
1

© 2017 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: AAAAA

Lecture Schedule
Week Date Lecture (W: 3:05p-4:50, 7-222)

1 26-Jul
Introduction +

Representing Position & Orientation & State

2 2-Aug
Robot Forward Kinematics

(Frames, Transformation Matrices & Affine Transformations)

3 9-Aug Robot Inverse Kinematics & Dynamics (Jacobians)

4 16-Aug Ekka Day (Robot Kinematics & Kinetics Review)

5 23-Aug Jacobians & Robot Sensing Overview

6 30-Aug Robot Sensing: Single View Geometry & Lines

7 6-Sep Robot Sensing: Basic Feature Detection

8 13-Sep Robot Sensing: Scalable Feature Detection

9 20-Sep
Mid-Semester Exam

& Multiple View Geometry

 27-Sep Study break

10 4-Oct Motion Planning

11 11-Oct
Probabilistic Robotics: Planning & Control

(Sample-Based Planning/State-Space/LQR)

12 18-Oct Probabilistic Robotics: Localization & SLAM

13 25-Oct The Future of Robotics/Automation + Challenges + Course Review

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

2

Follow Along Reading:

Robotics, Vision & Control

by Peter Corke

Also online:SpringerLink

UQ Library eBook:

364220144X

Planning & Control 

• Planning (Global Motion)

– pp. 91-103

(Yup! That’s all Peter Corke has to

say! Yet there is a Chapter [15] on

Visual Servoing, a local motion

method that can’t handle obstacles).

• In Two Weeks: SLAM

– pp. 123-4

(§6.4-6.5)

Today

Reference Material

UQ Library / Online (PDF)

UQ Library

(TJ211.4 .L38 1991)

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA51161329990003131
planning.cs.uiuc.edu
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA2185663660003131

3

(Kinematic)

Motion Planning

Motion Planning? Let’s Get Moving…

4

Motion Planning? Let’s Get Moving?

Motion Planning? The clutter can not be “ignored”

5

Motion Planning: Processing the Limits

Path-Planning Approaches

• Roadmap

Represent the connectivity of the free space by a network

of 1-D curves

• Cell decomposition

Decompose the free space into simple cells and represent

the connectivity of the free space by the adjacency graph

of these cells

• Potential field

Define a function over the free space that has a global

minimum at the goal configuration and follow its steepest

descent

6

See Also: http://robotics.itee.uq.edu.au/~ai/

External Configuration Is Important …

Configuration Space

• A robot configuration is a specification of the positions of all robot

points relative to a fixed coordinate system

• Usually a configuration is expressed as a “vector” of

position/orientation parameters

http://robotics.itee.uq.edu.au/~ai/doku.php/wiki/schedule
http://robotics.itee.uq.edu.au/~ai/doku.php/wiki/schedule

7

Motion Planning in C-Space

q=(q1,…,qn)

q1
q2

q3

qn

Configuration Space of a Robot

• Space of all its possible configurations

• But the topology of this space is usually not that of a

Cartesian space

C = S1 x S1

8

Geometric Planning Methods

• Several Geometric

Methods:

– Vertical (Trapezoidal)

Cell Decomposition

– Roadmap Methods

• Cell (Triangular)

Decomposition

• Visibility Graphs

• Veroni Graphs

Start

Goal

I. Rotational Sweep

9

Rotational Sweep

Rotational Sweep

10

Rotational Sweep

Rotational Sweep

11

II. Cell-Decomposition Methods

Two classes of methods:

• Exact cell decomposition

– The free space F is represented by a collection of non-

overlapping cells whose union is exactly F

– Example: trapezoidal decomposition

• Approximate cell decomposition

– F is represented by a collection of

non-overlapping cells whose union is contained in F

Examples: quadtree, octree, 2n-tree

Trapezoidal decomposition

12

Planar sweep  O(n log n) time, O(n) space

Trapezoidal decomposition

Trapezoidal decomposition

13

Trapezoidal decomposition

Trapezoidal decomposition

14

II.Visibility Graph

tangent segments

 Eliminate concave obstacle vertices

can’t be shortest path

Generalized (Reduced) -- Visibility Graph

tangency point

15

Three-Dimensional Space

Computing the shortest collision-free path in a

polyhedral space is NP-hard

Shortest path passes

through none of the

vertices

locally shortest

path homotopic

to globally shortest

path

Sketch of Grid Algorithm (with best-first search)

• Place regular grid G over space

• Search G using best-first search algorithm with potential

as heuristic function

16

Simple Algorithm (for Visibility Graphs)

• Install all obstacles vertices in VG, plus the start and goal

positions

• For every pair of nodes u, v in VG

 If segment(u,v) is an obstacle edge then

 insert (u,v) into VG

 else

 for every obstacle edge e

 if segment(u,v) intersects e

 then go up to segment

 insert (u,v) into VG

• Search VG using A*

III. Potential Field Methods

• Approach initially proposed for

real-time collision avoidance [Khatib, 86]

Goal

Goal Force

O
b
s
ta

c
le

 F
o
rc

eMotion

Robot

17

Attractive and Repulsive fields

Local-Minimum Issue

• Perform best-first search (possibility of

 combining with approximate cell decomposition)

• Alternate descents and random walks

• Use local-minimum-free potential (navigation function)

18

Disc Robot in 2-D Workspace

Rigid Robot Translating and Rotating in 2-D

19

IV. Roadmap Methods

• Visibility graph

• Voronoi diagram

• Silhouette

First complete general method that applies to spaces of

any dimension and is singly exponential in # of

dimensions [Canny, 87]

Roadmap Methods

• Visibility graph

Introduced in the Shakey project at SRI in the late 60s.

Can produce shortest paths in 2-D configuration spaces

g

s

20

Roadmap Methods

• Voronoi diagram

Introduced by

Computational

Geometry researchers.

Generate paths that

maximizes clearance.

O(n log n) time

O(n) space

Sample-Based

Motion Planning!

https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg

21

IV. Roadmap Methods

• Visibility graph

• Voronoi diagram

• Silhouette

First complete general method that applies to spaces of

any dimension and is singly exponential in # of

dimensions [Canny, 87]

• Probabilistic roadmaps (PRMS)

 and Rapidly-exploring Randomized Trees (RRTs)

Limits of Geometric Planning Methods

• How does this scale to high

degrees of freedom?

• What about “dynamic

constraints”?

• What about optimality?

• How to tie this to learning

and optimization

Start

Goal

22

But Intel Giveth!

• “Moore’s Law” is exponential (at best!)

• These problems ∝ factorial!

• Some Numbers: (From: D. MacKay, Information Theory, Inference, and Learning Algorithms)

Sample-Based Motion Planning

• PRMs • RRTs

http://www.inference.phy.cam.ac.uk/itila/p0.html
http://www.inference.phy.cam.ac.uk/itila/p0.html
http://www.inference.phy.cam.ac.uk/itila/p0.html

23

Rapidly Exploring Random Trees (RRT)

q(m)

q
(m

/s
)

x init
s(m)

r(
m

)

x goal x rand

Sampling and the “Bug Trap” Problem

24

Multiple Points & Sequencing

• Sequencing

– Determining the “best” order to go in

 Travelling Salesman Problem

A salesman has to visit each city on a given list exactly once.

In doing this, he starts from his home city and in the end he has to

return to his home city. It is plausible for him to select the order in

which he visits the cities so that the total of the distances travelled

in his tour is as small as possible.

Multi-Goal Problem

A salesman has to visit each city on a given list exactly once.

In doing this, he starts from his home city and in the end he has to

return to his home city. It is plausible for him to select the order in

which he visits the cities so that the total of the distances travelled

in his tour is as small as possible.

Start

Goal

Goal

Goal

Goal

Goal

Travelling Salesman Problem

Start

Goal

Goal

Goal

Goal

Goal

• Given a distance

matrix C=(cij)

• Minimize:

• Note that this problem is NP-Hard

 BUT, Special Cases are Well-Solvable!

25

Travelling Salesman Problem [2]

• This problem is NP-Hard

 BUT,

 Special Cases are

 Well-Solvable!

For the Euclidean case

(where the points are on the 2D Euclidean plane) :

• The shortest TSP tour does not intersect itself, and thus

geometry makes the problem somewhat easier.

• If all cities lie on the boundary of a convex polygon, the

optimal tour is a cyclic walk along the boundary of the

polygon (in clockwise or counterclockwise direction).

The k-line TSP

• The a special case where the cities lie on k parallel (or

almost parallel) lines in the Euclidean plane.

• EG: Fabrication of printed circuit boards

• Solvable in O(n3) time by Dynamic Programming

(Rote's algorithm)

The necklace TSP

• The special Euclidean TSP case

where there exist n circles around

the n cities such that every cycle

intersects exactly two adjacent

circles

Cool Robotics Share

26

Optional:

Search Refreshers!

27

“Heuristic”

• Literally translates to “to find”, “to discover”

• Has many meanings in general

– How to come up with mathematical proofs

– Opposite of algorithmic

– Rules of thumb in expert systems

– Improve average case performance, e.g., in CSPs

– Algorithms that use low-order polynomial time (and come

within a bound of the optimal solution)

• % from optimum

• % of cases

• “probably approximately correct”

– h(n) that estimates the remaining cost from a state n to a

solution
• We’ll assume that for all n, h(n) ≥ 0, and for all goal nodes n, h(n)=0.

Uninformed vs. Informed Search

28

Best-First Search

function BEST-FIRST-SEARCH (problem, EVAL-FN) returns a

solution sequence

 inputs: problem, a problem

 Eval-Fn, an evaluation function

 Queuing-Fn – a function that orders nodes by EVAL-FN

 return GENERAL-SEARCH (problem, Queuing-Fn)

An implementation of best-first search using the general search

algorithm.

Usually, knowledge of the problem is incorporated in an evaluation

function that describes the desirability of expanding the particular node.

If we really knew the desirability, it would not be a search at all. So,

we should really call it “seemingly best-first search” to be pedantic

f(n)

Greedy Search

function GREEDY-SEARCH (problem) returns a solution or failure

 return BEST-FIRST-SEARCH (problem, h)

h(n) = estimated cost of the cheapest path from the state at node n to a goal state

Not Optimal

Incomplete

O(bm) time

O(bm) space

29

Beam Search

Use f(n) = h(n) but |nodes|  K

• Not complete

• Not optimal

A* Search

function A*-SEARCH (problem) returns a solution or failure

 return BEST-FIRST-SEARCH (problem, g+h)

f(n) = estimated cost of the cheapest solution through n

 = g(n) + h(n)

f=291+380

=671

f=291+380

=671

30

A* Search…

In a minimization problem, an admissible heuristic h(n)

never overestimates the real value

(In a maximization problem, h(n) is admissible if it never

underestimates)

Best-first search using f(n) = g(n) + h(n) and an admissible

h(n) is known as A* search

A* tree search is complete & optimal

Completeness of A*

• Because A* expands nodes in order of increasing f, it must

eventually expand to reach a goal state. This is true unless

there are infinitely many nodes with f(n)  f*

• How could this happen?
– There is a node with an infinity branching factor

– There is a path with finite path cost but an infinite number of nodes on it

• So, A* is complete on graphs with a finite branching factor

provided there is some positive constant  such that every

operator costs at least 

31

Monotonicity of a heuristic

Map of Romania showing contours at f = 380, f = 400 and f = 420, with Arad as the start state.

Nodes inside a given contour have f-costs lower than the contour value.

With a monotonic heuristic, we can interpret A* as searching through contours:

• h(n) is monotonic (aka. consistent) if, for every node n and every child n’ of n generated by any action

a, the estimated cost of reaching the goal from n is no greater than the step cost of getting to n’ plus the

estimated cost of reaching the goal from n’: h(n) ≤ c(n,a,n’) +h(n’).

• Monotonicity implies that f(n) (which equals g(n)+h(n)) never decreases along a path from the root.

• Monotonic => admissible

• Advanced topic: “A* Search with Inconsistent Heuristics” in Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), 2009, provides techniques for making non-monotonic

heuristics monotonic

• A* expands all nodes n with f(n) < f*, and may expand some

nodes right on the “goal contour” (f(n) = f*), before selecting

a goal node.

• With a monotonic heuristic, even A* graph search (i.e.,

search that deletes later-created duplicates) is optimal.
– Another option, which requires only admissibility – not monotonicity

– is to have the duplicate detector always keep the best (rather than

the first) of the duplicates.

• A* tree search doesn’t do detection or removal of duplicates

Monotonicity of a heuristic…

32

Proof of optimality of A* tree search

Let G be an optimal goal state, and f(G) = f* = g(G).

Let G2 be a suboptimal goal state, i.e., f(G2) = g(G2) > f*.

Suppose for contradiction that A* has selected G2 from the queue. (This

would terminate A* with a suboptimal solution.)

Let n be a node that is currently a leaf node on an optimal path to G.

Situation at the point where a sub-optimal goal state G2 is about to be picked from the queue

Because h is admissible, f*  f(n).

If n is not chosen for expansion over G2, we must have f(n)  f(G2).

So, f*  f(G2). Because h(G2)=0, we have f*  g(G2), contradiction.

Assumes h is admissible, but does not assume h is monotonic

Complexity of A*

• Generally O(bd) time and space.

• Sub-exponential growth when |h(n) - h*(n)|  O(log h*(n))

• Unfortunately, for most practical heuristics, the error

is at least proportional to the path cost

33

• A* with a monotonic heuristic is optimally efficient for any

given h-function among algorithms that extend search paths

from the root. I.e., no other optimal algorithm is guaranteed

to expand fewer nodes (except perhaps on the goal contour

where f(n)=f*) (for a given search formulation).
– With a non-monotonic admissible heuristic, some nodes can be

expanded many times, causing the search to do O(2N) node

expansions, where N is the number of nodes expanded

• Intuition: any algorithm that does not expand all nodes in the

contours between the root and the goal contour runs the risk

of missing the optimal solution.

A* is optimally efficient

Heuristics (h(n)) for A*

5

6

7

4

1

3

8

2

1

8

7 6

2 3

4

5

Start state Goal state

A typical instance of the 8-puzzle

h1: #tiles in wrong position

h2: sum of Manhattan distances of the tiles from their goal positions

h2 dominates h1: n, h2(n)  h1(n)

Heuristics?

34

Heuristics (h(n)) for A* …

Always, if a heuristic h2 dominates h1, then A* using h2 will never expand

more nodes than A* using h1 (except possibly for some nodes with f(n)=f*).

<= A* expands all nodes with f(n) < f*

Comparison of the search costs and effective branching factors for the ITERATIVE-

DEPENING-SEARCH and A* algorithms with h1, h2. Data are averaged over 100

instances of the 8-puzzle, for various solution lengths.

Inventing heuristic functions h(n)
Cost of exact solution to a relaxed problem is often a good heuristic for original problem.

Relaxed problem(s) can be generated automatically from the problem description by

dropping or relaxing constraints.

Most common example in operations research: relaxing all integrality constraints and using

linear programming to get an optimistic h-value.

What if no dominant heuristic is found?

 h(n) = max [h1(n), … hm(n)]

 h(n) is still admissible & dominates the component heuristics

Use probabilistic info from statistical experiments: “If h(n)=14, h*(n)=18”.

 Gives up optimality, but does less search

Pick features & use machine learning to determine their contribution to h.

Use full breath-first search as a heuristic?

search

time
complexity of computing h(n)

35

Memory-bounded search algorithms

Iterative Deepening A* (IDA*)
function IDA*(problem) returns a solution sequence

 inputs: problem, a problem

 static: f-limit, the current f-COST limit

 root, a node

 root  MAKE-NODE(INITIAL-STATE[problem])

 f-limit  f-COST(root)

 loop do

 solution, f-limit  DFS-CONTOUR(root,f-limit)

 if solution is non-null then return solution

 if f-limit =  then return failure; end

function DFS-CONTOUR(node,f-limit) returns a solution sequence and a new f-COST limit

 inputs: node, a node

 f-limit, the current f-COST limit

 static: next-f, the f-COST limit for the next contour, initially 

 if f-COST[node] > f-limit then return null, f-COST[node]

 if GOAL-TEST[problem](STATE[node]) then return node, f-limit

 for each node s in SUCCESSOR(node) do

 solution, new-f  DFS-CONTOUR(s,f-limit)

 if solution is non-null then return solution, f-limit

 next-f  MIN(next-f, new-f); end

 return null, next-f
f-COST[node] = g[node] + h[node]

IDA* …

Complete & optimal under same conditions as A*.

Linear space. Same O() time complexity as A*.

If #nodes grows exponentially, then asymptotically

optimal space.

36

IDA* …

Effective e.g. in 8-puzzle where f typically only increases 2-3

times  2-3 iterations.

Last iteration ~ A*

Ineffective in, e.g., TSP where f increases continuously

 each new iteration only includes one new node.

• If A* expands N nodes, IDA* expands O(N2) nodes

• Fixed increment   ~1/ iterations

• Obtains -optimal solution if terminated once first

solution is found

• Obtains an optimal solution if search of the current

contour is completed

A* vs. IDA*

Map of Romania showing contours at f = 380, f = 400 and f = 420, with Arad as the start

sate. Nodes inside a given contour have f-costs lower than the contour value.

37

Memory-bounded search algorithms

• IDA* 1985

• Recursive best-first search 1991

• Memory-bounded A* (MA*) 1989

• Simple memory-bounded A* (SMA*) 1992 … }use “too little” memory

Simple Memory-bounded A* (SMA*)

24+0=24

A

B G

C D

E F

H

J

I

K

0+12=12

10+5=15

20+5=25

30+5=35

20+0=20

30+0=30

8+5=13

16+2=18

24+0=24 24+5=29

10 8

10 10

10 10

8 16

8 8

A
12

A

B

12

15

A

B G

13

15 13
H

13



A

G

18

13(15)

A

G

24()

I

15(15)

24

A

B G

15

15 24


A

B

C

15(24)

15

25

f = g+h

A

B

D

8

20

20(24)

20()

Progress of SMA* (with enough memory to store just 3 nodes).

Each node is labeled with its current f-cost.

Values in parentheses show the value of the best forgotten descendant.

Optimal & complete if enough memory

Can be made to signal when the best solution found might not be optimal (e.g., if J=19)

 = goal

Search space

38

D* Motion Planner

(Dynamic A* RePlanner)

D* Lite

• an incremental version of A*

• for navigating in unknown terrain

It implements the same behavior as Stentz’ Focussed Dynamic

A* but is algorithmically different.

n.h.reyes@massey.ac.nz

39

How to search efficiently using

heuristic to guide the search

How to search efficiently by

using re-using information

from previous search results

Incremental search + heuristic search

• Stentz 1995

• Clever heuristic method that achieves a speedup of one to

two orders of magnitudes over repeated A* searches

• The improvement is achieved by modifying previous search

results locally

• Extensively used on real robots, including outdoor high

mobility multi-wheeled vehicle (HMMWV)

• Integrated into Mars Rover prototypes and tactical mobile

robot prototypes for urban reconnaissance

Focussed Dynamic A* (D*)

40

• D* Lite implements the same navigation strategy as D*, but

is algorithmically different

• Substantially shorter than D*

• Uses only one tie-breaking criterion when comparing

priorities (simplified maintenance)

• No nested if statements with complex conditions

• Simplifies the analysis of program flow

• Easier to extend

• At least as efficient as D*

D* Lite vs. D*

Previously, we learned LPA*

original eight-connected gridworld

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge

costs of a graph change.

41

Path Planning

original eight-connected gridworld

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge

costs of a graph change.

Path Planning

changed eight-connected gridworld

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge

costs of a graph change.

42

Path Planning

changed eight-connected gridworld

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge

costs of a graph change.

LPA*

• LPA* is an incremental version of A* that applies to the

same finite path-planning problems as A*.

• It shares with A* the fact that it uses non-negative and

consistent heuristics h(s) that approximate the goal

distances of the vertices s to focus its search.

• Consistent heuristics obey the triangle inequality:

– h(sgoal) = 0

– h(s) ≤ c(s, s’) + h(s’); for all vertices s ∈ S and

– s’ ∈ succ(s) with s ≠ sgoal.

43

D* Lite

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge

costs of a graph change.

D* Lite repeatedly determines shortest paths between the current

vertex Scurrent of the robot and Sgoal as the edge costs of a graph

change, while the robot moves towards Sgoal.

D* Lite

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge

costs of a graph change.

D* Lite repeatedly determines shortest paths between the current

vertex Scurrent of the robot and Sgoal as the edge costs of a graph

change, while the robot moves towards Sgoal.

D* Lite is suitable for solving goal-directed navigation problems

in unknown terrains.

44

Autonomy Has Limits

