then add the node to the tree

Compute the nodes inside the ball

Determine the closest node to the sample

in terms of the cost

Extend back to the tree – extend to

all the nodes inside the balls

RRT* on simulation examples

• The obstacle-free case:

24

RRT* on simulation examples

• With some obstacles

RRT* on simulation examples

• With some obstacles

• Cost color coded:

25

RRT* on simulation examples

• Upper rectangle is high cost

• Lower rectangle is low cost

Summary

• Studied the Rapidly-exploring Random Tree (RRT)

algorithm

• Discussed challenges for motion planning

methods in real-world applications

• Discussed magic behind sampling-based methods

• Looked at two applications:

– Urban Challenge vehicle, Agile Robotics forklift

• Studied the optimality properties of the RRT and the

RRT* algorithm.

26

RRT*: why it works?

And how much time does it take to run?
• It can be shown that the RRT* converges to the optimum

cost with probability one, that is

• Then, how about computational complexity?

 The number of nodes in the ball is around log(m), where m is the number of nodes.

 Hence, we need to do log(m) more extensions at each iteration.

 However, finding the nearest neighbor in a tree with m nodes takes around log(m) time anyway

RRT RRT*

Nearest neighbor

Number of extensions

Close Nodes

Total:

O(log m) O(log m)

O(log m) -

O(log m) 1

O(log m) O(log m)

RRT*: why does it work?

And how much time does it take to run?

• RRT* converges to the optimum cost with probability one

• RRT* has the same asymptotic computational complexity

with the RRT.

 Some experimental evidence for the theoretical claims:

Running time of the RRT* / running time of the RRT vs. number of iterations

27

Multiple Points & Sequencing

• Sequencing

– Determining the “best” order to go in

 Travelling Salesman Problem

A salesman has to visit each city on a given list exactly once.

In doing this, he starts from his home city and in the end he has to

return to his home city. It is plausible for him to select the order in

which he visits the cities so that the total of the distances travelled

in his tour is as small as possible.

Multi-Goal Problem

A salesman has to visit each city on a given list exactly once.

In doing this, he starts from his home city and in the end he has to

return to his home city. It is plausible for him to select the order in

which he visits the cities so that the total of the distances travelled

in his tour is as small as possible.

Start

Goal

Goal

Goal

Goal

Goal

Travelling Salesman Problem

Start

Goal

Goal

Goal

Goal

Goal

• Given a distance

matrix C=(cij)

• Minimize:

• Note that this problem is NP-Hard

 BUT, Special Cases are Well-Solvable!

28

Travelling Salesman Problem [2]

• This problem is NP-Hard

 BUT,

 Special Cases are

 Well-Solvable!

For the Euclidean case

(where the points are on the 2D Euclidean plane) :

• The shortest TSP tour does not intersect itself, and thus

geometry makes the problem somewhat easier.

• If all cities lie on the boundary of a convex polygon, the

optimal tour is a cyclic walk along the boundary of the

polygon (in clockwise or counterclockwise direction).

The k-line TSP

• The a special case where the cities lie on k parallel (or

almost parallel) lines in the Euclidean plane.

• EG: Fabrication of printed circuit boards

• Solvable in O(n3) time by Dynamic Programming

(Rote's algorithm)

The necklace TSP

• The special Euclidean TSP case

where there exist n circles around

the n cities such that every cycle

intersects exactly two adjacent

circles

Integrated

Planning & Control

(Hooray!!!)

29

Integrated Planning and Control Methods…

• A motivating problem (for agility)

– Cart and pole in a cluttered workspace …

30

Trajectory Generation with Constraints:

Solutions from the Robotics Domain

Trajectory Optimization:

 Integrated Planning & Feedback:

Planning

Methods
Trajectory

Optimization

• Direct Collocation

(x: pchip poly, u: lin poly)

• Lyapunov f (POTools)

• SNOPT

• exploits: LQR can be

solved efficiently

LQG Control

Functions

31

Few Questions Before Starting…

• Can it possibly be this hard?

 Yes!
 (1) Dynamic systems are nonlinear

 (2) Decision-theoretic planning problems are combinatorial

• Underactuated system?
 [≜ control input cannot drive the state to any arbitrary direction]

  DOF>actuators: car-like robot, airplane, cart and pole, etc
  Actuator saturation!

• Why Now?

1. State-of-the-art (LQR-Trees 2009 RSS best paper, kNitro,
SDPARA).

2. Convex Optimization (c/o relaxation) is ~ “online-able”

Viewing This From a Controls & Policy Perspective

Core Idea:
Feedback motion planning (Assistance function) built from a prior model
and updated online

32

Gain-Scheduled RRT

• Rapidly Exploring Random Trees (RRT) (Background):

Features (+):

1. Solve a control problem

2. Scalable

3. Constrained environments

Concerns (--):

4. Works poorly under

differential constraints

5. Hard to avoid the connection gap

𝑞(𝑚)

𝑞 (𝑚)

Gain-Scheduled RRT: RRT Connection Gap

• A RRT solution rarely reaches the goal (or connect the

two trees) with zero error

33

Gain-Scheduled RRT: Relaxing the Search

Backwards tree

Forward tree

goal

Feedback system

Gain-Scheduled RRT: RoA & Verification

• Find a candidate

•

Maximize candidate (ρ)

• Verify candidate

**R. Tedrake, “LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees”, RSS 2009

V(x) =

In the LQR case: J: optimal cost-to-go S: Algebraic Ricatti Eq.

Sum of squares relaxation

goal

34

Gain-Scheduled RRT: Result

• Cart and pole in a cluttered workspace …

Same initial and final conditions.

Every solution is different due to the random sampling

obstacle

Cart stopper Cart stopper

Gain-Scheduled RRT: Result

• Cart and pole in a cluttered workspace …

RRT_vs_GS_sim10.mpg

35

Cool Robotics Share

