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Lecture Schedule 
Week Date Lecture (W: 3:05p-4:50, 7-222) 

1 26-Jul 
Introduction +  

Representing Position & Orientation & State 

2 2-Aug 
Robot Forward Kinematics 

(Frames, Transformation Matrices & Affine Transformations) 

3 9-Aug Robot Inverse Kinematics & Dynamics (Jacobians) 

4 16-Aug Ekka Day (Robot Kinematics & Kinetics Review) 

5 23-Aug Jacobians & Robot Sensing Overview 

6 30-Aug Robot Sensing: Single View Geometry & Lines 

7 6-Sep Robot Sensing: Basic Feature Detection 

8 13-Sep Robot Sensing: Scalable Feature Detection 

9 20-Sep 
Mid-Semester Exam  

& Multiple View Geometry 

  27-Sep Study break 

10 4-Oct Motion Planning 

11 11-Oct 
Probabilistic Robotics: Planning & Control  

(Sample-Based Planning/State-Space/LQR)  

12 18-Oct Probabilistic Robotics: Localization & SLAM 

13 25-Oct The Future of Robotics/Automation + Challenges + Course Review 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Follow Along Reading: 

Robotics, Vision & Control  

by Peter Corke  

 

Also online:SpringerLink 

 

UQ Library eBook: 

364220144X   

Planning & Control  

• Planning (Global Motion) 

– pp. 91-103 

(Yup! That’s all Peter Corke has to 

say! Yet there is a Chapter [15] on 

Visual Servoing, a local motion 

method that can’t handle obstacles). 

• In Two Weeks: SLAM 

– pp. 123-4 

(§6.4-6.5) 

Today 

Reference Material 

UQ Library / Online (PDF) 

UQ Library 

(TJ211.4 .L38 1991) 

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA51161329990003131
planning.cs.uiuc.edu
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA2185663660003131
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(Kinematic) 

Motion Planning 

 

Motion Planning?  Let’s Get Moving… 
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Motion Planning?  Let’s Get Moving? 

 

Motion Planning? The clutter can not be “ignored” 
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Motion Planning: Processing the Limits 

 

Path-Planning Approaches 

• Roadmap 

Represent the connectivity of the free space by a network 

of 1-D curves 

• Cell decomposition 

Decompose the free space into simple cells and represent 

the connectivity of the free space by the adjacency graph 

of these cells 

• Potential field 

Define a function over the free space that has a global 

minimum at the goal configuration and follow its steepest 

descent 
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See Also: http://robotics.itee.uq.edu.au/~ai/ 

 

External Configuration Is Important … 

Configuration Space 

• A robot configuration is a specification of the positions of all robot 

points relative to a fixed coordinate system 

• Usually a configuration is expressed as a “vector” of 

position/orientation parameters 

 
 

 

http://robotics.itee.uq.edu.au/~ai/doku.php/wiki/schedule
http://robotics.itee.uq.edu.au/~ai/doku.php/wiki/schedule
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Motion Planning in C-Space 

 

q=(q1,…,qn) 

q1 
q2 

q3 

qn 

 

 

Configuration Space of a Robot 

• Space of all its possible configurations 

• But the topology of this space is usually not that of a 

Cartesian space 

C = S1 x S1 
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Geometric Planning Methods 

• Several Geometric 

Methods: 

– Vertical (Trapezoidal)  

Cell Decomposition 

 

 

– Roadmap Methods 

• Cell (Triangular) 

Decomposition 

• Visibility Graphs 

• Veroni Graphs 

 

 

 

Start 

Goal 

 

I. Rotational Sweep 
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Rotational Sweep 

 

Rotational Sweep 
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Rotational Sweep 

 

Rotational Sweep 
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II. Cell-Decomposition Methods 

Two classes of methods: 

• Exact cell decomposition 

– The free space F is represented by a collection of non-

overlapping cells whose union is exactly F 

 

– Example: trapezoidal decomposition 

 

• Approximate cell decomposition 

– F is represented by a collection of  

non-overlapping cells whose union is contained in F 

Examples: quadtree, octree, 2n-tree 

 

 

Trapezoidal decomposition 
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Planar sweep  O(n log n) time, O(n) space 

Trapezoidal decomposition 

 

Trapezoidal decomposition 
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Trapezoidal decomposition 

 

Trapezoidal decomposition 
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II.Visibility Graph 

tangent segments 

 Eliminate concave obstacle vertices 

can’t be shortest path 

 

Generalized (Reduced) -- Visibility Graph 

tangency point 
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Three-Dimensional Space 

Computing the shortest collision-free path in a  

polyhedral space is NP-hard 

Shortest path passes  

through none of the  

vertices 

locally shortest  

path homotopic  

to globally shortest  

path 

 

Sketch of Grid Algorithm (with best-first search) 

• Place regular grid G over space 

• Search G using best-first search algorithm with potential 

as heuristic function 
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Simple Algorithm (for Visibility Graphs) 

• Install all obstacles vertices in VG, plus the start and goal 

positions 

• For every pair of nodes u, v in VG 

 If segment(u,v) is an obstacle edge then 

   insert (u,v) into VG 

 else 

 for every obstacle edge e 

  if segment(u,v) intersects e 

   then go up to segment 

       insert (u,v) into VG 

• Search VG using A* 
 

 

III. Potential Field Methods 

• Approach initially proposed for  

real-time collision avoidance [Khatib, 86] 

 

Goal

Goal Force

O
b
s
ta

c
le

 F
o
rc

eMotion

Robot
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Attractive and Repulsive fields 

 

Local-Minimum Issue 

•  Perform best-first search (possibility of  

   combining with approximate cell decomposition) 

•  Alternate descents and random walks 

•  Use local-minimum-free potential (navigation function) 
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Disc Robot in 2-D Workspace 

 

Rigid Robot Translating and Rotating in 2-D 
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IV. Roadmap Methods 

• Visibility graph 

• Voronoi diagram  

• Silhouette 

First complete general method that applies to spaces of 

any dimension and is singly exponential in # of 

dimensions [Canny, 87] 

 

 

Roadmap Methods 

• Visibility graph 

Introduced in the Shakey project at SRI in the late 60s. 

Can produce shortest paths in 2-D configuration spaces 

g 

s 
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Roadmap Methods 

• Voronoi diagram  

Introduced by 

Computational 

Geometry researchers. 

Generate paths that 

maximizes clearance.  

 

O(n log n) time 

O(n) space 

 

Sample-Based 

Motion Planning! 
 

 

 

https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
https://commons.wikimedia.org/wiki/File:2-Dice-Icon.svg
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IV. Roadmap Methods 

• Visibility graph 

• Voronoi diagram  

• Silhouette 

First complete general method that applies to spaces of 

any dimension and is singly exponential in # of 

dimensions [Canny, 87] 

• Probabilistic roadmaps  (PRMS)  

 and Rapidly-exploring Randomized Trees (RRTs) 

 

 

Limits of Geometric Planning Methods 

• How does this scale to high 

degrees of freedom? 

 

• What about “dynamic 

constraints”? 

 

• What about optimality? 

 

• How to tie this to learning 

and optimization  

Start 

Goal 
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But Intel Giveth! 

• “Moore’s Law” is exponential (at best!) 

• These problems ∝ factorial! 

• Some Numbers: (From: D. MacKay, Information Theory, Inference, and Learning Algorithms) 

 

 

Sample-Based Motion Planning 

• PRMs • RRTs 

 

http://www.inference.phy.cam.ac.uk/itila/p0.html
http://www.inference.phy.cam.ac.uk/itila/p0.html
http://www.inference.phy.cam.ac.uk/itila/p0.html
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Rapidly Exploring Random Trees (RRT) 

q(m) 

  
  
 

q
(m

/s
) 

x init  
s(m) 

r(
m

) 

x goal x rand  

Sampling and the “Bug Trap” Problem  
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Multiple Points & Sequencing 

• Sequencing 

– Determining the “best” order to go in  

 Travelling Salesman Problem 
 

A salesman has to visit each city on a given list exactly once. 

In doing this, he starts from his home city and in the end he has to 

return to his home city. It is plausible for him to select the order in 

which he visits the cities so that the total of the distances travelled 

in his tour is as small as possible.  

 

 

Multi-Goal Problem 
 

A salesman has to visit each city on a given list exactly once. 

In doing this, he starts from his home city and in the end he has to 

return to his home city. It is plausible for him to select the order in 

which he visits the cities so that the total of the distances travelled 

in his tour is as small as possible.  

 

 

 

 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 

Travelling Salesman Problem 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 

• Given a  distance 

matrix C=(cij) 

 

• Minimize: 

 

 
• Note that this problem is NP-Hard  

 

 

 

 

 

  BUT, Special Cases are Well-Solvable! 
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Travelling Salesman Problem [2] 

• This problem is NP-Hard  

 

 

 

 

 BUT,  

 Special Cases are  

 Well-Solvable! 

 

 

 

For the Euclidean case  

(where the points are on the 2D Euclidean plane) : 

• The shortest TSP tour does not intersect itself, and thus 

geometry makes the problem somewhat easier. 

• If all cities lie on the boundary of a convex polygon, the 

optimal tour is a cyclic walk along the boundary of the 

polygon (in clockwise or counterclockwise direction). 

 

The k-line TSP 

• The a special case where the cities lie on k parallel (or 

almost parallel) lines in the Euclidean plane. 

• EG:  Fabrication of printed circuit boards 

• Solvable in O(n3) time by Dynamic Programming  

(Rote's algorithm) 

 

The necklace TSP 

• The special Euclidean TSP case  

where there exist n circles around  

the n cities such that every cycle  

intersects exactly two adjacent  

circles 

 

Cool Robotics Share 
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Optional:  

Search Refreshers! 
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“Heuristic” 

• Literally translates to “to find”, “to discover” 

• Has many meanings in general 

– How to come up with mathematical proofs 

– Opposite of algorithmic 

– Rules of thumb in expert systems 

– Improve average case performance, e.g., in CSPs 

– Algorithms that use low-order polynomial time (and come 

within a bound of the optimal solution) 

• % from optimum 

• % of cases 

• “probably approximately correct” 

– h(n) that estimates the remaining cost from a state n to a 

solution 
• We’ll assume that for all n, h(n) ≥ 0, and for all goal nodes n, h(n)=0. 

 

Uninformed vs. Informed Search 
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Best-First Search  

function BEST-FIRST-SEARCH (problem, EVAL-FN) returns a 

solution sequence 

   inputs: problem, a problem 

 Eval-Fn, an evaluation function 

 

   Queuing-Fn – a function that orders nodes by EVAL-FN 

   return GENERAL-SEARCH (problem, Queuing-Fn) 

An implementation of best-first search using the general search 

algorithm. 

Usually, knowledge of the problem is incorporated in an evaluation 

function that describes the desirability of expanding the particular node. 

 

If we really knew the desirability, it would not be a search at all.  So, 

we should really call it “seemingly best-first search” to be pedantic 

f(n) 

Greedy Search 

function GREEDY-SEARCH (problem) returns a solution or failure 

   return BEST-FIRST-SEARCH (problem, h) 

h(n) = estimated cost of the cheapest path from the state at node n to a goal state 

Not Optimal 

Incomplete 

O(bm) time 

O(bm) space 
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Beam Search 

Use f(n) = h(n)  but |nodes|  K 

 

• Not complete 

• Not optimal 

A* Search 

function A*-SEARCH (problem) returns a solution or failure 

   return BEST-FIRST-SEARCH (problem, g+h) 

f(n) = estimated cost of the cheapest solution through n 

       = g(n) + h(n) 

f=291+380 

=671 

f=291+380 

=671 
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A* Search… 

In a minimization problem, an admissible heuristic  h(n) 

never overestimates the real value 

(In a maximization problem, h(n) is admissible if it never 

underestimates) 

 

Best-first search using f(n) = g(n) + h(n) and an admissible 

h(n) is known as A* search 

 

A* tree search is complete & optimal 

Completeness of A* 

• Because A* expands nodes in order of increasing f, it must 

eventually expand to reach a goal state.  This is true unless 

there are infinitely many nodes with f(n)  f* 

 

• How could this happen? 
– There is a node with an infinity branching factor 

– There is a path with finite path cost but an infinite number of nodes on it 

 

• So, A* is complete on graphs with a finite branching factor 

provided there is some positive constant  such that every 

operator costs at least  
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Monotonicity of a heuristic 

Map of Romania showing contours at f = 380, f = 400 and f = 420, with Arad as the start state.  

Nodes inside a given contour have f-costs lower than the contour value. 

With a monotonic heuristic, we can interpret A* as searching through contours: 

• h(n) is monotonic (aka. consistent) if, for every node n and every child n’ of n generated by any action 

a, the estimated cost of reaching the goal from n is no greater than the step cost of getting to n’ plus the 

estimated cost of reaching the goal from n’: h(n) ≤ c(n,a,n’) +h(n’).  

• Monotonicity implies that f(n) (which equals g(n)+h(n)) never decreases along a path from the root.  

• Monotonic => admissible 

• Advanced topic: “A* Search with Inconsistent Heuristics” in Proceedings of the International Joint 

Conference on Artificial Intelligence (IJCAI), 2009, provides techniques for making non-monotonic 

heuristics monotonic 

• A* expands all nodes n with f(n) < f*, and may expand some 

nodes right on the “goal contour” (f(n) = f*), before selecting 

a goal node. 

 

• With a monotonic heuristic, even A* graph search (i.e., 

search that deletes later-created duplicates) is optimal. 
– Another option, which requires only admissibility – not monotonicity 

– is to have the duplicate detector always keep the best (rather than 

the first) of the duplicates. 

 

• A* tree search doesn’t do detection or removal of duplicates 

 

Monotonicity of a heuristic… 
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Proof of optimality of A* tree search 

Let G be an optimal goal state, and f(G) = f* = g(G). 

Let G2 be a suboptimal goal state, i.e., f(G2) = g(G2) > f*. 

Suppose for contradiction that A* has selected G2 from the queue. (This 

would terminate A* with a suboptimal solution.) 

 

Let n be a node that is currently a leaf node on an optimal path to G. 

 
Situation at the point where a sub-optimal goal state G2 is about to be picked from the queue 

Because h is admissible, f*  f(n).   

 

If n is not chosen for expansion over G2, we must have f(n)  f(G2). 

So, f*  f(G2).  Because h(G2)=0, we have f*  g(G2), contradiction. 

Assumes h is admissible, but does not assume h is monotonic 

Complexity of A* 

• Generally O(bd) time and space. 

 

• Sub-exponential growth when |h(n) - h*(n)|  O(log h*(n)) 

• Unfortunately, for most practical heuristics, the error 

is at least proportional to the path cost 
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• A* with a monotonic heuristic is optimally efficient for any 

given h-function among algorithms that extend search paths 

from the root. I.e., no other optimal algorithm is guaranteed 

to expand fewer nodes (except perhaps on the goal contour 

where f(n)=f*) (for a given search formulation). 
– With a non-monotonic admissible heuristic, some nodes can be 

expanded many times, causing the search to do O(2N) node 

expansions, where N is the number of nodes expanded 

 

• Intuition: any algorithm that does not expand all nodes in the 

contours between the root and the goal contour runs the risk 

of missing the optimal solution. 

A* is optimally efficient 

Heuristics (h(n)) for A* 

5 

6 

7 

4 

1 

3 

8 

2 

1 

8 

7 6 

2 3 

4 

5 

Start state Goal state 

A typical instance of the 8-puzzle 

h1: #tiles in wrong position 

h2: sum of Manhattan distances of the tiles from their goal positions 

h2 dominates h1:   n,  h2(n)  h1(n) 

Heuristics? 
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Heuristics (h(n)) for A* … 

Always, if a heuristic h2 dominates h1, then A* using h2 will never expand 

more nodes than A* using h1 (except possibly for some nodes with f(n)=f*).  

<= A* expands all nodes with f(n) < f* 

Comparison of the search costs and effective branching factors for the ITERATIVE-

DEPENING-SEARCH and A* algorithms with h1, h2.  Data are averaged over 100 

instances of the 8-puzzle, for various solution lengths. 

Inventing heuristic functions h(n) 
Cost of exact solution to a relaxed problem is often a good heuristic for original problem. 

Relaxed problem(s) can be generated automatically from the problem description by 

dropping or relaxing constraints. 

Most common example in operations research: relaxing all integrality constraints and using 

linear programming to get an optimistic h-value.   

 

What if no dominant heuristic is found? 

   h(n) = max [ h1(n), … hm(n) ] 

   h(n) is still admissible & dominates the component heuristics 

 

Use probabilistic info from statistical experiments: “If h(n)=14, h*(n)=18”. 

 Gives up optimality, but does less search 

 

Pick features & use machine learning to determine their contribution to h. 

 

Use full breath-first search as a heuristic? 

search 

time 
complexity of computing h(n) 
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Memory-bounded search algorithms 

Iterative Deepening A* (IDA*)  
function IDA*(problem) returns a solution sequence 

   inputs: problem, a problem 

   static: f-limit, the current f-COST limit 

              root, a node 
 

   root  MAKE-NODE(INITIAL-STATE[problem]) 

   f-limit  f-COST(root) 

   loop do 

          solution, f-limit  DFS-CONTOUR(root,f-limit) 

          if solution is non-null then return solution 

          if f-limit =  then return failure; end 
 

function DFS-CONTOUR(node,f-limit) returns a solution sequence and a new f-COST limit 

   inputs: node, a node 

                f-limit, the current f-COST limit 

   static: next-f, the f-COST limit for the next contour, initially  
 

   if f-COST[node] > f-limit then return null, f-COST[node] 

   if GOAL-TEST[problem](STATE[node]) then return node, f-limit 

   for each node s in SUCCESSOR(node) do 

        solution, new-f  DFS-CONTOUR(s,f-limit) 

        if solution is non-null then return solution, f-limit 

        next-f  MIN(next-f, new-f); end 

   return null, next-f 
f-COST[node] = g[node] + h[node] 

 

IDA* … 

Complete & optimal under same conditions as A*. 

Linear space. Same O( ) time complexity as A*.  

 

If #nodes grows exponentially, then asymptotically 

optimal space. 
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IDA* … 

Effective e.g. in 8-puzzle where f typically only increases 2-3 

times  2-3 iterations. 

 

Last iteration ~ A* 

 

Ineffective in, e.g., TSP  where f increases continuously  

 each new iteration only includes one new node. 

• If A* expands N nodes, IDA* expands O(N2) nodes 

• Fixed increment   ~1/ iterations 

• Obtains -optimal solution if terminated once first 

solution is found 

• Obtains an optimal solution if search of the current 

contour is completed 

A* vs. IDA* 

Map of Romania showing contours at f = 380, f = 400 and f = 420, with Arad as the start 

sate. Nodes inside a given contour have f-costs lower than the contour value. 
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Memory-bounded search algorithms 

• IDA* 1985 

• Recursive best-first search 1991 

• Memory-bounded A* (MA*) 1989 

• Simple memory-bounded A* (SMA*) 1992 … }use “too little” memory 

 

Simple Memory-bounded A* (SMA*) 

24+0=24 

A 

B G 

C D 

E F 

H 

J 

I 

K 

0+12=12 

10+5=15 

20+5=25 

30+5=35 

20+0=20 

30+0=30 

8+5=13 

16+2=18 

24+0=24 24+5=29 

10 8 

10 10 

10 10 

8 16 

8 8 

A 
12 

A 

B 

12 

15 

A 

B G 

13 

15 13 
H 

13 

 

A 

G 

18 

13(15) 

A 

G 

24() 

I 

15(15) 

24 

A 

B G 

15 

15 24 
 

A 

B 

C 

15(24) 

15 

25 

f = g+h 

A 

B 

D 

8 

20 

20(24) 

20() 

Progress of SMA* (with enough memory to store just 3 nodes).   

Each node is labeled with its current f-cost.   

Values in parentheses show the value of the best forgotten descendant. 

Optimal & complete if enough memory 

Can be made to signal when the best solution found might not be optimal (e.g., if J=19) 

 = goal 

Search space 
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D* Motion Planner 

(Dynamic A* RePlanner) 
 

 

D* Lite 

• an incremental version of A* 

• for navigating in unknown terrain 

It implements the same behavior as Stentz’ Focussed Dynamic 

A* but is algorithmically different. 

n.h.reyes@massey.ac.nz 
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How to search efficiently using 

heuristic to guide the search 

How to search efficiently by 

using re-using information 

from previous search results 

Incremental search + heuristic search 

 

 

• Stentz 1995 

• Clever heuristic method that achieves a speedup of one to 

two orders of magnitudes over repeated A* searches 

• The improvement is achieved by modifying previous search 

results locally 

• Extensively used on real robots, including outdoor high 

mobility multi-wheeled vehicle (HMMWV) 

• Integrated into Mars Rover prototypes and tactical mobile 

robot prototypes for urban reconnaissance 

Focussed Dynamic A* (D*) 
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• D* Lite implements the same navigation strategy as D*, but 

is algorithmically different 

• Substantially shorter than D* 

• Uses only one tie-breaking criterion when comparing 

priorities (simplified maintenance) 

• No nested if statements with complex conditions 

• Simplifies the analysis of program flow 

• Easier to extend 

• At least as efficient as D* 

D* Lite vs. D* 

 

 

Previously, we learned LPA* 

 

original eight-connected gridworld 

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge 

costs of a graph change. 

 



41 

Path Planning 

 

original eight-connected gridworld 

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge 

costs of a graph change. 

 

Path Planning 

 

changed eight-connected gridworld 

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge 

costs of a graph change. 
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Path Planning 

 

changed eight-connected gridworld 

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge 

costs of a graph change. 

 

LPA* 

• LPA* is an incremental version of A* that applies to the 

same finite path-planning problems as A*.  

• It shares with A* the fact that it uses non-negative and 

consistent heuristics h(s) that approximate the goal 

distances of the vertices s to focus its search.  

• Consistent heuristics obey the triangle inequality: 

–  h(sgoal) = 0  

– h(s)  ≤ c(s, s’) + h(s’);  for all vertices s ∈ S and  

–  s’ ∈ succ(s) with s ≠ sgoal. 
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D* Lite 

 

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge 

costs of a graph change. 

D* Lite repeatedly determines shortest paths between the current 

vertex Scurrent of the robot and Sgoal as the edge costs of a graph 

change, while the robot moves towards Sgoal. 

 

D* Lite 

 

LPA* repeatedly determines shortest paths between Sstart and Sgoal as the edge 

costs of a graph change. 

D* Lite repeatedly determines shortest paths between the current 

vertex Scurrent of the robot and Sgoal as the edge costs of a graph 

change, while the robot moves towards Sgoal. 

D* Lite is suitable for solving goal-directed navigation problems 

in unknown terrains. 
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Autonomy Has Limits 

 


