

Week	Date	Lecture (W: 3:05p-4:50, 7-222)				
1	26-Jul	Introduction				
		Representing Position & Orientation & State				
2	2-Aug	Robot Forward Kinematics				
		(Frames, Transformation Matrices & Affine Transformations)				
3	9-Aug	Robot Inverse Kinematics & Dynamics (Jacobians)				
4	16-Aug	Ekka Day (Robot Kinematics & Kinetics Review)				
5	23-Aug	Jacobians & Robot Sensing Overview				
6	30-Aug	Robot Sensing: Single View Geometry & Lines				
7	6-Sep	Robot Sensing: Basic Feature Detection				
8	13-Sep	Robot Sensing: Scalable Feature Detection				
9	20-Sep	Mid-Semester Exam				
		& Multiple View Geometry				
	27-Sep	Study break				
10	4-Oct	Motion Planning				
11	11-Oct	Probabilistic Robotics: Planning & Control				
		(Sample-Based Planning/State-Space/LQR)				
12	18-Oct	Probabilistic Robotics: Localization & SLAM				
13	25-Oct	The Future of Robotics/Automation + Challenges + Course Review				

(Kinematic) Motion Planning

METR 4202: Robotics

October 4, 2017 - 5

Motion Planning: Processing the Limits

Path-Planning Approaches

• Roadmap

Represent the connectivity of the free space by a network of 1-D curves

- Cell decomposition Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph
- of these cells • Potential field

Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Slide from Latombe, CS326A METR 4202: Robotics

October 4, 2017 - 10

But Intel Giveth!

- "Moore's Law" is exponential (at best!)
- These problems \propto factorial!
- Some Numbers: (From: D. MacKay, Information Theory, Inference, and Learning Algorithms)

	2^{8192}	10^{2466}	Number of distinct 1-kilobyte files	
	2^{1024}	10^{308}	Number of states of a 2D Ising model with 32×32 spins	
2^{1000}		10^{301}	Number of binary strings of length 1000	
2^{500}		3×10^{150}		
	2^{469}	10^{141}	Number of binary strings of length 1000 having 100 1s and 900 0s	
	2^{266}	10^{80}	Number of electrons in universe	
2^{200}		$1.6\!\times\!10^{60}$		
	2^{190}	10^{57}	Number of electrons in solar system	
	2^{171}	3×10^{51}	Number of electrons in the earth	
2^{100}		10^{30}		
	2^{98}	$3\!\times\!10^{29}$	Age of universe/picoseconds	
	2^{58}	3×10^{17}	Age of universe/seconds	
2^{50}		10^{15}	5 /	
2^{40}		10^{12}		
		10^{11}	Number of neurons in human brain	
		10^{11}	Number of bits stored on a DVD	
METR	METR 4202 Pobot 3× 10 ¹⁰		Number of bits in the wheat genome	October 4, 2017-43
AVIL III	202.110	6×10^{9}	Number of bits in the human genome	000000 1/2017 10

Optional: Search Refreshers!

From: Tuomas Sandholm (CSD, CMU) and N. H. Reyes (Massey [NZ])

October 4, 2017-52

- h(n) is <u>monotonic</u> (aka. consistent) if, for every node n and every child n' of n generated by any action a, the estimated cost of reaching the goal from n is no greater than the step cost of getting to n' plus the estimated cost of reaching the goal from n': $h(n) \le c(n,a,n') + h(n')$.
- Monotonicity implies that f(n) (which equals g(n)+h(n)) never decreases along a path from the root.
- Monotonic => admissible

		Search Cost	Effective Branching Factor			
d	IDS	A*(<i>h</i> ₁)	A*(<i>h</i> ₂)	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	1.77	7276	676	-	1.47	1.27
22	-	18094	1219	-	1.48	1.28
24	-	39135	1641		1.48	1.26
Con DEI insta	nparison of the PENING-SEAI ances of the 8-	e search costs an RCH and A* alg puzzle, for vario	nd effective bran gorithms with h ous solution leng	ching factor l, <i>h</i> 2. Data a gths.	s for the ITER	ATIVE- ver 100
Jwa	vs. if a heu	ristic h ₂ dom	inates h ₁ , the	n A* usin	g h ₂ will ne	ver expai

D* Motion Planner (Dynamic A* **RePlanner**)

METR 4202: Robotics

D* Lite an incremental version of A* for navigating in unknown terrain It implements the same behavior as Stentz' Focussed Dynamic A* but is algorithmically different. n.h.reyes@massey.ac.nz

LPA*

- LPA* is an incremental version of A* that applies to the same finite path-planning problems as A*.
- It shares with A* the fact that it uses non-negative and consistent heuristics h(s) that approximate the goal distances of the vertices s to focus its search.
- Consistent heuristics obey the triangle inequality:
 - -h(sgoal)=0
 - $-h(s) \le c(s, s') + h(s')$; for all vertices $s \in S$ and
 - s' \in succ(s) with s \neq sgoal.

METR 4202: Robotics

D* Lite

LPA* repeatedly determines shortest paths between S_{start} and S_{goal} as the edge costs of a graph change.

D* **Lite** repeatedly determines shortest paths between the current vertex $S_{current}$ of the robot and S_{goal} as the edge costs of a graph change, while the robot moves towards S_{goal} .

D* Lite is suitable for solving **goal-directed navigation problems** in **unknown terrains**.

METR 4202: Robotics

