
6.1 2D and 3D feature-based alignment 275

y

x

similarity

Euclidean affine

projective

translation

Figure 6.2 Basic set of 2D planar transformations

Once we have extracted features from images, the next stage in many vision algorithms is
to match these features across different images (Section 4.1.3). An important component of
this matching is to verify whether the set of matching features is geometrically consistent,
e.g., whether the feature displacements can be described by a simple 2D or 3D geometric
transformation. The computed motions can then be used in other applications such as image
stitching (Chapter 9) or augmented reality (Section 6.2.3).

In this chapter, we look at the topic of geometric image registration, i.e., the computation
of 2D and 3D transformations that map features in one image to another (Section 6.1). One
special case of this problem is pose estimation, which is determining a camera’s position
relative to a known 3D object or scene (Section 6.2). Another case is the computation of a
camera’s intrinsic calibration, which consists of the internal parameters such as focal length
and radial distortion (Section 6.3). In Chapter 7, we look at the related problems of how
to estimate 3D point structure from 2D matches (triangulation) and how to simultaneously
estimate 3D geometry and camera motion (structure from motion).

6.1 2D and 3D feature-based alignment

Feature-based alignment is the problem of estimating the motion between two or more sets
of matched 2D or 3D points. In this section, we restrict ourselves to global parametric trans-
formations, such as those described in Section 2.1.2 and shown in Table 2.1 and Figure 6.2,
or higher order transformation for curved surfaces (Shashua and Toelg 1997; Can, Stewart,
Roysam et al. 2002). Applications to non-rigid or elastic deformations (Bookstein 1989;
Szeliski and Lavallée 1996; Torresani, Hertzmann, and Bregler 2008) are examined in Sec-
tions 8.3 and 12.6.4.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(xi, x
′
i)} and a planar parametric transformation1 of

the form

x′ = f(x; p), (6.1)

1 For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

uqssing7
Highlight

uqssing7
Highlight



276 6 Feature-based alignment

Transform Matrix Parameters p Jacobian J

translation

[
1 0 tx
0 1 ty

]
(tx, ty)

[
1 0
0 1

]

Euclidean

[
cθ −sθ tx
sθ cθ ty

]
(tx, ty, θ)

[
1 0 −sθx − cθy

0 1 cθx − sθy

]

similarity

[
1 + a −b tx

b 1 + a ty

]
(tx, ty, a, b)

[
1 0 x −y

0 1 y x

]

affine

[
1 + a00 a01 tx

a10 1 + a11 ty

]
(tx, ty, a00, a01, a10, a11)

[
1 0 x y 0 0
0 1 0 0 x y

]

projective

⎡
⎣ 1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

⎤
⎦

(h00, h01, . . . , h21) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations x′ = f(x;p) shown in Table 2.1, where we have
re-parameterized the motions so that they are identity for p = 0.

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

ELS =
∑

i

‖ri‖2 =
∑

i

‖f(xi; p) − x′
i‖2, (6.2)

where

ri = f(xi;p) − x′
i = x̂′

i − x̃′
i (6.3)

is the residual between the measured location x̂′
i and its corresponding current predicted

location x̃′
i = f(xi; p). (See Appendix A.2 for more on least squares and Appendix B.2 for

a statistical justification.)
Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,

similarity, and affine, have a linear relationship between the amount of motion Δx = x′ −x

and the unknown parameters p,

Δx = x′ − x = J(x)p, (6.4)

where J = ∂f/∂p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

ELLS =
∑

i

‖J(xi)p − Δxi‖2 (6.5)

= pT

[∑
i

JT (xi)J(xi)

]
p − 2pT

[∑
i

JT (xi)Δxi

]
+
∑

i

‖Δxi‖2 (6.6)

= pT Ap − 2pT b + c. (6.7)

uqssing7
Highlight



6.1 2D and 3D feature-based alignment 277

The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations2

Ap = b, (6.8)

where
A =

∑
i

JT (xi)J(xi) (6.9)

is called the Hessian and b =
∑

i JT (xi)Δxi. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature
points are matched with the same accuracy. This is often not the case, since certain points
may fall into more textured regions than others. If we associate a scalar variance estimate σ2

i

with each correspondence, we can minimize the weighted least squares problem instead,3

EWLS =
∑

i

σ−2
i ‖ri‖2. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian Ai (8.55) with the per-pixel noise covariance
σ2

n (8.44). Weighting each squared residual by its inverse covariance Σ−1
i = σ−2

n Ai (which
is called the information matrix), we obtain

ECWLS =
∑

i

‖ri‖2
Σ−1

i

=
∑

i

rT
i Σ−1

i ri =
∑

i

σ−2
n rT

i Airi. (6.11)

6.1.2 Application: Panography

One of the simplest (and most fun) applications of image alignment is a special form of image
stitching called panography. In a panograph, images are translated and optionally rotated and
scaled before being blended with simple averaging (Figure 6.3). This process mimics the
photographic collages created by artist David Hockney, although his compositions use an
opaque overlay model, being created out of regular photographs.

In most of the examples seen on the Web, the images are aligned by hand for best artistic
effect.4 However, it is also possible to use feature matching and alignment techniques to
perform the registration automatically (Nomura, Zhang, and Nayar 2007; Zelnik-Manor and
Perona 2007).

Consider a simple translational model. We want all the corresponding features in different
images to line up as best as possible. Let tj be the location of the jth image coordinate frame
in the global composite frame and xij be the location of the ith matched feature in the jth
image. In order to align the images, we wish to minimize the least squares error

EPLS =
∑
ij

‖(tj + xij) − xi‖2, (6.12)

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J(xi)p =

Δxi instead of the normal equations (Björck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.
4 http://www.flickr.com/groups/panography/.

http://www.flickr.com/groups/panography/


278 6 Feature-based alignment

Figure 6.3 A simple panograph consisting of three images automatically aligned with a translational model and
then averaged together.

where xi is the consensus (average) position of feature i in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations tj and xi). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (tx, ty) and the rotation angle θ, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of θ. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update Δp to the
current parameter estimate p by minimizing

ENLS(Δp) =
∑

i

‖f(xi;p + Δp) − x′
i‖2 (6.13)

≈
∑

i

‖J(xi; p)Δp − ri‖2 (6.14)

uqssing7
Highlight



6.1 2D and 3D feature-based alignment 279

= ΔpT

[∑
i

JT J

]
Δp − 2ΔpT

[∑
i

JT ri

]
+
∑

i

‖ri‖2 (6.15)

= ΔpT AΔp − 2ΔpT b + c, (6.16)

where the “Hessian”5 A is the same as Equation (6.9) and the right hand side vector

b =
∑

i

JT (xi)ri (6.17)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the pa-
rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for Δp using

(A + λdiag(A))Δp = b, (6.18)

and update the parameter vector p ← p + Δp accordingly. The parameter λ is an addi-
tional damping parameter used to ensure that the system takes a “downhill” step in energy
(squared error) and is an essential component of the Levenberg–Marquardt algorithm (de-
scribed in more detail in Appendix A.3). In many applications, it can be set to 0 if the system
is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3×3 set of normal equations
in the unknowns (δtx, δty, δθ). An initial guess for (tx, ty, θ) can be obtained by fitting a
four-parameter similarity transform in (tx, ty, c, s) and then setting θ = tan−1(s/c). An
alternative approach is to estimate the translation parameters using the centroids of the 2D
points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching applica-
tions (Chapter 9). These equations can be re-written from (2.21) in their new parametric form
as

x′ =
(1 + h00)x + h01y + h02

h20x + h21y + 1
and y′ =

h10x + (1 + h11)y + h12

h20x + h21y + 1
. (6.19)

The Jacobian is therefore

J =
∂f

∂p
=

1
D

[
x y 1 0 0 0 −x′x −x′y
0 0 0 x y 1 −y′x −y′y

]
, (6.20)

where D = h20x + h21y + 1 is the denominator in (6.19), which depends on the current
parameter settings (as do x′ and y′).

An initial guess for the eight unknowns {h00, h01, . . . , h21} can be obtained by multiply-
ing both sides of the equations in (6.19) through by the denominator, which yields the linear
set of equations,

[
x̂′ − x

ŷ′ − y

]
=
[

x y 1 0 0 0 −x̂′x −x̂′y
0 0 0 x y 1 −ŷ′x −ŷ′y

]⎡⎢⎣
h00

...
h21

⎤
⎥⎦ . (6.21)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(xi; p + Δp).



280 6 Feature-based alignment

However, this is not optimal from a statistical point of view, since the denominator D, which
was used to multiply each equation, can vary quite a bit from point to point.6

One way to compensate for this is to reweight each equation by the inverse of the current
estimate of the denominator, D,

1
D

[
x̂′ − x

ŷ′ − y

]
=

1
D

[
x y 1 0 0 0 −x̂′x −x̂′y
0 0 0 x y 1 −ŷ′x −ŷ′y

]⎡⎢⎣
h00

...
h21

⎤
⎥⎦ . (6.22)

While this may at first seem to be the exact same set of equations as (6.21), because least
squares is being used to solve the over-determined set of equations, the weightings do matter
and produce a different set of normal equations that performs better in practice.

The most principled way to do the estimation, however, is to directly minimize the squared
residual equations (6.13) using the Gauss–Newton approximation, i.e., performing a first-
order Taylor series expansion in p, as shown in (6.14), which yields the set of equations

[
x̂′ − x̃′

ŷ′ − ỹ′

]
=

1
D

[
x y 1 0 0 0 −x̃′x −x̃′y
0 0 0 x y 1 −ỹ′x −ỹ′y

]⎡⎢⎣
Δh00

...
Δh21

⎤
⎥⎦ . (6.23)

While these look similar to (6.22), they differ in two important respects. First, the left hand
side consists of unweighted prediction errors rather than point displacements and the solution
vector is a perturbation to the parameter vector p. Second, the quantities inside J involve
predicted feature locations (x̃′, ỹ′) instead of sensed feature locations (x̂′, ŷ′). Both of these
differences are subtle and yet they lead to an algorithm that, when combined with proper
checking for downhill steps (as in the Levenberg–Marquardt algorithm), will converge to a
local minimum. Note that iterating Equations (6.22) is not guaranteed to converge, since it is
not minimizing a well-defined energy function.

Equation (6.23) is analogous to the additive algorithm for direct intensity-based regis-
tration (Section 8.2), since the change to the full transformation is being computed. If we
prepend an incremental homography to the current homography instead, i.e., we use a com-
positional algorithm (described in Section 8.2), we get D = 1 (since p = 0) and the above
formula simplifies to

[
x̂′ − x

ŷ′ − y

]
=
[

x y 1 0 0 0 −x2 −xy

0 0 0 x y 1 −xy −y2

]⎡⎢⎣
Δh00

...
Δh21

⎤
⎥⎦ , (6.24)

where we have replaced (x̃′, ỹ′) with (x, y) for conciseness. (Notice how this results in the
same Jacobian as (8.63).)

6 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct
linear transform, but that term is more commonly associated with pose estimation (Section 6.2). Note also that our
definition of the hij parameters differs from that used in their book, since we define hii to be the difference from
unity and we do not leave h22 as a free parameter, which means that we cannot handle certain extreme homographies.



6.1 2D and 3D feature-based alignment 281

6.1.4 Robust least squares and RANSAC

While regular least squares is the method of choice for measurements where the noise follows
a normal (Gaussian) distribution, more robust versions of least squares are required when
there are outliers among the correspondences (as there almost always are). In this case, it is
preferable to use an M-estimator (Huber 1981; Hampel, Ronchetti, Rousseeuw et al. 1986;
Black and Rangarajan 1996; Stewart 1999), which involves applying a robust penalty function
ρ(r) to the residuals

ERLS(Δp) =
∑

i

ρ(‖ri‖) (6.25)

instead of squaring them.
We can take the derivative of this function with respect to p and set it to 0,

∑
i

ψ(‖ri‖)∂‖ri‖
∂p

=
∑

i

ψ(‖ri‖)
‖ri‖ rT

i

∂ri

∂p
= 0, (6.26)

where ψ(r) = ρ′(r) is the derivative of ρ and is called the influence function. If we introduce
a weight function, w(r) = Ψ(r)/r, we observe that finding the stationary point of (6.25) using
(6.26) is equivalent to minimizing the iteratively reweighted least squares (IRLS) problem

EIRLS =
∑

i

w(‖ri‖)‖ri‖2, (6.27)

where the w(‖ri‖) play the same local weighting role as σ−2
i in (6.10). The IRLS algo-

rithm alternates between computing the influence functions w(‖ri‖) and solving the result-
ing weighted least squares problem (with fixed w values). Other incremental robust least
squares algorithms can be found in the work of Sawhney and Ayer (1996); Black and Anan-
dan (1996); Black and Rangarajan (1996); Baker, Gross, Ishikawa et al. (2003) and textbooks
and tutorials on robust statistics (Huber 1981; Hampel, Ronchetti, Rousseeuw et al. 1986;
Rousseeuw and Leroy 1987; Stewart 1999).

While M-estimators can definitely help reduce the influence of outliers, in some cases,
starting with too many outliers will prevent IRLS (or other gradient descent algorithms) from
converging to the global optimum. A better approach is often to find a starting set of inlier
correspondences, i.e., points that are consistent with a dominant motion estimate.7

Two widely used approaches to this problem are called RANdom SAmple Consensus, or
RANSAC for short (Fischler and Bolles 1981), and least median of squares (LMS) (Rousseeuw
1984). Both techniques start by selecting (at random) a subset of k correspondences, which is
then used to compute an initial estimate for p. The residuals of the full set of correspondences
are then computed as

ri = x̃′
i(xi; p) − x̂′

i, (6.28)

where x̃′
i are the estimated (mapped) locations and x̂′

i are the sensed (detected) feature point
locations.

The RANSAC technique then counts the number of inliers that are within ε of their pre-
dicted location, i.e., whose ‖ri‖ ≤ ε. (The ε value is application dependent but is often
around 1–3 pixels.) Least median of squares finds the median value of the ‖ri‖2 values. The

7 For pixel-based alignment methods (Section 8.1.1), hierarchical (coarse-to-fine) techniques are often used to
lock onto the dominant motion in a scene.



282 6 Feature-based alignment

k p S

3 0.5 35
6 0.6 97
6 0.5 293

Table 6.2 Number of trials S to attain a 99% probability of success (Stewart 1999).

random selection process is repeated S times and the sample set with the largest number of
inliers (or with the smallest median residual) is kept as the final solution. Either the initial
parameter guess p or the full set of computed inliers is then passed on to the next data fitting
stage.

When the number of measurements is quite large, it may be preferable to only score a
subset of the measurements in an initial round that selects the most plausible hypotheses for
additional scoring and selection. This modification of RANSAC, which can significantly
speed up its performance, is called Preemptive RANSAC (Nistér 2003). In another variant
on RANSAC called PROSAC (PROgressive SAmple Consensus), random samples are ini-
tially added from the most “confident” matches, thereby speeding up the process of finding a
(statistically) likely good set of inliers (Chum and Matas 2005).

To ensure that the random sampling has a good chance of finding a true set of inliers, a
sufficient number of trials S must be tried. Let p be the probability that any given correspon-
dence is valid and P be the total probability of success after S trials. The likelihood in one
trial that all k random samples are inliers is pk. Therefore, the likelihood that S such trials
will all fail is

1 − P = (1 − pk)S (6.29)

and the required minimum number of trials is

S =
log(1 − P )
log(1 − pk)

. (6.30)

Stewart (1999) gives examples of the required number of trials S to attain a 99% proba-
bility of success. As you can see from Table 6.2, the number of trials grows quickly with the
number of sample points used. This provides a strong incentive to use the minimum number
of sample points k possible for any given trial, which is how RANSAC is normally used in
practice.

Uncertainty modeling

In addition to robustly computing a good alignment, some applications require the compu-
tation of uncertainty (see Appendix B.6). For linear problems, this estimate can be obtained
by inverting the Hessian matrix (6.9) and multiplying it by the feature position noise (if these
have not already been used to weight the individual measurements, as in Equations (6.10)
and 6.11)). In statistics, the Hessian, which is the inverse covariance, is sometimes called the
(Fisher) information matrix (Appendix B.1.1).

When the problem involves non-linear least squares, the inverse of the Hessian matrix
provides the Cramer–Rao lower bound on the covariance matrix, i.e., it provides the minimum



6.1 2D and 3D feature-based alignment 283

amount of covariance in a given solution, which can actually have a wider spread (“longer
tails”) if the energy flattens out away from the local minimum where the optimal solution is
found.

6.1.5 3D alignment

Instead of aligning 2D sets of image features, many computer vision applications require the
alignment of 3D points. In the case where the 3D transformations are linear in the motion
parameters, e.g., for translation, similarity, and affine, regular least squares (6.5) can be used.

The case of rigid (Euclidean) motion,

ER3D =
∑

i

‖x′
i − Rxi − t‖2, (6.31)

which arises more frequently and is often called the absolute orientation problem (Horn
1987), requires slightly different techniques. If only scalar weightings are being used (as
opposed to full 3D per-point anisotropic covariance estimates), the weighted centroids of the
two point clouds c and c′ can be used to estimate the translation t = c′ − Rc.8 We are then
left with the problem of estimating the rotation between two sets of points {x̂i = xi − c}
and {x̂′

i = x′
i − c′} that are both centered at the origin.

One commonly used technique is called the orthogonal Procrustes algorithm (Golub and
Van Loan 1996, p. 601) and involves computing the singular value decomposition (SVD) of
the 3 × 3 correlation matrix

C =
∑

i

x̂′x̂T = UΣV T . (6.32)

The rotation matrix is then obtained as R = UV T . (Verify this for yourself when x̂′ = Rx̂.)
Another technique is the absolute orientation algorithm (Horn 1987) for estimating the

unit quaternion corresponding to the rotation matrix R, which involves forming a 4×4 matrix
from the entries in C and then finding the eigenvector associated with its largest positive
eigenvalue.

Lorusso, Eggert, and Fisher (1995) experimentally compare these two techniques to two
additional techniques proposed in the literature, but find that the difference in accuracy is
negligible (well below the effects of measurement noise).

In situations where these closed-form algorithms are not applicable, e.g., when full 3D
covariances are being used or when the 3D alignment is part of some larger optimization, the
incremental rotation update introduced in Section 2.1.4 (2.35–2.36), which is parameterized
by an instantaneous rotation vector ω, can be used (See Section 9.1.3 for an application to
image stitching.)

In some situations, e.g., when merging range data maps, the correspondence between
data points is not known a priori. In this case, iterative algorithms that start by matching
nearby points and then update the most likely correspondence can be used (Besl and McKay
1992; Zhang 1994; Szeliski and Lavallée 1996; Gold, Rangarajan, Lu et al. 1998; David,
DeMenthon, Duraiswami et al. 2004; Li and Hartley 2007; Enqvist, Josephson, and Kahl
2009). These techniques are discussed in more detail in Section 12.2.1.

8 When full covariances are used, they are transformed by the rotation and so a closed-form solution for transla-
tion is not possible.

uqssing7
Highlight

uqssing7
Highlight



284 6 Feature-based alignment

6.2 Pose estimation

A particular instance of feature-based alignment, which occurs very often, is estimating an
object’s 3D pose from a set of 2D point projections. This pose estimation problem is also
known as extrinsic calibration, as opposed to the intrinsic calibration of internal camera pa-
rameters such as focal length, which we discuss in Section 6.3. The problem of recovering
pose from three correspondences, which is the minimal amount of information necessary,
is known as the perspective-3-point-problem (P3P), with extensions to larger numbers of
points collectively known as PnP (Haralick, Lee, Ottenberg et al. 1994; Quan and Lan 1999;
Moreno-Noguer, Lepetit, and Fua 2007).

In this section, we look at some of the techniques that have been developed to solve such
problems, starting with the direct linear transform (DLT), which recovers a 3×4 camera ma-
trix, followed by other “linear” algorithms, and then looking at statistically optimal iterative
algorithms.

6.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of linear equations analo-
gous to those used for 2D motion estimation (6.19) from the camera matrix form of perspec-
tive projection (2.55–2.56),

xi =
p00Xi + p01Yi + p02Zi + p03

p20Xi + p21Yi + p22Zi + p23
(6.33)

yi =
p10Xi + p11Yi + p12Zi + p13

p20Xi + p21Yi + p22Zi + p23
, (6.34)

where (xi, yi) are the measured 2D feature locations and (Xi, Yi, Zi) are the known 3D
feature locations (Figure 6.4). As with (6.21), this system of equations can be solved in a
linear fashion for the unknowns in the camera matrix P by multiplying the denominator on
both sides of the equation.9 The resulting algorithm is called the direct linear transform
(DLT) and is commonly attributed to Sutherland (1974). (For a more in-depth discussion,
refer to the work of Hartley and Zisserman (2004).) In order to compute the 12 (or 11)
unknowns in P , at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (6.21–6.23), more accurate results for the
entries in P can be obtained by directly minimizing the set of Equations (6.33–6.34) using
non-linear least squares with a small number of iterations.

Once the entries in P have been recovered, it is possible to recover both the intrinsic
calibration matrix K and the rigid transformation (R, t) by observing from Equation (2.56)
that

P = K[R|t]. (6.35)

Since K is by convention upper-triangular (see the discussion in Section 2.1.5), both K and
R can be obtained from the front 3 × 3 sub-matrix of P using RQ factorization (Golub and
Van Loan 1996).10

9 Because P is unknown up to a scale, we can either fix one of the entries, e.g., p23 = 1, or find the smallest
singular vector of the set of linear equations.

10 Note the unfortunate clash of terminologies: In matrix algebra textbooks, R represents an upper-triangular
matrix; in computer vision, R is an orthogonal rotation.

uqssing7
Highlight



6.2 Pose estimation 285

pi = (Xi,Yi,Zi,Wi)

xi pj

dij
di

djxj
ij

c

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles and distances between
pairs of points.

In most applications, however, we have some prior knowledge about the intrinsic cali-
bration matrix K, e.g., that the pixels are square, the skew is very small, and the optical
center is near the center of the image (2.57–2.59). Such constraints can be incorporated into
a non-linear minimization of the parameters in K and (R, t), as described in Section 6.2.2.

In the case where the camera is already calibrated, i.e., the matrix K is known (Sec-
tion 6.3), we can perform pose estimation using as few as three points (Fischler and Bolles
1981; Haralick, Lee, Ottenberg et al. 1994; Quan and Lan 1999). The basic observation that
these linear PnP (perspective n-point) algorithms employ is that the visual angle between any
pair of 2D points x̂i and x̂j must be the same as the angle between their corresponding 3D
points pi and pj (Figure 6.4).

Given a set of corresponding 2D and 3D points {(x̂i, pi)}, where the x̂i are unit directions
obtained by transforming 2D pixel measurements xi to unit norm 3D directions x̂i through
the inverse calibration matrix K,

x̂i = N (K−1xi) = K−1xi/‖K−1xi‖, (6.36)

the unknowns are the distances di from the camera origin c to the 3D points pi, where

pi = dix̂i + c (6.37)

(Figure 6.4). The cosine law for triangle Δ(c, pi, pj) gives us

fij(di, dj) = d2
i + d2

j − 2didjcij − d2
ij = 0, (6.38)

where
cij = cos θij = x̂i · x̂j (6.39)

and
d2

ij = ‖pi − pj‖2. (6.40)

We can take any triplet of constraints (fij , fik, fjk) and eliminate the dj and dk using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d2

i ,

gijk(d2
i ) = a4d

8
i + a3d

6
i + a2d

4
i + a1d

2
i + a0 = 0. (6.41)

Given five or more correspondences, we can generate (n−1)(n−2)
2 triplets to obtain a linear

estimate (using SVD) for the values of (d8
i , d

6
i , d

4
i , d

2
i ) (Quan and Lan 1999). Estimates for

uqssing7
Highlight



286 6 Feature-based alignment

d2
i can computed as ratios of successive d2n+2

i /d2n
i estimates and these can be averaged to

obtain a final estimate of d2
i (and hence di).

Once the individual estimates of the di distances have been computed, we can generate
a 3D structure consisting of the scaled point directions dix̂i, which can then be aligned with
the 3D point cloud {pi} using absolute orientation (Section 6.1.5) to obtained the desired
pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,
which use fewer points but require more complicated algebraic manipulations. The paper by
Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a
lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer
from bas-relief ambiguities (e.g., depth reversals) (Section 7.4.3), it is often preferable to use
the linear six-point algorithm to guess an initial pose and then optimize this estimate using
the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-
jection model and then iteratively refining this initial estimate using a more accurate perspec-
tive projection model (DeMenthon and Davis 1995). The attraction of this model, as stated
in the paper’s title, is that it can be implemented “in 25 lines of [Mathematica] code”.

6.2.2 Iterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or
robust) reprojection error for the 2D points as a function of the unknown pose parameters in
(R, t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992). We can write the projection equations as

xi = f(pi; R, t, K) (6.42)

and iteratively minimize the robustified linearized reprojection errors

ENLP =
∑

i

ρ

(
∂f

∂R
ΔR +

∂f

∂t
Δt +

∂f

∂K
ΔK − ri

)
, (6.43)

where ri = x̃i − x̂i is the current residual vector (2D error in predicted position) and the
partial derivatives are with respect to the unknown pose parameters (rotation, translation, and
optionally calibration). Note that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance
matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non-linear regression prob-
lem can be constructed by re-writing the projection equations as a concatenation of simpler
steps, each of which transforms a 4D homogeneous coordinate pi by a simple transformation
such as translation, rotation, or perspective division (Figure 6.5). The resulting projection
equations can be written as

y(1) = fT(pi; cj) = pi − cj , (6.44)

y(2) = fR(y(1); qj) = R(qj)y(1), (6.45)

y(3) = fP(y(2)) =
y(2)

z(2)
, (6.46)

xi = fC(y(3); k) = K(k) y(3). (6.47)

uqssing7
Highlight

uqssing7
Highlight

uqssing7
Highlight


	Chapter 6 Feature-based alignment
	6.1 2D and 3D feature-based alignment
	6.1.1 2D alignment using least squares
	6.1.2 Application: Panography
	6.1.3 Iterative algorithms
	6.1.4 Robust least squares and RANSAC
	Uncertainty modeling

	6.1.5 3D alignment

	6.2 Pose estimation
	6.2.1 Linear algorithms
	6.2.2 Iterative algorithms
	6.2.3 Application: Augmented reality





