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Welcome to Robotics! 
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Magicarms 

Robotics and Health 
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Change.  The Future! 

Win.  The (DARPA Robotics) Challenge! 
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Robotics & Automation Has Limits Too 

 

Cars: Software/Robots With 4 Wheels 

 

METR 4202: Compendium Page 8 of 467Lecture: 1



9 

So What is a Robot ????? 
 

• A “Smart” Machine … 
 

• A “General Purpose”  (Adaptive) “Smart” Machine… 

Robotics Definition 

• Many, depends on context… 
 
“A robot is a reprogrammable, multifunctional 
manipulator designed to move material, parts, tools, 
or specialized devices through variable programmed 
motions for the performance of a variety of tasks.” 
(Robotics Institute of America) 
 
It is a machine which has some ability to interact 
with physical objects and to be given electronic 
programming to do a specific task or to do a whole 
range of tasks or actions.    
(Wikipedia) 
 
Programmable electro-mechanical systems that adapt 
to identify and leverage a structural characteristic 
of the environment 
(Surya) 
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Types of Robotics Systems 

• Manipulators 
 
 

 
 

 
- Computational 

Kinematics 
- Operational 

Space 
 

• Mobile 
 
 
 
 
 

- Behaviour based 
“Reflexive” 
control rules  

• Adaptive 
 
 
 
 
 

-Probabilistic 
methods 

Enabling Mathematics:                                 

Types of Robotics Systems  Textbooks 

• Manipulators 
 
 

 
 

- Roth 
- Craig 
- S&S 

- Asada & Slotine 
- Tsai 

• Mobile 
 
 
 
 

- Corke 
- Dillman 

- Choset, Thrun, et al. 
- [SLAM] 

 
 
 

• Adaptive 
 
 
 

 
- LaValle 
- Thrun 

- [ [Model] 
Predictive 

Operations ] 
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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 

1 27-Jul Introduction 

2 3-Aug Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Dynamics 
5 24-Aug Robot Sensing: Perception  
6 31-Aug Robot Sensing: Multiple View Geometry 
7 7-Sep Robot Sensing: Feature Detection (as Linear Observers) 
8 14-Sep Probabilistic Robotics: Localization 
9 21-Sep Probabilistic Robotics: SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct State-Space Modelling 
12 19-Oct Shaping the Dynamic Response 
13 26-Oct LQR + Course Review 

 

Assessment 
• Kinematics Lab (12.5%): 

– Proprioception  
– Arm design and operation (with Lego) 

 
• Sensing & Control Lab (25%): 

– Exterioception 
– Camera operation and calibration (with a Kinect) 

 
• Advanced Controls & Robotics Systems Lab (50%): 

– All together! 
 

• Exam  (Open-Book/closed Internet/Friends! -- 12.5%)   
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Lectures 
• Wednesdays from 12:05 – 1:50 pm 

 
 

• Lectures will be posted to the course website  
after the lecture (so please attend) 
– Slides are like dessert – enjoy afterwards! 

 

 
• Please ask questions   

(preferably about the material ) 
 

 

Tutorials & Labs 
• Labs: 

– Thursdays from 3:00 pm – 6:00 pm 
xor Mondays from 2:00 pm – 5:00 pm 

– in the Axon Learning Lab (47-104) 
– Meeting Weeks 2-9 (not this week!) 
 

• Tutorials: 
– Fridays 11:00 – 11:50 am 

in the Axon Learning Lab (47-104) 
 

– Meeting: Weeks 1-13 (day after tomorrow!) 
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Textbook 

Robotics, Vision and 
Control Fundamental 
Algorithms in MATLAB 

 
By:  
Peter Corke 
 
 
Available online (on 
campus) via SpingerLink 

E-mail & website 

metr4202 @ itee.  

uq . edu . au 

 
http://robotics.itee.uq.edu.au/~metr4202/ 

   
 

Please use metr4202 e-mail for class matters! 
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Course Organization 
 

 

The Point of the Course 
• Introduction to terminology/semantics 

 
• An appreciation of how to frame problems in an 

engineering context 
 

• Modeling and learning to trust the model 
 

• Ability to identify critical details from the problem 
(separate information from trivia) 
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Course Objectives 
1. Be familiar with sensor technologies relevant to robotic systems 
2. Understand homogeneous transformations and be able to apply them to robotic systems, 
3. Understand conventions used in robot kinematics and dynamics 
4. Understand the dynamics of mobile robotic systems and how they are modelled 
5. Understand state-space and its applications to the control of structured systems  

(e.g., manipulator arms) 
6. Have implemented sensing and control algorithms on a practical robotic system 
7. Apply a systematic approach to the design process for robotic system 
8. Understand the practical application of robotic systems in to intelligent mechatronics 

applications (e.g., manufacturing, automobile systems and assembly systems) 
9. Develop the capacity to think creatively and independently about new design problems; 

and, 
10. Undertake independent research and analysis and to think creatively 

about engineering problems. 

 

Grade Descriptors 
Grade Level Descriptor 

Fail  (<50%) Work not of acceptable standard.  Work may fail for any or all of the following reasons: 

unacceptable level of paraphrasing; irrelevance of content; presentation, grammar or structure so 

sloppy it cannot be understood; submitted very late without extension; not meeting the University’s 

values with regards to academic honesty. 

Pass (50-64%) Work of acceptable standard.  Work meets basic requirements in terms of reading and research 

and demonstrates a reasonable understanding of subject matter.  Able to solve relatively simple 

problems involving direct application of particular components of the unit of study. 

Credit (65-74%) Competent work.  Evidence of extensive reading and initiative in research, sound grasp of subject 

matter and appreciation of key issues and context.  Engages critically and creatively with the 

question and attempts an analytical evaluation of material.  Goes beyond solving of simple 

problems to seeing how material in different parts of the unit of study relate to each other by solving 

problems drawing on concepts and ideas from other parts of the unit of study. 

Distinction (75-84%) Work of superior standard.  Work demonstrates initiative in research, complex understanding and 

original analysis of subject matter and its context, both empirical and theoretical; shows critical 

understanding of the principles and values underlying the unit of study. 

High 

Distinction 

(85%+) Work of exceptional standard.  Work demonstrates initiative and ingenuity in research, pointed 

and critical analysis of material, thoroughness of design, and innovative interpretation of evidence.  

Demonstrates a comprehensive understanding of the unit of study material and its relevance in a 

wider context. 
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• ~ 67 % received D or HD 
• Worry about learning, not about marks  [Seriously!] 

 
• Though a “7” might be bit more exclusive this year! 

Last Year’s Grade Statistics 

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Letter Grade

Va
lu

e

 

What I expect from you 

• Lectures: 
– Participate - ask questions 
– Turn up (hence the attendance marks) 
– Take an interest in the material being presented 

• Tutorials: 
– Work on questions before tutorials 
– Use tutorials to clarify and enhance 
– Assignments to be submitted on time 
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Twitter & Tumblr too! 

• https://twitter.com/metr4202 • http://metr4202.tumblr.com/ 

What’s the Magic? 
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Structure! 
 

(And Some Clever 
Mechatronics Design) 

 

Robotics:  Exploiting the hidden structure… 
• Robot working in an “unstructured” environment 

 
 Does not have to be dirty to use “field robotics” 

technology … 
 Robotics is about exploiting the structure … 
 Either by: 

• Putting it in from the design   
(mechanical structure) 

• “Learning” it as the system progresses 
(structure is the data!) 
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First Let’s Review the  
Sense  Control  Act 

Loop! 

Sensing 
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Perception: Vision 

Edges, Segments, Colour, Texture 
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3D Stereo Vision 

Laser Sensors 
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Control 
(Processing) … 
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Environment Understanding 

Honda Asimov Humanoid 
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Act(ion) 

Robot Sniper Training Robots 
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Extending 
Our Reach… 
 
(what’s hard is not what you expect…) 
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Throwing and Catching 

Making Iced Tea 
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People and Robots? 
 

http://www.abc.net.au/radionational/image/4560736-4x3-340x255.jpg 

 

People & Robots: Let Each Do Its Best! 
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Shirt-Folding (30x speed up)… 

Shirt-Folding (1/3 Speed!) 
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Parallel-Parking… 

Parallel Parking… 
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The Project! 
“Robotics: Domino Effect” 

 

Next Week  
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First thing about structure  
 Space 
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Welcome Back to Robotics ! 
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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine 
Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Dynamics 
5 24-Aug Robot Sensing: Perception  
6 31-Aug Robot Sensing: Multiple View Geometry 
7 7-Sep Robot Sensing: Feature Detection (as Linear Observers) 
8 14-Sep Probabilistic Robotics: Localization 
9 21-Sep Probabilistic Robotics: SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct State-Space Modelling 
12 19-Oct Shaping the Dynamic Response 
13 26-Oct LQR + Course Review 

 

Course Organization 
 

Computational Geometry 

Stochastic  
Processes 

(State Space) 
Control 

Systems 

Kinematics 

Vision 

Motion 
Planning 

Machine 
Learning 

Estimation 
(EKF)  

Design 
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Representing Position 
• RVC 

– Ch. 2: Representing Position  
& Orientation  
 

• Kinematics 
– RVC 
– Chapter 7: Robot Arm Kinematics 

Today 

The Project! 
“Robotics: Domino Effect” 
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Today’s Lecture is about: 
Frames & Their Mathematics 

y
pitch

roll

yaw

z

x

• Make one (online): 
– SpnS Template 

 
 
 
 
 

– Peter Corke’s template 

 ¸ !’  ±!’ !’

Z

X Y

http :/ / www.p$t$rcork$.com/ ax$s.pdf

Roboti cs Toolbox for Matl ab

Don’t Confuse a Frame with a Point 
• Points 

– Position Only –  
Doesn’t Encode Orientation 
 
 

 
• Frame 

– Encodes both position  
and orientation 

– Has a “handedness” 
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Kinematics Definition 
• Kinematics: The study of motion in space  

(without regard to the forces which cause it) 
 

• Assume:  
– Points with right-hand Frames 
– Rigid-bodies  in  3D-space  (6-dof) 
– 1-dof joints: Rotary  (R) or Prismatic (P) (5 constraints) 

 
 

 

The ground is also a link 

N links 

M joints 

DOF = 6N-5M  

 If N=M, then DOF=N.   

A 

B 

 

Kinematics 
• Kinematic modelling is one of the most important analytical tools of 

robotics. 
• Used for modelling mechanisms, actuators and sensors 
• Used for on-line control and off-line programming and simulation 
• In mobile robots kinematic models are used for: 

– steering (control, simulation) 
– perception (image formation) 
– sensor head and communication antenna pointing 
– world modelling (maps, object models) 
– terrain following (control feedforward) 
– gait control of legged vehicles 
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Basic Terminology 

point 

Frame 

Coordinate 
System 

y 

x 

origin 

axis 

 

Coordinate System 
• The position and orientation as specified only make sense with respect to 

some coordinate system 

AP 

{A} 

XA 

YA 

ZA 

iB jB 

kB 
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Frames of Reference 
• A frame of reference defines a coordinate system relative 

to some point in space 
• It can be specified by a position and orientation relative to 

other frames 
• The inertial frame is taken to be a point that is assumed to 

be fixed in space 
 

• Two types of motion: 
– Translation 
– Rotation 

 

Translation 
• A motion in which a straight line with in the body keeps 

the same direction during the 
– Rectilinear Translation:  Along straight lines 
– Curvilinear Translation: Along curved lines 

A 

B 

A 

B 

1 

2 
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Rotation  
• The particles forming the rigid body move in parallel 

planes along circles centered around the same fixed axis 
(called the axis of rotation).   

• Points on the axis of rotation have zero velocity and 
acceleration 
 

A
 B

 

A 

B 

A 

B 

A
 B

 

 

Rotation: Representations 
• Orientation are not “Cartesian” 

– Non-commutative 
– Multiple representations 

 
• Some representations: 

– Rotation Matrices: Homegenous Coordinates 
– Euler Angles: 3-sets of rotations in sequence 
– Quaternions: a 4-paramameter representation  

that exploits ½ angle properties 
– Screw-vectors  (from Charles Theorem) : a canonical 

representation, its reciprocal is a “wrench” (forces) 
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Position and Orientation [1] 
• A position vectors specifies the  

location of a point in 3D (Cartesian) space 
 
 
 
 
 
 
 
 
 

• BUT we also concerned with its orientation in 3D space. 
 This is specified as a matrix based on each frame’s unit vectors 

A 

B 

O 

 

Position and Orientation [2] 
• Orientation in 3D space: 
 This is specified as a matrix based on each frame’s unit vectors 
 
 
 
 
 
 
 
• Describes {B} relative to {A} 
  The orientation of frame {B} relative to coordinate frame {A} 
• Written “from {A} to {B}” or “given {A} getting to {B}” 

 
 
 

• Columns are {B} written in {A} 

A 

B 

O 
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Position and Orientation [3] ✯ 
• The rotations can be analysed based on the unit components … 
• That is: the components of the orientation matrix are the unit vectors 

projected onto the unit directions of the reference frame 

 

Position and Orientation [4] 
• Rotation is orthonormal 

 
 
 

• The of a rotation matrix inverse  = the transpose 
 
 

 thus, the rows are {A} written in {B}  
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Position and Orientation [5]: A note on orientations 
 

• Orientations, as defined earlier, are represented by three 
orthonormal vectors 
 

• Only three of these values are unique and we often wish to 
define a particular rotation using three values (it’s easier 
than specifying 9 orthonormal values) 
 

• There isn’t a unique method of specifying the angles that 
define these transformations 

 

Position and Orientation [7] 
• Shortcut Notation: 
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Position and Orientation [8] 
• Rotation Formula about the 3 Principal Axes by θ 
 
X: 
 
 
 

Y: 
 
 
Z: 

 

Euler Angles 
• Minimal representation of orientation (α,β,γ) 
• Represent a rotation about an axis of a moving coordinate 

frame 
        : Moving frame B w/r/t fixed A 

• The location of the axis of each successive rotation 
depends on the previous one! … 

• So, Order Matters  (12 combinations, why?) 
• Often Z-Y-X: 

– α: rotation about the z axis 
– β: rotation about the rotated y axis 
– γ: rotation about the twice rotated x axis 

• Has singularities!  … (e.g., β=±90°) 
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Fixed Angles 
• Represent a rotation about an axis of a fixed coordinate frame. 

 
• Again 12 different orders 

 
• Interestingly: 

3 rotations about 3 axes of a fixed frame define the same orientation as the 
same 3 rotations taken in the opposite order of the moving frame 

 
• For X-Y-Z: 

– ψ: rotation about xA   (sometimes called “yaw”) 

– θ: rotation about yA   (sometimes called “pitch”) 
– φ: rotation about zA  (sometimes called “roll”) 

 

 

Roll – Pitch – Yaw 
• In many Kinematics  

References: 
 

 

• In many Engineering 
Applications: 

 Be careful:   
This name is given to other conventions too! 

y

roll

yaw

pitch

z

x

y
pitch

roll

yaw

z

x
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Euler Angles [1]: X-Y-Z Fixed Angles 
(Roll-Pitch-Yaw) 

• One method of describing the orientation of a Frame {B} is: 
– Start with the frame coincident with a known reference {A}.  Rotate 

{B} first about XA by an angle g, then about YA by an angle b and 
finally about ZA by an angle a. 

 

Euler Angles [2]:  
Z-Y-X Euler Angles 

• Another method of describing the orientation of {B} is: 
– Start with the frame coincident with a known reference {A}.  Rotate 

{B} first about ZB by an angle a, then about YB by an angle b and 
finally about XB by an angle g. 
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Position and Orientation [6]: 
 “Proof” of Principal Rotation Matrix Terms 
• Geometric: 

x 

y 

a 
c 

θ 

b 

d 

x 

y 

θ 

 

Unit Quaternion (ϵ0, ϵ1, ϵ2, ϵ3) [1] 
• Does not suffer from singularities  

 
• Uses a “4-number” to represent orientation 

 
 

• Product: 
 
 
 

• Conjugate: 
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Unit Quaternion [2]: Describing Orientation 
• Set ϵ0 = 0 

Then p=(px,py,pz)    
 
• Then given ϵ 

the operation          : rotates p about (ϵ1, ϵ2, ϵ3) 
 

• Unit Quaternion  Rotation Matrix 

 

Direction Cosine 
• Uses the Direction Cosines (read dot products) of the 

Coordinate Axes of the moving frame with respect to the 
fixed frame 
 
 
 

• It forms a rotation matrix! 
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Screw Displacements  

• Comes from the notion that all motion 
can be viewed as a rotation 
(Rodrigues formula) 
 

• Define a vector along the axis of motion 
(screw vector) 
– Rotation (screw angle) 
– Translation (pitch) 
– Summations  via the screw triangle! 

 

Generalizing 
Special Orthogonal & Special Euclidean Lie Algebras 
• SO(n):  Rotations 

 
 
 

• SE(n): Transformations of EUCLIDEAN space 
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Projective Transformations … 

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 

Homogenous Coordinates 

• ρ is a scaling value 
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Homogenous Transformation ✯ 

  
 
•  γ is a projective transformation 
• The Homogenous Transformation is a linear operation  

(even if projection is not) 

 

Projective Transformations &  
Other Transformations of 3D Space 

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 
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Coordinate Transformations [1] 
• Translation Again: 
 If {B} is translated with respect to {A} without rotation, then it is a 

vector sum 

{A} 

XA 

YA 

ZA 

{B} 

XB 

YB 

ZB 

AP 

APB 

BP 

 

Coordinate Transformations [2] 
• Rotation Again: 
 {B} is rotated with respect to {A}  then  

use rotation matrix to determine new components 
 
 
• NOTE: 

– The Rotation matrix’s subscript 
matches the position vector’s 
superscript 
 
 
 

– This gives Point Positions of {B} ORIENTED in {A} 

{A} 

XA 

YA 

ZA 

BP 
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Coordinate Transformations [3] 
• Composite transformation: 
 {B} is moved with respect to {A}: 

{A} 

XA 

YA 

ZA 
AP 

APB 

BP 

 

General Coordinate Transformations [1] 
• A compact representation of the translation and rotation is known as the 

Homogeneous Transformation 
 
 
 
 
 

• This allows us to cast the rotation and translation of the general transform 
in a single matrix form 
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General Coordinate Transformations [2] 
• Similarly, fundamental orthonormal transformations can be represented in 

this form too: 

 

General Coordinate Transformations [3] ✯ 
• Multiple transformations compounded as a chain 

{A} 

XA 

YA 

ZA 
AP 

APB 

CP 

BPC 
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Inverse of a Homogeneous Transformation Matrix 

• The inverse of the transform is not equal to its transpose 
because this 4×4 matrix is not orthonormal (𝑇−1 ≠ 𝑇𝑇) 

•  Invert by parts to give: 
 

 

Tutorial Problem ✍ 
The origin of frame {B}  is translated  
to a position [0 3 1]  
with respect to frame {A}.  
 
We would like to find: 
1. The homogeneous transformation between the two 

frames in the figure. 
2. For a point P defined as as [0 1 1] in frame {B}, we 

would like to find the vector describing this point with 
respect to frame {A}. 
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Tutorial Solution ✔ 
• The matrix 𝑇𝐵

𝐴 is formed as defined earlier: 
 
 
 

• Since P in the frame is:  
 
• We find vector p in frame {A} using the relationship 

 
 

 

 

Cool Robotics Share 
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1. Forward Kinematics  (θ  x) 
2. Inverse Kinematics ( x  θ) 
3. Denavit Hartenberg [DH] Notation 
4. Affine Transformations &  
5. Theoretical (General) Kinematics 

 
 

 

Forward Kinematics [1] 
• Forward kinematics is the process of chaining 

homogeneous transforms together.  For example to: 
– Find the articulations of a mechanism, or 
– the fixed transformation between two frames which is known in 

terms of linear and rotary parameters. 
• Calculates the final position from  

the machine (joint variables) 
  

 
• Unique for an open kinematic chain (serial arm) 
• “Complicated” (multiple solutions, etc.) for a closed 

kinematic chain (parallel arm) 
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Forward Kinematics [2] 
• Can think of this as “spaces”: 

– Workspace (x,y,z,α,β,γ):  
 The robot’s position & orientation 
 
– Joint  space (θ1 … θn): 
 A state-space vector of joint variables  
 

Joint Limits 

Workspace 

qf 

Forward Kinematics 
xf 

xfi 
qi 

q’i 

Inverse Kinematics 

 

Forward Kinematics [3] 
• Consider a planar RRR manipular 
• Given the joint angles and link lengths, we can determine the end effector 

pose: 
 
 
 
 
 
 
 
 

• This isn’t too difficult to determine  
for a simple, planar manipulator.  BUT … 
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Forward Kinematics [4]: The PUMA 560! 
• What about a more complicated mechanism? 

 

Inverse Kinematics  
• Forward: angles  position 
 x = f (θ) 
• Inverse: position  angles 
 θ = f-1(x) 
• Analytic Approach 
 
• Numerical Approaches: 

– Jacobian:  
– JT Approximation:  

• Slotine & Sheridan method 

– Cyclical Coordinate Descent 
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Inverse Kinematics 
• Inverse Kinematics is the problem of finding the joint 

parameters given only the values of the homogeneous 
transforms which model the mechanism  
(i.e., the pose of the end effector) 
 

• Solves the problem of where to drive the joints in order to 
get the hand of an arm or the foot of a leg in the right 
place 
 

• In general, this involves the solution of a set of 
simultaneous, non-linear equations 
 

• Hard for serial mechanisms, easy for parallel 
 

Solution Methods 
• Unlike with systems of linear equations, there are no 

general algorithms that may be employed to solve a set of 
nonlinear equation 
 

• Closed-form and numerical methods exist 
 

• Many exist: Most general solution to a 6R mechanism is 
Raghavan and Roth (1990) 
 

• Three methods of obtaining a solution are popular:  
(1) geometric   |    (2)  algebraic   |   (3) DH 
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Inverse Kinematics: Geometrical Approach 
• We can also consider the geometric  

relationships defined by the arm 
 

θ1 

θ2 

θ3 

{0} 

ψ β 

(x2, y2) 

 

Inverse Kinematics: Geometrical Approach [2] 
• We can also consider the geometric  

relationships defined by the arm  
 

• Start with what is fixed, explore all 
geometric possibilities from there 
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Inverse Kinematics: Algebraic Approach 
• We have a series of equations which define this system 
• Recall, from Forward Kinematics: 

 
 
 
 
 

• The end-effector pose is given by 
 
 
 
 
 

• Equating terms gives us a set of algebraic relationships 

φ,x,y 

 

No Solution - Singularity 
• Singular positions: 

 
• An understanding of the workspace of the manipulator is important 
• There will be poses that are not achievable 
• There will be poses where there is a loss of control 

 
• Singularities also occur when the  

manipulator loses a DOF 
– This typically happens  
 when joints are aligned 
– det[Jacobian]=0 
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Multiple Solutions 
• There will often be multiple solutions 

for a particular inverse kinematic 
analysis 
 

• Consider the three link manipulator 
shown.  Given a particular end effector 
pose, two solutions are possible 
 

• The choice of solution is a function of 
proximity to the current pose, limits on 
the joint angles and possible 
obstructions in the workspace 

 

1 

2 

 

Inverse Kinematics [More Generally] 
• Freudenstein (1973) referred to the inverse kinematics problem of the most 

general 6R manipulator as the “Mount Everest” of kinematic problems. 
 

• Tsai and Morgan (1985) and Primrose (1986) proved that this has at most 16 real 
solutions. 

  
• Duffy and Crane (1980) derived a closed-form solution for the general 7R single-

loop spatial mechanism.  
– The solution was obtained in the form of a 16 x 16 delerminant in which every element is a 

second-degree polynomial in one joint variable. The determinant, when expended, should 
yield a 32nd-degree polynomial equation and hence confirms the upper limit predicted by 
Roth et al. (1973). 

  
• Tsai and Morgan (1985) used the homotopy continuation method to solve the 

inverse kinematics of the general 6R manipulator and found only 16 solutions 
 
• Raghavan and Roth (1989, 1990) used the dyalitic elimination method to derive a 

16th-degree polynomial for the general 6R inverse kinematics problem.  
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Example: FK/IK of a 3R Planar Arm 

• Derived from Tsai (p. 63) 

 

Example: 3R Planar Arm [2] 
Position Analysis: 3·Planar 1-R Arm rotating about Z  [Ⓩ] 

0
𝐴3 =

0
𝐴1 ∙1 𝐴2 ∙2 𝐴3 

 
Substituting gives: 
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Example: 3R Planar Arm [2] 
Forward Kinematics  
(solve for x given θ  x = f (θ)) 
 
Fairly straight forward: 
 
 
 
 

 

Example: 3R Planar Arm [3] 
Inverse Kinematics  
(solve for θ given x  x = f (θ)) 
 
• Start with orientation φ: 
𝐶𝜃123 = 𝐶𝜙,  𝑆𝜃123 = 𝑆𝜙 
⇒ 𝜃123 =  𝜃1 + 𝜃2 + 𝜃3 = 𝜙 
 
• Get overall position 𝒒 = [𝑞𝑥 𝑞𝑦]: 
𝑞𝑥 − 𝑎3𝐶𝜙 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12  
𝑞𝑦 − 𝑎3𝑆𝜙 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12 … 
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Example: 3R Planar Arm [4] 
• Introduce 𝒑 = 𝑝𝑥 𝑝𝑦  before “wrist” 
𝑝𝑥 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12, 𝑝𝑦 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12  
⇒ 𝑝𝑥

2 + 𝑝𝑦
2 = 𝑎1

2 + 𝑎2
2 + 2𝑎1𝑎2𝐶𝜃2 

• Solve for θ2: 

𝜃2 = cos−1 𝜅, 𝜅 =
𝑝𝑥

2+𝑝𝑦
2−𝑎1

2−𝑎2
2

2𝑎1𝑎2
  (2 ℝ roots if |κ|<1) 

• Solve for θ1: 

𝐶𝜃1 =
𝑝𝑥 𝑎1+𝑎2𝐶𝜃2 +𝑝𝑦𝑎2𝑆𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
, 𝑆𝜃1 =

−𝑝𝑥𝑎2𝑆𝜃2+𝑝𝑦 𝑎1+𝑎2𝐶𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑆𝜃1, 𝐶𝜃1) 
 
 

 

Advanced Concept: Tendon-Driven Manipulators 

• Tendons may be modelled as a 
transmission line  

• in which the links are labeled 
sequentially from 0 to n and the 
pulleys are labeled from j to j + n -1 

• Let θji denote the angular 
displacement of link j with respect 
to link i.  

• We can write a circuit equation  
once for each pulley pair as follows: 
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Inverse Kinematics 
• What about a more complicated mechanism? 

 
» A sufficient condition for a serial manipulator to 

yield a closed-form inverse kinematics solution is to 
have any three consecutive joint axes intersecting at 
a common point or any three consecutive joint axes 
parallel to each other. (Pieper and Roth (1969) via 
4×4 matrix method) 
 

» Raghavan and Roth 1990  
“Kinematic Analysis of the 6R Manipulator of 
General Geometry”  
 

» Tsai and Morgan 1985, “Solving the Kinematics of 
the Most General Six  and Five-Dcgree-of-Freedom 
Manipulators by Continuation Methods”   
(posted online) 
 
 
 

 

Inverse Kinematics 
• What about a more complicated mechanism? 
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• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous 
transforms for articulated mechanisms 

 (But B. Roth, introduced it to robotics) 
 

• A kinematics “short-cut” that reduced the number of parameters by adding 
a structure to frame selection 
 

• For two frames positioned in space, the first can be moved into 
coincidence with the second by a sequence of 4 operations: 
– rotate around the xi-1 axis by an angle ai 

– translate along the xi-1 axis by a distance ai 

– translate along the new z axis by a distance di 

– rotate around the new z axis by an angle qi 

 

Denavit-Hartenberg Convention 
• link length ai the offset distance between the zi-1 and zi axes along the xi 

axis; 
• link twist ai the angle from the zi-1 axis to the zi axis about the xi axis; 

 
 

• link offset di the distance 
from the origin of frame i-1 
to the xi axis along the zi-1 
axis; 

• joint angle qi the angle 
between the xi-1 and xi axes 
about the zi-1 axis. 
 

Art  c/o P. Corke 
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DH: Where to place frame? 
1. Align an axis along principal motion 

1. Rotary (R): align rotation axis along the z axis 
2. Prismatic (P): align slider travel along x axis 
 

2. Orient  so as to position x axis towards next frame 
 

3. θ (rot z)  d (trans z)  a (trans x)  α (rot x) 

 

Denavit-Hartenberg  Rotation Matrix 
• Each transformation is a product of 4 “basic”  

transformations (instead of 6) 
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DH Example [1]: RRR Link Manipulator 

1. Assign the frames at the joints … 
2. Fill DH Table … 

θ1 

θ2 

θ3 

{0} 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 2 3

1 2 30 1 2
1 2 3

0 0 0
0 0 0

0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c c s L c
s c L s s c L s s c L s

A A A

q q q q q q q q q

q q q q q q q q q

       
     
       
     
     
     

123 123 1 12 123

123 123 1 12 123

0 0 1 2
3 1 2 3

1 2 3

1 2 3

0
0

0 0 1 0
0 0 0 1

T A A A
c s L c L c L c
s c L s L s L s
q q q q q

q q q q q



   
 

 
 
 
 
 

DH Example [2]: RRP Link Manipulator 

1. Assign the frames at the joints … 
2. Fill DH Table … 

1 1 1 2 2 2

1 1 1 2 2 2

1 2 3

1 20 1 2
1 2 3

0 0 1 0 0
0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c L
s c L s s c L s

A A A

q q q q q q

q q q q q q

      
     
       
     
     
     

θ1 

θ2 {0} 

 

 
12 12 1 12

12 12 1 12

0 0 1 2
3 1 2 3

1 2 3

1 2 3

0
0

0 0 1 0
0 0 0 1

T A A A

c s L c L L c
s c L s L L s
q q q q

q q q q



    
 

  
 
 
  
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DH Example [3]: Puma 560 
• “Simple” 6R robot exercise for the reader … 

Image: J. Craig, Introduction to Robotics 

3rd Ed., 2005 

 

DH Example [3]: Puma 560 [2] 
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Modified DH 
• Made “popular” by Craig’s Intro. to Robotics book 
• Link coordinates attached to the near by joint 

 
 
 
 
 
 

 
• a (trans x-1)  α (rot x-1)  θ (rot z)  d (trans z)  
 

Art  c/o P. Corke 

 

Modified DH [2] 
• Gives a similar result 

(but it’s not commutative) 
 
 
 
 

• Refactoring Standard  to Modified 
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• The “central” Kinematic 
structure is made up of 
closed-loop chain(s) 
 

• Compared to Serial 
Mechanisms: 
+ Higher Stiffness 
+ Higher Payload 
+ Less Inertia 
– Smaller Workspace 
– Coordinated Drive System 
– More Complex & $$$ 
 

Sources: Wikipedia, “Delta Robot”, ParallelMic.Org, “Delta Parallel Robot”, and  
US Patent 4,976,582 

Symmetrical Parallel Manipulator 
A sub-class of Parallel Manipulator: 

o # Limbs (m) = # DOF (F) 
o The joints are arranged in an identical pattern 
o The # and location of actuated joints are the same  

 
Thus: 

o Number of Loops (L): One less than # of limbs 
 
 

o Connectivity (Ck) 
 
 
 

Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 
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Mobile Platforms 
• The preceding kinematic relationships are also important 

in mobile applications 
 

• When we have sensors mounted on a platform, we need 
the ability to translate from the sensor frame into some 
world frame in which the vehicle is operating 
 

• Should we just treat this as a P(*) mechanism? 
 

 

Mobile Platforms [2] 

• We typically assign a frame to 
the base of the vehicle 

• Additional frames are assigned 
to the sensors 

• We will develop these 
techniques in coming lectures 
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Summary 
• Many ways to view a rotation 

– Rotation matrix 
– Euler angles 
– Quaternions 
– Direction Cosines 
– Screw Vectors 

 
• Homogenous transformations  

– Based on homogeneous coordinates 
 

 

Cool Robotics Share 
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© 2016 School of Information Technology and Electrical Engineering at the University of Queensland 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Dynamics 
5 24-Aug Robot Sensing: Perception  
6 31-Aug Robot Sensing: Multiple View Geometry 
7 7-Sep Robot Sensing: Feature Detection (as Linear Observers) 
8 14-Sep Probabilistic Robotics: Localization 
9 21-Sep Probabilistic Robotics: SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct State-Space Modelling 
12 19-Oct Shaping the Dynamic Response 
13 26-Oct LQR + Course Review 
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Course Organization 
 

Computational Geometry 

Stochastic  
Processes 

(State Space) 
Control 

Systems 

Kinematics 

Vision 

Motion 
Planning 

Machine 
Learning 

Estimation 
(EKF)  

Design 

 

Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Representing Space  
• RVC 

– Chapter 7: Robot Arm Kinematics 
–  

 

• Inverse Kinematics 
– RVC 

§7.3: Robot Arm Kinematics 

Today 
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The Project! 
“Robotics: Domino Effect” 

Generalizing 
Special Orthogonal & Special Euclidean Lie Algebras 
• SO(n):  Rotations 

 
 
 

• SE(n): Transformations of EUCLIDEAN space 
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Projective Transformations … 

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 

Homogenous Coordinates 

• ρ is a scaling value 
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Homogenous Transformation ✯ 

  
 
•  γ is a projective transformation 
• The Homogenous Transformation is a linear operation  

(even if projection is not) 

 

Projective Transformations &  
Other Transformations of 3D Space 

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 
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Coordinate Transformations [1] 
• Translation Again: 
 If {B} is translated with respect to {A} without rotation, then it is a 

vector sum 

{A} 

XA 

YA 

ZA 

{B} 

XB 

YB 

ZB 

AP 

APB 

BP 

 

Coordinate Transformations [2] 
• Rotation Again: 
 {B} is rotated with respect to {A}  then  

use rotation matrix to determine new components 
 
 
• NOTE: 

– The Rotation matrix’s subscript 
matches the position vector’s 
superscript 
 
 
 

– This gives Point Positions of {B} ORIENTED in {A} 

{A} 

XA 

YA 

ZA 

BP 
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Coordinate Transformations [3] 
• Composite transformation: 
 {B} is moved with respect to {A}: 

{A} 

XA 

YA 

ZA 
AP 

APB 

BP 

 

General Coordinate Transformations [1] 
• A compact representation of the translation and rotation is known as the 

Homogeneous Transformation 
 
 
 
 
 

• This allows us to cast the rotation and translation of the general transform 
in a single matrix form 
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General Coordinate Transformations [2] 
• Similarly, fundamental orthonormal transformations can be represented in 

this form too: 

 

General Coordinate Transformations [3] ✯ 
• Multiple transformations compounded as a chain 

{A} 

XA 

YA 

ZA 
AP 

APB 

CP 

BPC 
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Inverse of a Homogeneous Transformation Matrix 

• The inverse of the transform is not equal to its transpose 
because this 4×4 matrix is not orthonormal (𝑇−1 ≠ 𝑇𝑇) 

•  Invert by parts to give: 
 

 

Tutorial Problem ✍ 
The origin of frame {B}  is translated  
to a position [0 3 1]  
with respect to frame {A}.  
 
We would like to find: 
1. The homogeneous transformation between the two 

frames in the figure. 
2. For a point P defined as as [0 1 1] in frame {B}, we 

would like to find the vector describing this point with 
respect to frame {A}. 
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Tutorial Solution ✔ 
• The matrix 𝑇𝐵

𝐴 is formed as defined earlier: 
 
 
 

• Since P in the frame is:  
 
• We find vector p in frame {A} using the relationship 

 
 

 

 

Cool Robotics Share 
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1. Forward Kinematics  (θ  x) 
2. Inverse Kinematics ( x  θ) 
3. Denavit Hartenberg [DH] Notation 
4. Affine Transformations &  
5. Theoretical (General) Kinematics 

 
 

 

 

Forward  
Kinematics 
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Forward Kinematics [1] 
• Forward kinematics is the process of chaining 

homogeneous transforms together.  For example to: 
– Find the articulations of a mechanism, or 
– the fixed transformation between two frames which is known in 

terms of linear and rotary parameters. 
• Calculates the final position from  

the machine (joint variables) 
  

 
• Unique for an open kinematic chain (serial arm) 
• “Complicated” (multiple solutions, etc.) for a closed 

kinematic chain (parallel arm) 

 

Forward Kinematics [2] 
• Can think of this as “spaces”: 

– Workspace (x,y,z,α,β,γ):  
 The robot’s position & orientation 
 
– Joint  space (θ1 … θn): 
 A state-space vector of joint variables  
 

Joint Limits 

Workspace 

qf 

Forward Kinematics 
xf 

xfi 
qi 

q’i 

Inverse Kinematics 
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Forward Kinematics [3] 
• Consider a planar RRR manipular 
• Given the joint angles and link lengths, we can determine the end effector 

pose: 
 
 
 
 
 
 
 
 

• This isn’t too difficult to determine  
for a simple, planar manipulator.  BUT … 

 

Forward Kinematics [4]: The PUMA 560! 
• What about a more complicated mechanism? 
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Denavit Hartenberg  
[DH] Notation 

 

• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous 
transforms for articulated mechanisms 

 (But B. Roth, introduced it to robotics) 
 

• A kinematics “short-cut” that reduced the number of parameters by adding 
a structure to frame selection 
 

• For two frames positioned in space, the first can be moved into 
coincidence with the second by a sequence of 4 operations: 
– rotate around the xi-1 axis by an angle ai 

– translate along the xi-1 axis by a distance ai 

– translate along the new z axis by a distance di 

– rotate around the new z axis by an angle qi 
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Denavit-Hartenberg Convention 
• link length ai the offset distance between the zi-1 and zi axes along the xi 

axis; 
• link twist ai the angle from the zi-1 axis to the zi axis about the xi axis; 

 
 

• link offset di the distance 
from the origin of frame i-1 
to the xi axis along the zi-1 
axis; 

• joint angle qi the angle 
between the xi-1 and xi axes 
about the zi-1 axis. 
 

Art  c/o P. Corke 

 

DH: Where to place frame? 
1. Align an axis along principal motion 

1. Rotary (R): align rotation axis along the z axis 
2. Prismatic (P): align slider travel along x axis 
 

2. Orient  so as to position x axis towards next frame 
 

3. θ (rot z)  d (trans z)  a (trans x)  α (rot x) 
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Denavit-Hartenberg  Rotation Matrix 
• Each transformation is a product of 4 “basic”  

transformations (instead of 6) 

 

DH Example [1]: RRR Link Manipulator 

1. Assign the frames at the joints … 
2. Fill DH Table … 

θ1 

θ2 

θ3 

{0} 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 2 3

1 2 30 1 2
1 2 3

0 0 0
0 0 0

0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c c s L c
s c L s s c L s s c L s

A A A

q q q q q q q q q

q q q q q q q q q

       
     
       
     
     
     

123 123 1 12 123

123 123 1 12 123

0 0 1 2
3 1 2 3

1 2 3

1 2 3

0
0

0 0 1 0
0 0 0 1

T A A A
c s L c L c L c
s c L s L s L s
q q q q q

q q q q q



   
 

 
 
 
 
 
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DH Example [2]: RRP Link Manipulator 

1. Assign the frames at the joints … 
2. Fill DH Table … 

1 1 1 2 2 2

1 1 1 2 2 2

1 2 3

1 20 1 2
1 2 3

0 0 1 0 0
0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c L
s c L s s c L s

A A A

q q q q q q

q q q q q q

      
     
       
     
     
     

θ1 

θ2 {0} 

 

 
12 12 1 12

12 12 1 12

0 0 1 2
3 1 2 3

1 2 3

1 2 3

0
0

0 0 1 0
0 0 0 1

T A A A

c s L c L L c
s c L s L L s
q q q q

q q q q



    
 

  
 
 
  

DH Example [3]: Puma 560 
• “Simple” 6R robot exercise for the reader … 

Image: J. Craig, Introduction to Robotics 

3rd Ed., 2005 
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DH Example [3]: Puma 560 [2] 

Modified DH 
• Made “popular” by Craig’s Intro. to Robotics book 
• Link coordinates attached to the near by joint 

 
 
 
 
 
 

 
• a (trans x-1)  α (rot x-1)  θ (rot z)  d (trans z)  
 

Art  c/o P. Corke 
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Modified DH [2] 
• Gives a similar result 

(but it’s not commutative) 
 
 
 
 

• Refactoring Standard  to Modified 
 

 

• The “central” Kinematic 
structure is made up of 
closed-loop chain(s) 
 

• Compared to Serial 
Mechanisms: 
+ Higher Stiffness 
+ Higher Payload 
+ Less Inertia 
– Smaller Workspace 
– Coordinated Drive System 
– More Complex & $$$ 
 

Sources: Wikipedia, “Delta Robot”, ParallelMic.Org, “Delta Parallel Robot”, and  
US Patent 4,976,582 
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Inverse Kinematics  
• Forward: angles  position 
 x = f (θ) 
• Inverse: position  angles 
 θ = f-1(x) 
• Analytic Approach 
 
• Numerical Approaches: 

– Jacobian:  
– JT Approximation:  

• Slotine & Sheridan method 

– Cyclical Coordinate Descent 

 

Inverse Kinematics 
• Inverse Kinematics is the problem of finding the joint 

parameters given only the values of the homogeneous 
transforms which model the mechanism  
(i.e., the pose of the end effector) 
 

• Solves the problem of where to drive the joints in order to 
get the hand of an arm or the foot of a leg in the right 
place 
 

• In general, this involves the solution of a set of 
simultaneous, non-linear equations 
 

• Hard for serial mechanisms, easy for parallel 
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Solution Methods 
• Unlike with systems of linear equations, there are no 

general algorithms that may be employed to solve a set of 
nonlinear equation 
 

• Closed-form and numerical methods exist 
 

• Many exist: Most general solution to a 6R mechanism is 
Raghavan and Roth (1990) 
 

• Three methods of obtaining a solution are popular:  
(1) geometric   |    (2)  algebraic   |   (3) DH 

 

Inverse Kinematics: Geometrical Approach 
• We can also consider the geometric  

relationships defined by the arm 
 

θ1 

θ2 

θ3 

{0} 

ψ β 

(x2, y2) 
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Inverse Kinematics: Geometrical Approach [2] 
• We can also consider the geometric  

relationships defined by the arm  
 

• Start with what is fixed, explore all 
geometric possibilities from there 

 

 

Inverse Kinematics: Algebraic Approach 
• We have a series of equations which define this system 
• Recall, from Forward Kinematics: 

 
 
 
 
 

• The end-effector pose is given by 
 
 
 
 
 

• Equating terms gives us a set of algebraic relationships 

φ,x,y 
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No Solution - Singularity 
• Singular positions: 

 
• An understanding of the workspace of the manipulator is important 
• There will be poses that are not achievable 
• There will be poses where there is a loss of control 

 
• Singularities also occur when the  

manipulator loses a DOF 
– This typically happens  
 when joints are aligned 
– det[Jacobian]=0 

 

Multiple Solutions 
• There will often be multiple solutions 

for a particular inverse kinematic 
analysis 
 

• Consider the three link manipulator 
shown.  Given a particular end effector 
pose, two solutions are possible 
 

• The choice of solution is a function of 
proximity to the current pose, limits on 
the joint angles and possible 
obstructions in the workspace 

 

1 

2 
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Inverse  
Kinematics 

 
 

 

Inverse Kinematics [More Generally] 
• Freudenstein (1973) referred to the inverse kinematics problem of the most 

general 6R manipulator as the “Mount Everest” of kinematic problems. 
 

• Tsai and Morgan (1985) and Primrose (1986) proved that this has at most 16 real 
solutions. 

  
• Duffy and Crane (1980) derived a closed-form solution for the general 7R single-

loop spatial mechanism.  
– The solution was obtained in the form of a 16 x 16 delerminant in which every element is a 

second-degree polynomial in one joint variable. The determinant, when expended, should 
yield a 32nd-degree polynomial equation and hence confirms the upper limit predicted by 
Roth et al. (1973). 

  
• Tsai and Morgan (1985) used the homotopy continuation method to solve the 

inverse kinematics of the general 6R manipulator and found only 16 solutions 
 
• Raghavan and Roth (1989, 1990) used the dyalitic elimination method to derive a 

16th-degree polynomial for the general 6R inverse kinematics problem.  
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Example: FK/IK of a 3R Planar Arm 

• Derived from Tsai (p. 63) 

 

Example: 3R Planar Arm [2] 
Position Analysis: 3·Planar 1-R Arm rotating about Z  [Ⓩ] 

0
𝐴3 =

0
𝐴1 ∙1 𝐴2 ∙2 𝐴3 

 
Substituting gives: 
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Example: 3R Planar Arm [2] 
Forward Kinematics  
(solve for x given θ  x = f (θ)) 
 
Fairly straight forward: 
 
 
 
 

 

Example: 3R Planar Arm [3] 
Inverse Kinematics  
(solve for θ given x  x = f (θ)) 
 
• Start with orientation φ: 
𝐶𝜃123 = 𝐶𝜙,  𝑆𝜃123 = 𝑆𝜙 
⇒ 𝜃123 =  𝜃1 + 𝜃2 + 𝜃3 = 𝜙 
 
• Get overall position 𝒒 = [𝑞𝑥 𝑞𝑦]: 
𝑞𝑥 − 𝑎3𝐶𝜙 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12  
𝑞𝑦 − 𝑎3𝑆𝜙 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12 … 
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Example: 3R Planar Arm [4] 
• Introduce 𝒑 = 𝑝𝑥 𝑝𝑦  before “wrist” 
𝑝𝑥 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12, 𝑝𝑦 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12  
⇒ 𝑝𝑥

2 + 𝑝𝑦
2 = 𝑎1

2 + 𝑎2
2 + 2𝑎1𝑎2𝐶𝜃2 

• Solve for θ2: 

𝜃2 = cos−1 𝜅, 𝜅 =
𝑝𝑥

2+𝑝𝑦
2−𝑎1

2−𝑎2
2

2𝑎1𝑎2
  (2 ℝ roots if |κ|<1) 

• Solve for θ1: 

𝐶𝜃1 =
𝑝𝑥 𝑎1+𝑎2𝐶𝜃2 +𝑝𝑦𝑎2𝑆𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
, 𝑆𝜃1 =

−𝑝𝑥𝑎2𝑆𝜃2+𝑝𝑦 𝑎1+𝑎2𝐶𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑆𝜃1, 𝐶𝜃1) 
 
 

 

Inverse Kinematics: Example I 
Planar Manipulator: 
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Inverse Kinematics: Example I 
• Forward Kinematics: 
[For the Frame {Q} at the end effector]: 

 
 

 
∵ 
 
• For an arbitrary point G in the end effector: 
 

 

 

Inverse Kinematics: Example I 
• Forward Kinematics: 
[For the Frame {Q} at the end effector]: 

 
 

 
∵ 
 
• For an arbitrary point G in the end effector: 
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Inverse Kinematics: Example I 
• Inverse Kinematics: 

– Set the final position equal to the  
Forward Transformation Matrix 0A3: 
 
 
 
 

• The solution strategy is to equate the elements of 0A3 to 
that of the given position (qx, qy) and orientation ϕ  
 

 

Inverse Kinematics: Example I 
• Orientation (ϕ): 

 
 
 

• Now Position of the 2DOF point P: 
 
 

∴ 
• Substitute: θ3 disappears and now we can eliminate θ1: 
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Inverse Kinematics: Example I 
• we can eliminate θ1… 

 
• Then solve for θ12:  

 
 
– This gives 2 real (ℝ) roots if |𝜅| < 1 
– One double root if |𝜅| = 1 
– No real roots if |𝜅| >1 

• Elbow up/down: 
– In general, if θ2 is a solution  

then -θ2 is a solution 

 

Inverse Kinematics: Example I 
• Solving for θ1… 

– Corresponding to each θ2, we can solve θ1 
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Inverse Kinematics: Example II 
Elbow Manipulator: 

 

Inverse Kinematics: Example II 
• Target Position: 

 
 

• Transformation Matrices: 
 

 

METR 4202: Compendium Page 105 of 467Lecture: 3



32 

Inverse Kinematics: Example II 
• Key Matrix Products: 
 

 

Inverse Kinematics: Example II 
• Inverse Kinematics: 
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Inverse Kinematics: Example II 
• Solving the System: 

 

Advanced Concept: Tendon-Driven Manipulators 

• Tendons may be modelled as a 
transmission line  

• in which the links are labeled 
sequentially from 0 to n and the 
pulleys are labeled from j to j + n -1 

• Let θji denote the angular 
displacement of link j with respect 
to link i.  

• We can write a circuit equation  
once for each pulley pair as follows: 
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Inverse Kinematics 
• What about a more complicated mechanism? 

 
» A sufficient condition for a serial manipulator to 

yield a closed-form inverse kinematics solution is to 
have any three consecutive joint axes intersecting at 
a common point or any three consecutive joint axes 
parallel to each other. (Pieper and Roth (1969) via 
4×4 matrix method) 
 

» Raghavan and Roth 1990  
“Kinematic Analysis of the 6R Manipulator of 
General Geometry”  
 

» Tsai and Morgan 1985, “Solving the Kinematics of 
the Most General Six  and Five-Dcgree-of-Freedom 
Manipulators by Continuation Methods”   
(posted online) 
 
 
 

 

Inverse Kinematics 
• What about a more complicated mechanism? 
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Symmetrical Parallel Manipulator 
A sub-class of Parallel Manipulator: 

o # Limbs (m) = # DOF (F) 
o The joints are arranged in an identical pattern 
o The # and location of actuated joints are the same  

 
Thus: 

o Number of Loops (L): One less than # of limbs 
 
 

o Connectivity (Ck) 
 
 
 

Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 

 
 
 

 

 

Mobile Platforms 
• The preceding kinematic relationships are also important 

in mobile applications 
 

• When we have sensors mounted on a platform, we need 
the ability to translate from the sensor frame into some 
world frame in which the vehicle is operating 
 

• Should we just treat this as a P(*) mechanism? 
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Mobile Platforms [2] 

• We typically assign a frame to 
the base of the vehicle 

• Additional frames are assigned 
to the sensors 

• We will develop these 
techniques in coming lectures 
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Summary 
• Many ways to view a rotation 

– Rotation matrix 
– Euler angles 
– Quaternions 
– Direction Cosines 
– Screw Vectors 

 
• Homogenous transformations  

– Based on homogeneous coordinates 
 

 

METR 4202: Compendium Page 111 of 467Lecture: 3



38 

Cool Robotics Share 
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TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 

4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 
6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Multiple View Geometry & Feature Detection 
8 14-Sep Probabilistic Robotics: Localization 
9 21-Sep Probabilistic Robotics: SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct State-Space Modelling 
12 19-Oct Shaping the Dynamic Response 
13 26-Oct LQR + Course Review 
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Course Organization 
 

Computational Geometry 

Stochastic  
Processes 

(State Space) 
Control 

Systems 

Kinematics 

Vision 

Motion 
Planning 

Machine 
Learning 

Estimation 
(EKF)  

Design 

 

Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Representing Space  
• RVC 

– Chapter 7: Robot Arm Kinematics 
–  

 

• Inverse Kinematics 
– RVC 

§7.3: Robot Arm Kinematics 

Today 
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Reference Material 

Online: 

http://ruina.tam.cornell.edu/Book/

RuinaPratap1-15-13.pdf  

 

Inverse  
Kinematics 
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Inverse Kinematics [More Generally] 
• Freudenstein (1973) referred to the inverse kinematics problem of the most 

general 6R manipulator as the “Mount Everest” of kinematic problems. 
 

• Tsai and Morgan (1985) and Primrose (1986) proved that this has at most 16 real 
solutions. 

  
• Duffy and Crane (1980) derived a closed-form solution for the general 7R single-

loop spatial mechanism.  
– The solution was obtained in the form of a 16 x 16 delerminant in which every element is a 

second-degree polynomial in one joint variable. The determinant, when expended, should 
yield a 32nd-degree polynomial equation and hence confirms the upper limit predicted by 
Roth et al. (1973). 

  
• Tsai and Morgan (1985) used the homotopy continuation method to solve the 

inverse kinematics of the general 6R manipulator and found only 16 solutions 
 
• Raghavan and Roth (1989, 1990) used the dyalitic elimination method to derive a 

16th-degree polynomial for the general 6R inverse kinematics problem.  

 

Example: FK/IK of a 3R Planar Arm 

• Derived from Tsai (p. 63) 
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Example: 3R Planar Arm [2] 
Position Analysis: 3·Planar 1-R Arm rotating about Z  [Ⓩ] 

0
𝐴3 =

0
𝐴1 ∙1 𝐴2 ∙2 𝐴3 

 
Substituting gives: 
 

 

Example: 3R Planar Arm [2] 
Forward Kinematics  
(solve for x given θ  x = f (θ)) 
 
Fairly straight forward: 
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Example: 3R Planar Arm [3] 
Inverse Kinematics  
(solve for θ given x  x = f (θ)) 
 
• Start with orientation φ: 
𝐶𝜃123 = 𝐶𝜙,  𝑆𝜃123 = 𝑆𝜙 
⇒ 𝜃123 =  𝜃1 + 𝜃2 + 𝜃3 = 𝜙 
 
• Get overall position 𝒒 = [𝑞𝑥 𝑞𝑦]: 
𝑞𝑥 − 𝑎3𝐶𝜙 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12  
𝑞𝑦 − 𝑎3𝑆𝜙 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12 … 
 
 
 

 

Example: 3R Planar Arm [4] 
• Introduce 𝒑 = 𝑝𝑥 𝑝𝑦  before “wrist” 
𝑝𝑥 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12, 𝑝𝑦 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12  
⇒ 𝑝𝑥

2 + 𝑝𝑦
2 = 𝑎1

2 + 𝑎2
2 + 2𝑎1𝑎2𝐶𝜃2 

• Solve for θ2: 

𝜃2 = cos−1 𝜅, 𝜅 =
𝑝𝑥

2+𝑝𝑦
2−𝑎1

2−𝑎2
2

2𝑎1𝑎2
  (2 ℝ roots if |κ|<1) 

• Solve for θ1: 

𝐶𝜃1 =
𝑝𝑥 𝑎1+𝑎2𝐶𝜃2 +𝑝𝑦𝑎2𝑆𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
, 𝑆𝜃1 =

−𝑝𝑥𝑎2𝑆𝜃2+𝑝𝑦 𝑎1+𝑎2𝐶𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑆𝜃1, 𝐶𝜃1) 
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Inverse Kinematics: Example I 
Planar Manipulator: 

 

Inverse Kinematics: Example I 
• Forward Kinematics: 
[For the Frame {Q} at the end effector]: 

 
 

 
∵ 
 
• For an arbitrary point G in the end effector: 
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Inverse Kinematics: Example I 
• Forward Kinematics: 
[For the Frame {Q} at the end effector]: 

 
 

 
∵ 
 
• For an arbitrary point G in the end effector: 
 

 

 

Inverse Kinematics: Example I 
• Inverse Kinematics: 

– Set the final position equal to the  
Forward Transformation Matrix 0A3: 
 
 
 
 

• The solution strategy is to equate the elements of 0A3 to 
that of the given position (qx, qy) and orientation ϕ  
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Inverse Kinematics: Example I 
• Orientation (ϕ): 

 
 
 

• Now Position of the 2DOF point P: 
 
 

∴ 
• Substitute: θ3 disappears and now we can eliminate θ1: 

 

 

Inverse Kinematics: Example I 
• we can eliminate θ1… 

 
• Then solve for θ12:  

 
 
– This gives 2 real (ℝ) roots if |𝜅| < 1 
– One double root if |𝜅| = 1 
– No real roots if |𝜅| >1 

• Elbow up/down: 
– In general, if θ2 is a solution  

then -θ2 is a solution 
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Inverse Kinematics: Example I 
• Solving for θ1… 

– Corresponding to each θ2, we can solve θ1 
 
 
 
 
 

 

Inverse Kinematics: Example II 
Elbow Manipulator: 
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Inverse Kinematics: Example II 
• Target Position: 

 
 

• Transformation Matrices: 
 

 

Inverse Kinematics: Example II 
• Key Matrix Products: 
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Inverse Kinematics: Example II 
• Inverse Kinematics: 
 

 

Inverse Kinematics: Example II 
• Solving the System: 
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Advanced Concept: Tendon-Driven Manipulators 

• Tendons may be modelled as a 
transmission line  

• in which the links are labeled 
sequentially from 0 to n and the 
pulleys are labeled from j to j + n -1 

• Let θji denote the angular 
displacement of link j with respect 
to link i.  

• We can write a circuit equation  
once for each pulley pair as follows: 

 
  

Inverse Kinematics 
• What about a more complicated mechanism? 

 
» A sufficient condition for a serial manipulator to 

yield a closed-form inverse kinematics solution is to 
have any three consecutive joint axes intersecting at 
a common point or any three consecutive joint axes 
parallel to each other. (Pieper and Roth (1969) via 
4×4 matrix method) 
 

» Raghavan and Roth 1990  
“Kinematic Analysis of the 6R Manipulator of 
General Geometry”  
 

» Tsai and Morgan 1985, “Solving the Kinematics of 
the Most General Six  and Five-Dcgree-of-Freedom 
Manipulators by Continuation Methods”   
(posted online) 
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Inverse Kinematics 
• What about a more complicated mechanism? 

 

Symmetrical Parallel Manipulator 
A sub-class of Parallel Manipulator: 

o # Limbs (m) = # DOF (F) 
o The joints are arranged in an identical pattern 
o The # and location of actuated joints are the same  

 
Thus: 

o Number of Loops (L): One less than # of limbs 
 
 

o Connectivity (Ck) 
 
 
 

Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 
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Mobile Platforms 
• The preceding kinematic relationships are also important 

in mobile applications 
 

• When we have sensors mounted on a platform, we need 
the ability to translate from the sensor frame into some 
world frame in which the vehicle is operating 
 

• Should we just treat this as a P(*) mechanism? 
 

 

Mobile Platforms [2] 

• We typically assign a frame to 
the base of the vehicle 

• Additional frames are assigned 
to the sensors 

• We will develop these 
techniques in coming lectures 

METR 4202: Compendium Page 127 of 467Lecture: 4



16 

Summary 
• Many ways to view a rotation 

– Rotation matrix 
– Euler angles 
– Quaternions 
– Direction Cosines 
– Screw Vectors 

 
• Homogenous transformations  

– Based on homogeneous coordinates 
 

 

Generalizing 
Special Orthogonal & Special Euclidean Lie Algebras 
• SO(n):  Rotations 

 
 
 

• SE(n): Transformations of EUCLIDEAN space 
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Projective Transformations … 

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 

Homogenous Coordinates 

• ρ is a scaling value 
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Homogenous Transformation ✯ 

  
 
•  γ is a projective transformation 
• The Homogenous Transformation is a linear operation  

(even if projection is not) 

 

Projective Transformations &  
Other Transformations of 3D Space 

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 
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Coordinate Transformations [1] 
• Translation Again: 
 If {B} is translated with respect to {A} without rotation, then it is a 

vector sum 

{A} 

XA 

YA 

ZA 

{B} 

XB 

YB 

ZB 

AP 

APB 

BP 

 

Coordinate Transformations [2] 
• Rotation Again: 
 {B} is rotated with respect to {A}  then  

use rotation matrix to determine new components 
 
 
• NOTE: 

– The Rotation matrix’s subscript 
matches the position vector’s 
superscript 
 
 
 

– This gives Point Positions of {B} ORIENTED in {A} 

{A} 

XA 

YA 

ZA 

BP 
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Coordinate Transformations [3] 
• Composite transformation: 
 {B} is moved with respect to {A}: 

{A} 

XA 

YA 

ZA 
AP 

APB 

BP 

 

General Coordinate Transformations [1] 
• A compact representation of the translation and rotation is known as the 

Homogeneous Transformation 
 
 
 
 
 

• This allows us to cast the rotation and translation of the general transform 
in a single matrix form 
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General Coordinate Transformations [2] 
• Similarly, fundamental orthonormal transformations can be represented in 

this form too: 

 

General Coordinate Transformations [3] ✯ 
• Multiple transformations compounded as a chain 

{A} 

XA 

YA 

ZA 
AP 

APB 

CP 

BPC 
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Inverse of a Homogeneous Transformation Matrix 

• The inverse of the transform is not equal to its transpose 
because this 4×4 matrix is not orthonormal (𝑇−1 ≠ 𝑇𝑇) 

•  Invert by parts to give: 
 

 

Tutorial Problem ✍ 
The origin of frame {B}  is translated  
to a position [0 3 1]  
with respect to frame {A}.  
 
We would like to find: 
1. The homogeneous transformation between the two 

frames in the figure. 
2. For a point P defined as as [0 1 1] in frame {B}, we 

would like to find the vector describing this point with 
respect to frame {A}. 
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Tutorial Solution ✔ 
• The matrix 𝑇𝐵

𝐴 is formed as defined earlier: 
 
 
 

• Since P in the frame is:  
 
• We find vector p in frame {A} using the relationship 

 
 

 

 

Cool Robotics Share 
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Robot Dynamics 
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Angular Velocity 
• If we look at a small timeslice as a frame rotates with a moving point, we 

find 
AΩB 

ΔP ΩΔt 

{B} 

P(t) 
P(t+Δt) 

θ 

|P|sinq 

 

Velocity 
• Recall that we can specify a point in one frame relative to 

another as 
 

• Differentiating w/r/t to t we find 
 
 
 

• This can be rewritten as  
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Skew – Symmetric Matrix 
 

 

Velocity Representations 
• Euler Angles 

– For Z-Y-X  (α,β,γ): 
 
 

 
 

•  Quaternions 
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Manipulator Velocities 

• Consider again the schematic of the planar 
manipulator shown.  We found that the end 
effector position is given by 
 
 
 

• Differentiating w/r/t to t  
 
 
 
 
 

• This gives the end effector velocity  
as a function of pose and joint velocities 

θ1 

θ2 

θ3 

v 

Manipulator Velocities [2]  ✯ 

• Rearranging, we can recast this relation in 
matrix form 
 
 
 

• Or 
 
 
 
 

• The resulting matrix is called the Jacobian 
and provides us with a mapping from 
Joint Space to Cartesian Space.   

θ1 

θ2 

θ3 

v 
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Moving On…Differential Motion 
• Transformations also encode differential relationships 
• Consider a manipulator (say 2DOF, RR) 
  
  
• Differentiating with respect to the angles gives: 
 

 
 

 

Differential Motion [2] 
• Viewing this as a matrix  Jacobian  

1 1 2 2v J J  
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Infinitesimal Rotations 
•   

 
 
 
 
 
 
 

•  Note that: 
 
 
 Therefore … they commute 

 
 

       x y y xR d R d R d R d   

 

Summary 
• Many ways to handle motion 

– Direct Kinematics 
– Dynamics 

 
 

• Homogenous transformations  
– Based on homogeneous coordinates 
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TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Inverse Kinematics & Kinetics 

5 24-Aug Robot Dynamics (Jacobians) 
6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Multiple View Geometry & Feature Detection 
8 14-Sep Probabilistic Robotics: Localization 
9 21-Sep Probabilistic Robotics: SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct State-Space Modelling 
12 19-Oct Shaping the Dynamic Response 
13 26-Oct LQR + Course Review 
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Representing Space  
• RVC 

– Chapter 9: Dynamics and Control 
• Khatib (pp. 81-150) 

– Chapter 4: Jacobian 
– Chapter 5: Dynamics 

 

• Vision 
– Chapter 11: Image Formation 
– (optimally) Chapter 10: Light & Color 

 

Today 
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Reference Material 

On class webpage 

Password: metr4202 

Robot Dynamics 
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Angular Velocity 
• If we look at a small timeslice as a frame rotates with a moving point, we 

find 
AΩB 

ΔP ΩΔt 

{B} 

P(t) 
P(t+Δt) 

θ 

|P|sinq 

 

Velocity 
• Recall that we can specify a point in one frame relative to 

another as 
 

• Differentiating w/r/t to t we find 
 
 
 

• This can be rewritten as  
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Skew – Symmetric Matrix 
 

 

Velocity Representations 
• Euler Angles 

– For Z-Y-X  (α,β,γ): 
 
 

 
 

•  Quaternions 
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Manipulator Velocities 

• Consider again the schematic of the planar 
manipulator shown.  We found that the end 
effector position is given by 
 
 
 

• Differentiating w/r/t to t  
 
 
 
 
 

• This gives the end effector velocity  
as a function of pose and joint velocities 

θ1 

θ2 

θ3 

v 

Manipulator Velocities [2]  ✯ 

• Rearranging, we can recast this relation in 
matrix form 
 
 
 

• Or 
 
 
 
 

• The resulting matrix is called the Jacobian 
and provides us with a mapping from 
Joint Space to Cartesian Space.   

θ1 

θ2 

θ3 

v 
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Moving On…Differential Motion 
• Transformations also encode differential relationships 
• Consider a manipulator (say 2DOF, RR) 
  
  
• Differentiating with respect to the angles gives: 
 

 
 

 

Differential Motion [2] 
• Viewing this as a matrix  Jacobian  

1 1 2 2v J J  
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Infinitesimal Rotations 
•   

 
 
 
 
 
 
 

•  Note that: 
 
 
 Therefore … they commute 

 
 

       x y y xR d R d R d R d   

 

The Jacobian ✯ 
• In general, the Jacobian takes the form 

(for example, j joints and in i operational space) 
 
 
 
 
 
 

• Or more succinctly 
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Jacobian [2] 
 
 
 
 
 
 
 

• Jacobian can be viewed as a mapping from  
Joint velocity space (   )  to 
Operational velocity space (v) 
 

Image:. Sciavicco and Siciliano,  

Modelling and Control of Robot  

Manipulators, 2nd ed, 2000 

 

Revisiting The Jacobian  
• I told you: 

 
 
 
 
 
 
 

• True, but we can be more “explicit” 
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Jacobian: Explicit Form 
• For a serial chain (robot): The velocity of a link with 

respect to the proceeding link is dependent on the type of 
link that connects them 

• If the joint is prismatic (ϵ=1), then 
• If the joint is revolute (ϵ=0), then  

 
 
 

• Combining them (with v=(Δx, Δθ)) 
 
 

dz
i dtv

ˆ(in the  direction)d k
dt


 

  1
1

N
i

i i i i i
i

v v   



    p      
1 1

N N

i i i i i
i i

   
 

  θ z

vv J  q Jω q

vJ
J

J

 
  
 

 

Jacobian: Explicit Form [2] 
• The overall Jacobian takes the form 

 
 

• The Jacobian for a particular frame (F) can be expressed: 
 
 
 
Where:   &   

1

1 1 1

P P

n

n

x x
q qJ
z z 

  
  
 
  

1

1 1 1

F F
P PF

F v
nF

F F
n

x x
J

q qJ
J

z z  

  
   

     
    

F F i
i i iRz z  0 0 1i

i z
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Motivating Example:  
Remotely Driven 2DOF Manipulator 
 
 
 
 
 
 
   
• Introduce Q1=τ1+τ2 and Q2=τ2 

• Derivation posted to website 
 

Motor 1

θ1

θ2

τ1

τ2

Motor 2

Link 2

Li
nk

 1
 

 

Dynamics 
• We can also consider the forces that are required to 

achieve a particular motion of a manipulator or other body 
 

• Understanding the way in which motion arises from 
torques applied by the actuators or from external forces 
allows us to control these motions 
 

• There are a number of methods for formulating these 
equations, including 
– Newton-Euler Dynamics 
– Langrangian Mechanics 
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Dynamics of Serial Manipulators 
• Systems that keep on manipulating (the system) 

 
• Direct Dynamics: 

– Find the response of a robot arm  
with torques/forces applied 
 

• Inverse Dynamics: 
– Find the (actuator) torques/forces  

required to generate a desired  
trajectory of the manipulator 

 

Dynamics – Newton-Euler 

• In general, we could analyse the 
dynamics of robotic systems using 
classical Newtonian mechanics 
 
 
 
 

• This can entail iteratively 
calculating velocities and 
accelerations for each link and 
then computing force and moment 
balances in the system 

• Alternatively, closed form 
solutions may exist for simple 
configurations 

θ1 

θ2 

τ1 

τ2 

m1g 

m2g 
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Dynamics  ✯ 
• For Manipulators, the general form is 

 
 

 where 
• τ is a vector of joint torques 
• Θ is the nx1 vector of joint angles 
• M(Θ) is the nxn mass matrix 
• V(Θ, Θ)is the nx1 vector of centrifugal and Coriolis terms 
• G(Θ) is an nx1 vector of gravity terms 

• Notice that all of these terms depend on Θ so the dynamics 
varies as the manipulator move 

 

Dynamics: Inertia 
• The moment of inertia (second moment)  

of a rigid body B relative to a line L  
that passes through a reference point O  
and is parallel to a unit vector u is given by: 
 
 
 

• The scalar product of Io
u with a second axis (w)  

is called the product of inertia  
 
 

• If u=w, then we get the moment of inertia: 
 

 Where: rg: radius of gyration of B w/r/t to L 
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Dynamics: Mass Matrix & Inertia Matrix  
• This can be written in a Matrix form as: 

 
 

• Where IO
B is the inertial matrix or inertial tensor  

of the body B about a reference point O 
 
 
 
 

• Where to get Ixx, etc?  Parallel Axis Theorem 
 If CM is the center of mass, then: 
 

 
 
 
 
  

Dynamics: Mass Matrix 
• The Mass Matrix:  Determining via the Jacobian! 

 
 
 
 
 
 
 
 

! M is symmetric, positive definite       , 0T
ij jim m M  θ θ
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Dynamics – Langrangian Mechanics 

• Alternatively, we can use Langrangian 
Mechanics to compute the dynamics of a 
manipulator (or other robotic system) 
 

• The Langrangian is defined as the difference 
between the Kinetic and Potential energy in 
the system 
 

• Using this formulation and the concept of 
virtual work we can find the forces and 
torques acting on the system. 
 

• This may seem more involved but is often 
easier to formulate for complex systems  

 

Dynamics – Langrangian Mechanics [2]  ✯ 
, : Generalized Velocities, : Mass MatrixL K P M  θ

1

N

i
i

d K K P
dt




   
       
τ

θ θ θ

     ,M    τ θ v θ θ g θ
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Dynamics – Langrangian Mechanics [3] 
• The Mass Matrix:  Determining via the Jacobian! 

 
 
 
 
 
 
 
 

! M is symmetric, positive definite       , 0T
ij jim m M  θ θ

 

Generalized Coordinates 
• A significant feature of the Lagrangian Formulation is that 

any convenient coordinates can be used to derive the 
system. 

• Go from Joint  Generalized 
– Define p:   

 
Thus: the kinetic energy and gravity terms become 
 
 where: 

   1 1n nq q p p  q p
d dp J q

*1
2

TKE  p H p

 * 1 1T
 H J HJ

 * 1 T
G J G

 

METR 4202: Compendium Page 157 of 467Lecture: 5



17 

Inverse Dynamics  
• Forward dynamics governs the dynamic responses of a manipulator arm to the 

input torques generated by the actuators. 

• The inverse problem: 
– Going from joint angles  

to torques 
– Inputs are desired  

trajectories described  
as functions of time 
 

– Outputs are joint torques 
 to be  applied at each instance 

 
• Computation “big” (6DOF arm: 66,271 multiplications), 

but not scary (4.5 ms on PDP11/45) 

 

       1 1 2 3nq q t t t      q

 1 n τ

 

 

Also: Inverse Jacobian 
• In many instances, we are also interested in computing the 

set of joint velocities that will yield a particular velocity at 
the end effector 
 
 

• We must be aware, however, that the inverse of the 
Jacobian may be undefined or singular.  The points in the 
workspace at which the Jacobian is undefined are the 
singularities of the mechanism. 

• Singularities typically occur at the workspace boundaries 
or at interior points where degrees of freedom are lost 
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Inverse Jacobian Example 

• For a simple two link RR manipulator: 
 
 

• The Jacobian for this is 
 
 
 

• Taking the inverse of the Jacobian yields 
 
 
 

• Clearly, as 2 approaches 0 or p this 
manipulator becomes singular 

1 

2 

Static Forces 

• We can also use the Jacobian to compute 
the joint torques required to maintain a 
particular force at the end effector 

• Consider the concept of virtual work 
 

• Or 
 

• Earlier we saw that 
 

• So that 
 

• Or 
1 

2 

3 

F 
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Nonlinear 

Plant 

+ 

_ 

Xref X 

feedforward command 

(open-loop policy) 

compensated dynamics 

terrain  + τ friction  + τ 

terrain+ τfriction+ τ

Operation Space (Computed Torque)  

Model Based 

Model “Free” 

Compensated Manipulation 
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Dynamics of Parallel Manipulators 
• Traditional Newton-Euler formulation: 

– Equations of motion to be written once  
for each body of a manipulator 

– Large number of equations 
• Lagrangian formulation  

– eliminates all of the unwanted reaction forces  
and moments at the outset.  

– It is more efficient than the Newton- Euler formulation 
– Numerous constraints imposed by closed loops of a parallel 

manipulator 
• To simplify the problem 

– Lagrangian Multipliers are often introduced 
– Principle of virtual work 

 

Trajectory Generation & Planning  
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Trajectory Generation & Planning  

 

 

Trajectory Generation  
• The goal is to get from an initial position {i} to a final 

position {f} via a path points {p} 

{i} 

{f} 

{p} 
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Joint Space 

Consider only the joint positions 
as a function of time 
 
• + Since we control the joints, this is 

more direct 
• -- If we want to follow a particular 

trajectory, not easy  
– at best lots of intermediate points 
– No guarantee that you can solve 

the Inverse Kinematics for all 
path points 

 
 

Cartesian Workspace 

Consider the Cartesian positions 
as a function of time 
 
• + Can track shapes exactly  
• -- We need to solve the inverse 

kinematics and dynamics 
 

 
Time 

x 
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Polynomial Trajectories 

• Straight line Trajectories 
 
 
 
 
 

• Simpler 

• Polynomial Trajectories 
 
 
 
 
 
 

• Parabolic blends are 
smoother 

• Use “pseudo via points” 

A

B

C A

B

C

Summary 
• Kinematics is the study of motion without regard to the 

forces that create it 
• Kinematics is important in many instances in Robotics 

 
• The study of dynamics allows us to understand the forces 

and torques which act on a system and result in motion 
 

• Understanding these motions, and the required forces, is 
essential for designing these systems 
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Dynamic Simulation Software 

•   
 
 
 

  

•   
 
 
 

   

Cool Robotics Share 
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Cool Robotics Share (II) 

Source: Youtube: Wired, How the Tesla Model S is Made 

 

Cool Robotics Share (III) 

Source: New Kinova Arm in the Robotics Design Lab! 
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Schedule of Events 
Week Date Lecture (W: 12:05-1:50, 50-N202) 

1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 

6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Multiple View Geometry & Feature Detection 
8 14-Sep Probabilistic Robotics: Localization 
9 21-Sep Probabilistic Robotics: SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct State-Space Modelling 
12 19-Oct Shaping the Dynamic Response 
13 26-Oct LQR + Course Review 
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Sensing  and Vision 
• Vision 

– Chapter 11: Image Formation 
– Chapter 14: Using Multiple Images 

§ 14.2 Geometry of Multiple Views 

• Multiple View Geometry 
– Hartley & Zisserman: 

Chapter 6: Camera Models 
Chapter 7: Camera Matrix (P) 

Today 

Reference Material 

UQ Library/ 
SpringerLink UQ Library 

(ePDF) 
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Static Forces 

• We can also use the Jacobian to compute 
the joint torques required to maintain a 
particular force at the end effector 

• Consider the concept of virtual work 
 

• Or 
 

• Earlier we saw that 
 

• So that 
 

• Or 
q1 

q2 

q3 

F 
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Nonlinear 

Plant 

+ 

_ 

Xref X 

feedforward command 

(open-loop policy) 

compensated dynamics 

terrain  + τ friction  + τ 

terrain+ τfriction+ τ

Operation Space (Computed Torque)  

Model Based 

Model “Free” 

Compensated Manipulation 
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Dynamics of Parallel Manipulators 
• Traditional Newton-Euler formulation: 

– Equations of motion to be written once  
for each body of a manipulator 

– Large number of equations 
• Lagrangian formulation  

– eliminates all of the unwanted reaction forces  
and moments at the outset.  

– It is more efficient than the Newton- Euler formulation 
– Numerous constraints imposed by closed loops of a parallel 

manipulator 
• To simplify the problem 

– Lagrangian Multipliers are often introduced 
– Principle of virtual work 

 

Trajectory Generation  
• The goal is to get from an initial position {i} to a final 

position {f} via a path points {p} 

{i} 

{f} 

{p} 
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Joint Space 

Consider only the joint positions 
as a function of time 
 
• + Since we control the joints, this is 

more direct 
• -- If we want to follow a particular 

trajectory, not easy  
– at best lots of intermediate points 
– No guarantee that you can solve 

the Inverse Kinematics for all 
path points 

 
 

Cartesian Workspace 

Consider the Cartesian positions 
as a function of time 
 
• + Can track shapes exactly  
• -- We need to solve the inverse 

kinematics and dynamics 
 

 
Time 

x 
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Polynomial Trajectories 

• Straight line Trajectories 
 
 
 
 
 

• Simpler 

• Polynomial Trajectories 
 
 
 
 
 
 

• Parabolic blends are 
smoother 

• Use “pseudo via points” 

A

B

C A

B

C

Trajectory Generation & Planning  
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Dynamic Simulation Software 

•   
 
 
 

  

•   
 
 
 

   

Trajectory Generation & Planning  
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Sensing: 

Image Formation /  
Single-View Geometry 

Quick Outline 
• Frames 
• Kinematics 
 “Sensing Frames” (in space)  Geometry in Vision  
1. Perception  Camera Sensors 

1. Image Formation 
 “Computational Photography” 

2. Calibration 
3. Features  

 
4. Stereopsis and depth 
5. Optical flow 
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 Sensor Information: Mostly (but not only) Cameras! 

Laser 

Vision/Cameras GPS 

 

Mapping: Indoor robots 
 

 

ACFR, IROS 2002 
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Cameras 

 

Cameras: A 3D ⇒ 2D Photon Counting Sensor* 
 

* Well Almost… RGB-D and Light-Field cameras can be seen as giving 3D ⇒ 3D  

Sources: Wikipedia, Pinhole Camera, Sony sensor, Wikipedia, Graphical projection,  

Image Formation Image Sensing (Re)Projection 
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Camera Image Formation: 3D↦2D ⇒ Perspective! 

 

Transformations  ✯ 

• x’:  New Image   &    x :  Old Image 
• Euclidean: 

(Distances preserved) 
 

• Similarity (Scaled Rotation):   
(Angles preserved) 
 Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 
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Transformations [2] 

• Affine : 
(|| lines remain ||) 

• Projective:   
(straight lines preserved) 
H: Homogenous 3x3 Matrix 
 

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 

 

2-D Transformations 
 x’ = point in the new (or 2nd) image 
 x = point in the old image 

 
• Translation  x’ = x + t 
• Rotation   x’ = R x + t 
• Similarity   x’ = sR x + t 
• Affine   x’ = A x 
• Projective   x’ = A x 
  here, x is an inhomogeneous pt (2-vector) 
   x’  is a homogeneous point 
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Image Formation – Single View Geometry 

  

 

Image Formation – Single View Geometry [I] 
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Image Formation – Single View Geometry [II] 
 Camera Projection Matrix 

• x = Image point 
• X = World point 
• K = Camera Calibration Matrix 

 
Perspective Camera as: 
 where: P is 3×4 and of rank 3 

 
 

Image Formation: (Thin-Lens) Projection model  

 • 𝑥 =
𝑓𝑋

𝑍
, 𝑦 =

𝑓𝑌

𝑍
 

 
 

•
1

𝑧0
+

1

𝑧1
=

1

𝑓
  

 
 

   
∴   as 𝑧0 → ∞, 𝑧𝑖 → 𝑓 
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Image Formation: Simple Lens Optics ≅ Thin-Lens  

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 

 

Calibration matrix 
• Is this form of K good enough? 
• non-square pixels (digital video) 
• skew 
• radial distortion 

 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Calibration 
See:  Camera Calibration Toolbox for Matlab 
(http://www.vision.caltech.edu/bouguetj/calib_doc/) 

• Intrinsic: Internal Parameters 
– Focal length: The focal length in pixels. 
– Principal point: The principal point 
– Skew coefficient:  
 The skew coefficient defining the angle between the x and y pixel axes. 
– Distortions: The image distortion coefficients (radial and tangential distortions)  

(typically two quadratic functions) 
 

• Extrinsics: Where the Camera (image plane) is placed: 
– Rotations: A set of 3x3 rotation matrices for each image 
– Translations: A set of 3x1 translation vectors for each image 

 

Camera calibration 
• Determine camera parameters from known 3D points or 

calibration object(s) 
• internal or intrinsic parameters such as focal length, 

optical center, aspect ratio: 
what kind of camera? 

• external or extrinsic (pose) 
parameters: 
where is the camera? 

• How can we do this? 

From  Szeliski, Computer Vision: Algorithms and Applications 
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a university for the 
world real 

® 

© Peter Corke 

Complete camera model  

intrinsic 

parameters 

extrinsic parameters 

camera matrix 
 

 

Camera Image Formation “Aberrations”[I]: 
Lens Optics (Aperture / Depth of Field) 

http://en.wikipedia.org/wiki/File:Aperture_in_Canon_50mm_f1.8_II_lens.jpg 
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Camera Image Formation “Aberrations”[II]: 
Lens Distortions 

Barrel Pincushion 

Fig. 2.1.3 from Szeliski, Computer Vision: Algorithms and Applications 
 

 Fisheye 

 Explore these with visualize_distortions in the 
Camera Calibration Toolbox 

Camera Image Formation “Aberrations” [II]: 
Lens Optics: Chromatic Aberration 
• Chromatic Aberration: 

 
 
 
 
– In a lens subject to chromatic aberration, light at different 

wavelengths (e.g., the red and blur arrows) is focused with a 
different focal length 𝑓’ and hence a different depth 𝑧𝑖, resulting 
in both a geometric (in-plane) displacement and a loss of focus 

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 
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Camera Image Formation “Aberrations” [III]: 
Lens Optics: Vignetting 
• Vignetting: 

– The tendency for the brightness of the image to fall off towards 
the edge of the image 
 
 
 
 
 

– The amount of light hitting a pixel of surface area 𝛿𝑖 depends on 
the square of the ratio of the aperture diameter 𝑑 to the focal 
length 𝑓, as well as the fourth power of the off-axis angle 𝛼, 
cos4 𝛼  
 Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 

 

Measurements on Planes 
(You can not just add a tape measure!) 

 
 

1 2 3 4 

1 
2 
3 
4 

Approach:  unwarp then measure 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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Perception 
• Making Sense from Sensors 

http://www.michaelbach.de/ot/mot_rotsnake/index.html 

 

Perception 
• Perception is about understanding 

the image for informing latter  
robot / control action 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 
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Perception 
• Perception is about understanding 

the image for informing latter  
robot / control action 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 

 

 

Basic Features: 

Colour  

Edges & Lines 
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Features -- Colour Features  ✯ 

• RGB is NOT an absolute (metric) colour space 
Also! 
• RGB (display or additive colour) does not map to  

CYMK (printing or subtractive colour) without calibration 
• Y-Cr-Cb or HSV does not solve this either 

Bayer Patterns 

Fig: Ch. 10, Robotics Vision and Control 

 

Colour Spaces 

• HSV 
 

• YCrCb 
Gamma Corrected Luma (Y) +  

Chrominance  
BW  Colour TVs : Just add the 

Chrominance 
γ Correction: CRTs γ=2.2-2.5 

 
 

 
 

• L*ab 

Source: Wikipedia – HSV and YCrCb 

METR 4202: Compendium Page 189 of 467Lecture: 6



24 

How to get the Features? Still MANY Ways 
• Canny edge detector: 

 

Subtractive (CMYK) & Uniform (L*ab) Color Spaces 

• 𝐶 = 𝑊 − 𝑅 
• 𝑀 = 𝑊 − 𝐺 
• 𝑌 = 𝑊 − 𝐵 

 
• 𝐾 = −𝑊  

• A Uniform color space is one in which 
the distance in coordinate space is a fair 
guide to the significance of the difference 
between the two colors 
 

• Start with RGB  CIE XYZ 
(Under Illuminant D65) 
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Edge Detection 
• Canny edge detector: 

– Pepsi Sequence: 

Image Data: http://www.cs.brown.edu/~black/mixtureOF.html and Szeliski, CS223B-L9 
See also: Use of Temporal information to aid segmentation:  
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html 
 

 

Line Extraction and Segmentation 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 
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Line Formula 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 

 

Line Estimation 

Least squares minimization of the line: 
 

• Line Equation: 
 

• Error in Fit: 
 

• Solution: 
 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 

 

METR 4202: Compendium Page 192 of 467Lecture: 6



27 

Line Splitting / Segmentation 

• What about corners? 
Split into multiple lines  (via expectation maximization) 

1. Expect (assume) a number of lines N  (say 3) 
2. Find “breakpoints” by finding nearest neighbours upto a 

threshold or simply at random (RANSAC) 
3. How to know N?  (Also RANSAC) 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 

 

⊥ of a Point from a Line Segment 

d

D

Adopted from  Williams, Fitch, and Singh, MTRX 4700 
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Hough Transform 

• Uses a voting mechanism 
• Can be used for other lines and shapes  

(not just straight lines) 

 

Hough Transform: Voting Space 

• Count the number of lines that can go through a point and 
move it from the “x-y” plane to the “a-b” plane 

• There is only a one-“infinite” number (a line!) of solutions 
(not a two-“infinite” set – a plane) 
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Hough Transform: Voting Space 

• In practice, the polar form is often used 
 

• This avoids problems with lines that are nearly vertical  

 

Hough Transform: Algorithm 
1. Quantize the parameter space appropriately.  
 
2. Assume that each cell in the parameter space is an 
accumulator. Initialize all cells to zero.  
 
3. For each point (x,y) in the (visual & range) image space, 
increment by 1 each of the accumulators that satisfy the 
equation.  
 
4. Maxima in the accumulator array correspond to the 
parameters of model instances.  
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Line Detection – Hough Lines [1] 
• A line in an image can be expressed as two variables: 

– Cartesian coordinate system: m,b 
– Polar coordinate system: r, θ  

  avoids problems with vert. lines 
 
 y=mx+b   
 
 

• For each point (x1, y1) we can write: 
 

• Each pair (r,θ) represents a line that passes through  (x1, y1)  
 
See also OpenCV documentation (cv::HoughLines) 

 

Line Detection – Hough Lines [2] 
• Thus a given point gives a sinusoid 

 
 
 
 

• Repeating for all points on the image 
 
 
 
 

 
See also OpenCV documentation (cv::HoughLines) 
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Line Detection – Hough Lines [3] 
• Thus a given point  

gives a sinusoid 
 
 

• Repeating for all 
 points on the image 
 

• NOTE that an intersection of sinusoids represents (a point) 
represents a line in which pixel points lay. 

 Thus, a line can be detected  by finding the number of 
 Intersections between curves 

 
 

 
See also OpenCV documentation (cv::HoughLines) 

 

“Cool Robotics Share” -- Hough Transform 

• http://www.activovision.com/octavi/doku.php?id=hough_transform 
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RANdom SAmple Consensus 
1. Repeatedly select a small (minimal) subset of 

correspondences 
2. Estimate a solution (in this case a the line) 
3. Count the number of “inliers”, |e|<Θ 

(for LMS, estimate med(|e|) 
4. Pick the best subset of inliers 
5. Find a complete least-squares solution 

 

• Related to least median squares 
• See also:  

MAPSAC (Maximum A Posteriori SAmple Consensus) 
 

 
 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Cool Robotics Share Time! 

D. Wedge, The RANSAC Song 
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© 2016 School of Information Technology and Electrical Engineering at the University of Queensland 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 
6 31-Aug Robot Sensing: Perception & Linear Observers 

7 7-Sep Robot Sensing:  
Multiple View Geometry & Feature Detection 

8 14-Sep Probabilistic Robotics: Localization 
9 21-Sep Probabilistic Robotics: SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct State-Space Modelling 
12 19-Oct Shaping the Dynamic Response 
13 26-Oct LQR + Course Review 
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Sensing  and Vision 
• Multiple View Geometry 

– Chapter 14: Using Multiple Images 
§ 14.2 Geometry of Multiple Views 

• Multiple View Geometry 
– Hartley & Zisserman: 

Chapter 6: Camera Models 
Chapter 7: Camera Matrix 

• Localization 
– Chapter 6: Localization 

Today 

Reference Material 

UQ Library/ 
SpringerLink UQ Library 

(ePDF) 
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Sensing: 

Image Formation /  
Single-View Geometry 

Image Formation: Simple Lens Optics ≅ Thin-Lens  

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 
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Calibration matrix 
• Is this form of K good enough? 
• non-square pixels (digital video) 
• skew 
• radial distortion 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Calibration 
See:  Camera Calibration Toolbox for Matlab 
(http://www.vision.caltech.edu/bouguetj/calib_doc/) 

• Intrinsic: Internal Parameters 
– Focal length: The focal length in pixels. 
– Principal point: The principal point 
– Skew coefficient:  
 The skew coefficient defining the angle between the x and y pixel axes. 
– Distortions: The image distortion coefficients (radial and tangential distortions)  

(typically two quadratic functions) 
 

• Extrinsics: Where the Camera (image plane) is placed: 
– Rotations: A set of 3x3 rotation matrices for each image 
– Translations: A set of 3x1 translation vectors for each image 
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Camera calibration 
• Determine camera parameters from known 3D points or 

calibration object(s) 
• internal or intrinsic parameters such as focal length, 

optical center, aspect ratio: 
what kind of camera? 

• external or extrinsic (pose) 
parameters: 
where is the camera? 

• How can we do this? 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

a university for the 
world real 

® 

© Peter Corke 

Complete camera model  

intrinsic 

parameters 

extrinsic parameters 

camera matrix 
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Camera Image Formation “Aberrations”[I]: 
Lens Optics (Aperture / Depth of Field) 

http://en.wikipedia.org/wiki/File:Aperture_in_Canon_50mm_f1.8_II_lens.jpg 
 

 

Camera Image Formation “Aberrations”[II]: 
Lens Distortions 

Barrel Pincushion 

Fig. 2.1.3 from Szeliski, Computer Vision: Algorithms and Applications 
 

 Fisheye 

 Explore these with visualize_distortions in the 
Camera Calibration Toolbox 
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Camera Image Formation “Aberrations” [II]: 
Lens Optics: Chromatic Aberration 
• Chromatic Aberration: 

 
 
 
 
– In a lens subject to chromatic aberration, light at different 

wavelengths (e.g., the red and blur arrows) is focused with a 
different focal length 𝑓’ and hence a different depth 𝑧𝑖, resulting 
in both a geometric (in-plane) displacement and a loss of focus 

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 

 

Camera Image Formation “Aberrations” [III]: 
Lens Optics: Vignetting 
• Vignetting: 

– The tendency for the brightness of the image to fall off towards 
the edge of the image 
 
 
 
 
 

– The amount of light hitting a pixel of surface area 𝛿𝑖 depends on 
the square of the ratio of the aperture diameter 𝑑 to the focal 
length 𝑓, as well as the fourth power of the off-axis angle 𝛼, 
cos4 𝛼  
 Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 
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Measurements on Planes 
(You can not just add a tape measure!) 

 
 

1 2 3 4 

1 
2 
3 
4 

Approach:  unwarp then measure 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Perception 
• Making Sense from Sensors 

http://www.michaelbach.de/ot/mot_rotsnake/index.html 
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Perception 
• Perception is about understanding 

the image for informing latter  
robot / control action 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 

 

Perception 
• Perception is about understanding 

the image for informing latter  
robot / control action 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 
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Basic Features: 

Colour  

Edges & Lines 

 

Features -- Colour Features  ✯ 

• RGB is NOT an absolute (metric) colour space 
Also! 
• RGB (display or additive colour) does not map to  

CYMK (printing or subtractive colour) without calibration 
• Y-Cr-Cb or HSV does not solve this either 

Bayer Patterns 

Fig: Ch. 10, Robotics Vision and Control 
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Colour Spaces 

• HSV 
 

• YCrCb 
Gamma Corrected Luma (Y) +  

Chrominance  
BW  Colour TVs : Just add the 

Chrominance 
γ Correction: CRTs γ=2.2-2.5 

 
 

 
 

• L*ab 

Source: Wikipedia – HSV and YCrCb 

Subtractive (CMYK) & Uniform (L*ab) Color Spaces 

• 𝐶 = 𝑊 − 𝑅 
• 𝑀 = 𝑊 − 𝐺 
• 𝑌 = 𝑊 − 𝐵 

 
• 𝐾 = −𝑊  

• A Uniform color space is one in which 
the distance in coordinate space is a fair 
guide to the significance of the difference 
between the two colors 
 

• Start with RGB  CIE XYZ 
(Under Illuminant D65) 
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Colour: Illumination Variant 

• Toy Image • Toy Image With Flash 

Source: %MATLABROOT%\toolbox\images\imdata\toysflash.png 

Colour Spaces: 
• Red | Green  | Blue : 

 
 
 
 

• Hue | Saturation | V (Brightness Value) : 

 

“False-colour”: Show HSV as “RGB” 
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Lines 

 

How to get the Features? Still MANY Ways 
• Canny edge detector: 
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Edge Detection 

• Laplacian of Gaussian 
– Gaussian (Low Pass filter) 
– Laplacian (Gradient) 

• Prewitt 
– Discrete differentiation 
– Convolution  

 

Edge Detection 

• Canny edge detector 
– Finds the peak gradient 

magnitude orthogonal to the 
edge direction 

1. Apply Gaussian filter to smooth the 
image in order to remove the noise  

2. Find the intensity gradients of the image 
3. Apply non-maximum suppression to get 

rid of spurious response to edge detection 
4. Apply double threshold to determine 

potential edges 
5. Track edge by hysteresis: Finalize the 

detection of edges by suppressing all the 
other edges that are weak and not 
connected to strong edges. 

– Two Thresholds:  
• Non-maximum suppression  
• Hysteresis 

METR 4202: Compendium Page 212 of 467Lecture: 7



15 

Edge Detection 
• Canny edge detector: 

– Pepsi Sequence: 

Image Data: http://www.cs.brown.edu/~black/mixtureOF.html and Szeliski, CS223B-L9 
See also: Use of Temporal information to aid segmentation:  
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html 
 

 

Edge Detection 
• Many, many more  
 Structured Edge Detection Toolbox 

 

Dollár and Zitnick, Structured Forests for Fast Edge Detection, ICCV 13 

https://github.com/pdollar/edges  
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Line Extraction and Segmentation 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 

 

Line Formula 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 
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Line Estimation 

Least squares minimization of the line: 
 

• Line Equation: 
 

• Error in Fit: 
 

• Solution: 
 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 

 

Line Splitting / Segmentation 

• What about corners? 
Split into multiple lines  (via expectation maximization) 

1. Expect (assume) a number of lines N  (say 3) 
2. Find “breakpoints” by finding nearest neighbours upto a 

threshold or simply at random (RANSAC) 
3. How to know N?  (Also RANSAC) 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 
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⊥ of a Point from a Line Segment 

d

D

Adopted from  Williams, Fitch, and Singh, MTRX 4700 

Hough Transform 

• Uses a voting mechanism 
• Can be used for other lines and shapes  

(not just straight lines) 
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Hough Transform: Voting Space 

• Count the number of lines that can go through a point and 
move it from the “x-y” plane to the “a-b” plane 

• There is only a one-“infinite” number (a line!) of solutions 
(not a two-“infinite” set – a plane) 

 

Hough Transform: Voting Space 

• In practice, the polar form is often used 
 

• This avoids problems with lines that are nearly vertical  
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Hough Transform: Algorithm 
1. Quantize the parameter space appropriately.  
 
2. Assume that each cell in the parameter space is an 
accumulator. Initialize all cells to zero.  
 
3. For each point (x,y) in the (visual & range) image space, 
increment by 1 each of the accumulators that satisfy the 
equation.  
 
4. Maxima in the accumulator array correspond to the 
parameters of model instances.  

 
 

Line Detection – Hough Lines [1] 
• A line in an image can be expressed as two variables: 

– Cartesian coordinate system: m,b 
– Polar coordinate system: r, θ  

  avoids problems with vert. lines 
 
 y=mx+b   
 
 

• For each point (x1, y1) we can write: 
 

• Each pair (r,θ) represents a line that passes through  (x1, y1)  
 
See also OpenCV documentation (cv::HoughLines) 
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Line Detection – Hough Lines [2] 
• Thus a given point gives a sinusoid 

 
 
 
 

• Repeating for all points on the image 
 
 
 
 

 
See also OpenCV documentation (cv::HoughLines) 

 

Line Detection – Hough Lines [3] 
• Thus a given point  

gives a sinusoid 
 
 

• Repeating for all 
 points on the image 
 

• NOTE that an intersection of sinusoids represents (a point) 
represents a line in which pixel points lay. 

 Thus, a line can be detected  by finding the number of 
 Intersections between curves 

 
 

 
See also OpenCV documentation (cv::HoughLines) 
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“Cool Robotics Share” -- Hough Transform 

• http://www.activovision.com/octavi/doku.php?id=hough_transform 

  

RANdom SAmple Consensus 
1. Repeatedly select a small (minimal) subset of 

correspondences 
2. Estimate a solution (in this case a the line) 
3. Count the number of “inliers”, |e|<Θ 

(for LMS, estimate med(|e|) 
4. Pick the best subset of inliers 
5. Find a complete least-squares solution 

 

• Related to least median squares 
• See also:  

MAPSAC (Maximum A Posteriori SAmple Consensus) 
 

 
 

 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Cool Robotics Share Time! 

D. Wedge, The RANSAC Song 

 

 

 

Multiple View 

Geometry 
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Image Formation – Single View Geometry [I] 

 

Image Formation – Single View Geometry [II] 
 Camera Projection Matrix 

• x = Image point 
• X = World point 
• K = Camera Calibration Matrix 

 
Perspective Camera as: 
 where: P is 3×4 and of rank 3 
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Transformations  ✯ 

• x’:  New Image   &    x :  Old Image 
• Euclidean: 

(Distances preserved) 
 

• Similarity (Scaled Rotation):   
(Angles preserved) 
 Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 

 

Transformations [2] 

• Affine : 
(|| lines remain ||) 

• Projective:   
(straight lines preserved) 
H: Homogenous 3x3 Matrix 
 

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 
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2-D Transformations 
 x’ = point in the new (or 2nd) image 
 x = point in the old image 

 
• Translation  x’ = x + t 
• Rotation   x’ = R x + t 
• Similarity   x’ = sR x + t 
• Affine   x’ = A x 
• Projective   x’ = A x 
  here, x is an inhomogeneous pt (2-vector) 
   x’  is a homogeneous point 

 

2-D Transformations 
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3D Transformations 
 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Projection Models 
• Orthographic 

 
• Weak Perspective 

 
• Affine 

 
• Perspective 

 
• Projective 
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Slide from Szeliski, Computer Vision: Algorithms and Applications 
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Properties of Projection 
• Preserves 

– Lines and conics 
– Incidence 
– Invariants (cross-ratio) 

 
• Does not preserve 

– Lengths 
– Angles 
– Parallelism 

 

Planar Projective Transformations 
• Perspective projection of a plane 

– lots of names for this: 
• homography, colineation, planar projective map 

– Easily modeled using homogeneous coordinates 


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x

s
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H p p’   

To apply a homography H 
• compute p’ = Hp 
• p’’ = p’/s    normalize by dividing by third component 

(0,0,0) 
(sx,sy,s) 

image plane 

(x,y

,1) 

y 

x z 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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Image Formation – Two-View Geometry [Stereopsis] 
 Fundamental Matrix 

Image Rectification 
 
 

To unwarp (rectify) an image 
• solve for H given p’’ and p 
• solve equations of the form:  sp’’ = Hp 

– linear in unknowns:  s and coefficients of H 

– need at least 4 points 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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3D Projective Geometry 
• These concepts generalize naturally to 3D 

– Homogeneous coordinates 
• Projective 3D points have four coords:  P = (X,Y,Z,W) 

– Duality 
• A plane L is also represented by a 4-vector 
• Points and planes are dual in 3D: L P=0 

– Projective transformations 
• Represented by 4x4 matrices T:  P’ = TP,    L’ = L T-1 

– Lines are a special case… 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

3D → 2D Perspective Projection 
(Image Formation Equations) 

 
 

u 

(Xc,Yc,Zc) 

uc f 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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3D → 2D Perspective Projection 
• Matrix Projection (camera matrix): 

ΠPp 


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
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It’s useful to decompose  into T  R  project  A 
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The Projective Plane 
• Why do we need homogeneous coordinates? 

– Represent points at infinity, homographies, perspective 
projection, multi-view relationships 

• What is the geometric intuition? 
– A point in the image is a ray in projective space 

(0,0,0) 

(sx,sy,s) 

image plane 

(x,y,1) 

y 

x z 

• Each point (x,y) on the plane is represented by a ray 

(sx,sy,s) 

– all points on the ray are equivalent:  (x, y, 1)  (sx, sy, s) 
Slide from Szeliski, Computer Vision: Algorithms and Applications 
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Projective Lines 
• What is a line in projective space? 

• A line is a plane of rays through origin 

• all rays (x,y,z) satisfying:  ax + by + cz = 0 

 


















z
y
x

cba0       :notationvectorin

• A line is represented as a homogeneous 3-vector l 
lT p 
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Ideal points and lines 
• Ideal point (“point at infinity”) 

– p  (x, y, 0) – parallel to image plane 
– It has infinite image coordinates 

(sx,sy,0) y 

x 

z image plane 

Line at infinity 
• l∞  (0, 0, 1) – parallel to image plane 

• Contains all ideal points 

(sx,sy,0) 

y 

x 

z image plane 
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Point and Line Duality 
– A line l is a homogeneous 3-vector (a ray) 
– It is  to every point (ray) p on the line:  lT p=0 

 

• What is the intersection of two lines l1 and l2 ? 

• p is  to l1 and l2      p = l1  l2 

• Points and lines are dual in projective space 

• every property of points also applies to lines 

l p1 p2 l1 
l2 

p 

• What is the line l spanned by rays p1 and p2 ? 

• l is  to p1 and p2      l = p1  p2  (l is the plane normal) 

 

Point and Line Duality [II]  ✯ 

Homogeneous ⇔ Cartesian 
• Point: 
      |  

 
 

•  Line: 
– Is such that  𝑙 𝑇𝑝 = 0     
– Point Eq of a line is: 𝑦 = 𝑚𝑥 + 𝑏 
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Point and Line Duality [III] 

• 2 Points Make a Line 
 

 
 

 

• 2 Lines Make  Point! 

 

Vanishing Points 
• Vanishing point 

– projection of a point at infinity 
– whiteboard 

capture, 
architecture,…  

image plane 

camera 
center 

ground plane 

vanishing point 
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Fun With Vanishing Points 
 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Vanishing Points (2D) 
 

image plane 

camera 
center 

line on ground plane 

vanishing point 
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Vanishing Points 
• Properties 

– Any two parallel lines have the same vanishing point 
– The ray from C through v point is parallel to the lines 
– An image may have more than one vanishing point 

image plane 

camera 
center 

C 

line on ground plane 

vanishing point V 

line on ground plane 

 

Vanishing Lines 
• Multiple Vanishing Points 

– Any set of parallel lines on the plane define a vanishing point 
– The union of all of these vanishing points is the horizon line 

v1 v2 
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Two-View Geometry: Epipolar Plane 

• Epipole: The point of intersection of the line joining the camera centres (the baseline) with the image plane. 
Equivalently, the epipole is the image in one view of the camera centre of the other view.  
 

• Epipolar plane is a plane containing the baseline.  
There is a one-parameter family (a pencil) of epipolar planes  
 

• Epipolar line is the intersection of an epipolar plane with the image plane. All epipolar lines intersect at the 
epipole. An epipolar plane intersects the left and right image planes in epipolar lines, and defines the 
correspondence between the lines.  

 

Two-frame methods 
• Two main variants: 
• Calibrated: “Essential matrix” E 

  use ray directions (xi, xi’ ) 
• Uncalibrated: “Fundamental matrix” F 

 
• [Hartley & Zisserman 2000] 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Fundamental matrix 
• Camera calibrations are unknown 
•  x’ F x = 0 with F  = [e] H = K’[t] R K-1 
• Solve for F using least squares (SVD) 

– re-scale (xi, xi’ ) so that |xi|≈1/2  [Hartley] 
• e (epipole) is still the least singular vector of F 
• H obtained from the other two s.v.s 
• “plane + parallax” (projective) reconstruction 
• use self-calibration to determine K [Pollefeys] 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Essential matrix 
• Co-planarity constraint: 
•     x’ ≈  R x + t 
•  [t] x’ ≈ [t] R x 
•   x’ [t] x’ ≈ x’ [t] R x 
•       x’ E x = 0  with E =[t] R 
• Solve for E using least squares (SVD) 
• t is the least singular vector of E 
• R obtained from the other two s.v.s 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Stereo: Epipolar geometry 
• Match features along epipolar lines 

viewing ray epipolar plane 

epipolar line 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Stereo: epipolar geometry 
• for two images (or images with collinear camera centers), 

can find epipolar lines 
• epipolar lines are the projection of the pencil of planes 

passing through the centers 
 

• Rectification:  warping the input images (perspective 
transformation) so that epipolar lines are horizontal 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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Fundamental Matrix 
• The fundamental matrix is the algebraic representation of 

epipolar geometry. 
 

 

Fundamental Matrix Example 
• Suppose the camera matrices are those of a calibrated 

stereo rig with the world origin at the first camera 
 

• Then: 
 
 

• Epipoles are at: 
 

∴ 
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Summary of fundamental matrix properties 
 

 

Fundamental Matrix & Motion 

• Under a pure translational camera motion, 3D points appear to slide 
along parallel rails. The images of these parallel lines intersect in a 
vanishing point corresponding to the translation direction. The 
epipole e is the vanishing point. 
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Cool Robotics Share 

D. Wedge, The Fundamental Matrix Song 

 

Rectification 
• Project each image onto same plane, which is parallel to 

the epipole 
• Resample lines (and shear/stretch) to place lines in 

correspondence, and minimize distortion 
 
 
 
 
 
 

• [Zhang and Loop, MSR-TR-99-21] 
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How to get Matching Points? Features 
•  Colour   
• Corners 
• Edges 
• Lines 
• Statistics on Edges:  SIFT, SURF, ORB… 

In OpenCV: The following detector types are supported: 
–     "FAST" – FastFeatureDetector 
–     "STAR" – StarFeatureDetector 
–     "SIFT" – SIFT (nonfree module) 
–     "SURF" – SURF (nonfree module) 
–     "ORB" – ORB 
–     "BRISK" – BRISK 
–     "MSER" – MSER 
–     "GFTT" – GoodFeaturesToTrackDetector 
–     "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled 
–     "Dense" – DenseFeatureDetector 
–     "SimpleBlob" – SimpleBlobDetector 

 

Feature-based stereo 
• Match “corner” (interest) points 

 
 
 
 
 
 
 

• Interpolate complete solution 
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SFM: Structure from Motion  
(& Cool Robotics Share (this week)) 

 

Structure [from] Motion 
• Given a set of feature tracks, 

estimate the 3D structure and 3D (camera) motion. 
 

• Assumption: orthographic projection 
 

• Tracks:  (ufp,vfp), f: frame, p: point 
• Subtract out mean 2D position… 
   if: rotation,  sp: position 
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Structure from motion 
• How many points do we need to match? 
• 2 frames: 

– (R,t): 5 dof + 3n point locations  
– 4n point measurements   
– n  5 

• k frames: 
– 6(k–1)-1 + 3n  2kn 

• always want to use many more 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Measurement equations 
• Measurement equations 
 ufp = if

T sp   if: rotation,  sp: position 
 vfp = jf

T sp 
 
 

• Stack them up… 
 W = R S 
 R = (i1,…,iF, j1,…,jF)T 

 S = (s1,…,sP) 
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Factorization 

 W = R2F3 S3P 

SVD 
 W = U Λ V  Λ must be rank 3 
 W’ = (U Λ 1/2)(Λ1/2 V)  = U’ V’ 
Make R orthogonal 
 R = QU’ ,  S = Q-1V’ 
 if

TQTQif = 1 … 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Results  
• Look at paper figures… 
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Bundle Adjustment 
• What makes this non-linear minimization hard? 

– many more parameters: potentially slow 
– poorer conditioning (high correlation) 
– potentially lots of outliers 
– gauge (coordinate) freedom 

From  Szeliski, Computer Vision: Algorithms and Applications 
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© 2016 School of Information Technology and Electrical Engineering at the University of Queensland 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 
6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Single View Geometry & Lines 

8 14-Sep Robot Sensing: Multiple View Geometry & Feature 
Detection 

9 21-Sep Probabilistic Robotics: Localization & SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct Planning & Control 
12 19-Oct State-Space Modelling 
13 26-Oct Shaping the Dynamic Response/LQR + Course Review 
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Sensing  and Vision 
• Multiple View Geometry 

– P. 47 
– Hartley & Zisserman: 

Chapter 6: Camera Models 
Chapter 7: Camera Matrix 

• Localization 
– Chapter 6: Localization 

Today 

Reference Material 

UQ Library/ 
SpringerLink UQ Library 

(ePDF) 
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Announcement: Monday Lab  Demo Thur | Fri 
• Monday, October 3: 

– Queens Birthday Public Holiday 
 

• “Makeup” Lab  
on Friday, October 7 
from 4-6pm  
 

• Monday Prac students  
may demo on Thursday (Oct 6) 
or Friday (Oct 7) 
 

• Thursday Prac students to demo 
on Thursday (Oct 6) 
 

 

SIFT / Corners for the {Frame} finder 

To find the Frame, Consider: 
• Structure 

– Corners 
– SIFT 
– ??? 

• Calibration Sequence 
• Thought Experiment: 

How do you make this 
traceable back to the 
{camera frame} 
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Camera matrix calibration 
• Advantages: 

– very simple to formulate and solve 
– can recover K [R | t] from M using  

QR decomposition [Golub & VanLoan 96] 
 

• Disadvantages: 
– doesn't compute internal parameters 
– more unknowns than true degrees of freedom 
– need a separate camera matrix for each new view 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Multi-plane calibration 
• Use several images of planar target held at unknown 

orientations [Zhang 99] 
– Compute plane homographies 

 
 

– Solve for K-TK-1 from Hk’s 
• 1plane if only f unknown 
• 2 planes if (f,uc,vc) unknown 
• 3+ planes for full K 

– Code available from Zhang and OpenCV 
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METR 4202: Compendium Page 249 of 467Lecture: 8



5 

 

Lines 

(Recap) 

 

Hough Transform 

• Uses a voting mechanism 
• Can be used for other lines and shapes  

(not just straight lines) 
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Hough Transform: Voting Space 

• Count the number of lines that can go through a point and 
move it from the “x-y” plane to the “a-b” plane 

• There is only a one-“infinite” number (a line!) of solutions 
(not a two-“infinite” set – a plane) 

 

Hough Transform: Voting Space 

• In practice, the polar form is often used 
 

• This avoids problems with lines that are nearly vertical  
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Hough Transform: Algorithm 
1. Quantize the parameter space appropriately.  
 
2. Assume that each cell in the parameter space is an 
accumulator. Initialize all cells to zero.  
 
3. For each point (x,y) in the (visual & range) image space, 
increment by 1 each of the accumulators that satisfy the 
equation.  
 
4. Maxima in the accumulator array correspond to the 
parameters of model instances.  

 
 

Line Detection – Hough Lines [1] 
• A line in an image can be expressed as two variables: 

– Cartesian coordinate system: m,b 
– Polar coordinate system: r, θ  

  avoids problems with vert. lines 
 
 y=mx+b   
 
 

• For each point (x1, y1) we can write: 
 

• Each pair (r,θ) represents a line that passes through  (x1, y1)  
 
See also OpenCV documentation (cv::HoughLines) 
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Line Detection – Hough Lines [2] 
• Thus a given point gives a sinusoid 

 
 
 
 

• Repeating for all points on the image 
 
 
 
 

 
See also OpenCV documentation (cv::HoughLines) 

 

Line Detection – Hough Lines [3] 
• Thus a given point  

gives a sinusoid 
 
 

• Repeating for all 
 points on the image 
 

• NOTE that an intersection of sinusoids represents (a point) 
represents a line in which pixel points lay. 

 Thus, a line can be detected  by finding the number of 
 Intersections between curves 

 
 

 
See also OpenCV documentation (cv::HoughLines) 
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“Cool Robotics Share” -- Hough Transform 

• http://www.activovision.com/octavi/doku.php?id=hough_transform 

  

RANdom SAmple Consensus 
1. Repeatedly select a small (minimal) subset of 

correspondences 
2. Estimate a solution (in this case a the line) 
3. Count the number of “inliers”, |e|<Θ 

(for LMS, estimate med(|e|) 
4. Pick the best subset of inliers 
5. Find a complete least-squares solution 

 

• Related to least median squares 
• See also:  

MAPSAC (Maximum A Posteriori SAmple Consensus) 
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Feature Detection 

 

“A Rose By Any Other Name? 

 

 3 8 1 7 6 7 4 7 8 3 5 9 5 3 6 3 7 4 4 6 9 3 8 7 9 0 3 6 3 2 6 6 5 6 0 3 4 2 6 8 3 8 1… 

 7 6 7 4 7 8 3 5 9 5 3 6 3 7 4 4 6 9 3 8 7 9 0 3 6 3 2 6 6 5 6 0 3 4 2 6 8 

 
– SIFT 
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How to get Matching Points? Features 
•  Colour   
• Corners 
• Edges 
• Lines 
• Statistics on Edges:  SIFT, SURF, ORB… 

In OpenCV: The following detector types are supported: 
–     "FAST" – FastFeatureDetector 
–     "STAR" – StarFeatureDetector 
–     "SIFT" – SIFT (nonfree module) 
–     "SURF" – SURF (nonfree module) 
–     "ORB" – ORB 
–     "BRISK" – BRISK 
–     "MSER" – MSER 
–     "GFTT" – GoodFeaturesToTrackDetector 
–     "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled 
–     "Dense" – DenseFeatureDetector 
–     "SimpleBlob" – SimpleBlobDetector 

 

Why extract features? 
• Object detection  
• Robot Navigation  
• Scene Recognition 

 
 
 
 
 
 

• Steps: 
– Extract Features 
– Match Features Adopted drom   S. Lazebnik, Gang Hua (CS 558) 
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Why extract features? [2] 
• Panorama stitching… 

Step 3: Align images   

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

 

Characteristics of good features 
• Repeatability 

– The same feature can be found in several images despite 
geometric and photometric transformations  

• Saliency 
– Each feature is distinctive 

• Compactness and efficiency 
– Many fewer features than image pixels 

• Locality 
– A feature occupies a relatively small area of the image; robust to 

clutter and occlusion 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 
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Finding Corners 

• Key property: in the region around a corner, image 
gradient has two or more dominant directions 

• Corners are repeatable and distinctive 
C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.   

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

 

Corner Detection: Basic Idea 
• Look through a window 
• Shifting a window in any direction should give a large 

change in intensity 

“edge”: 
no change along 
the edge direction 

“corner”: 
significant change 
in all directions 

“flat” region: 
no change in 
all directions 

Source: A. Efros 
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Corner Detection: Mathematics 
 

 
2

,
( , ) ( , ) ( , ) ( , )

x y
E u v w x y I x u y v I x y   

Change in appearance of window w(x,y)  
for the shift [u,v]: 

I(x, y) 
E(u, v) 

E(3,2) 

w(x, y) 
Adopted from    
S. Lazebnik,  
Gang Hua (CS 558) 

 

Corner Detection: Mathematics 
 

 
2

,
( , ) ( , ) ( , ) ( , )

x y
E u v w x y I x u y v I x y   

I(x, y) 
E(u, v) 

E(0,0) 

w(x, y) 

Change in appearance of window w(x,y)  
for the shift [u,v]: 

Adopted from    
S. Lazebnik,  
Gang Hua (CS 558) 
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Corner Detection: Mathematics 
 

 
2

,
( , ) ( , ) ( , ) ( , )

x y
E u v w x y I x u y v I x y   

Intensity Shifted 
intensity 

Window 
function 

or Window function w(x,y) = 

Gaussian 1 in window, 0 outside 

Source: R. Szeliski 

Change in appearance of window w(x,y)  
for the shift [u,v]: 

Adopted from    
S. Lazebnik,  
Gang Hua (CS 558) 

 

Corner Detection: Mathematics 
 

 
2

,
( , ) ( , ) ( , ) ( , )

x y
E u v w x y I x u y v I x y   

We want to find out how this function behaves for small shifts 

Change in appearance of window w(x,y)  
for the shift [u,v]: 

E(u, v) 

Adopted from    
S. Lazebnik,  
Gang Hua (CS 558) 
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Corner Detection: Mathematics 
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Local quadratic approximation of E(u,v) in the neighborhood of 
(0,0) is given by the second-order Taylor expansion: 

We want to find out how this function behaves for small shifts 

Change in appearance of window w(x,y)  
for the shift [u,v]: 

Adopted from    
S. Lazebnik,  
Gang Hua (CS 558) 

 

Corner Detection: Mathematics 
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Adopted from    
S. Lazebnik,  
Gang Hua (CS 558) 
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Corner Detection: Mathematics 


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Adopted from    
S. Lazebnik,  
Gang Hua (CS 558) 

 

Harris detector: Steps 
• Compute Gaussian derivatives at each pixel 
• Compute second moment matrix M in a Gaussian window 

around each pixel  
• Compute corner response function R 
• Threshold R 
• Find local maxima of response function (nonmaximum 

suppression) 

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.   

Adopted from    
S. Lazebnik,  
Gang Hua (CS 558) 
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Harris Detector: Steps 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

Harris Detector: Steps 
Compute corner response R 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 
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Harris Detector: Steps 
Find points with large corner response: R>threshold 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

Harris Detector: Steps 
Take only the points of local maxima of R 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 
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Harris Detector: Steps 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

Invariance and covariance 
• We want corner locations to be invariant to photometric 

transformations and covariant to geometric 
transformations 
– Invariance: image is transformed and corner locations do not 

change 
– Covariance: if we have two transformed versions of the same 

image, features should be detected in corresponding locations 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 
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Basic idea: 
• Take 16x16 square window around detected feature 
• Compute edge orientation (angle of the gradient - 90) for each pixel 
• Throw out weak edges (threshold gradient magnitude) 
• Create histogram of surviving edge orientations 

Scale Invariant Feature Transform 

Adapted from slide by David Lowe 

0 2 
angle histogram 

 

SIFT descriptor 

Full version 
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below) 
• Compute an orientation histogram for each cell 
• 16 cells * 8 orientations = 128 dimensional descriptor 
 

 

Adapted from slide by David Lowe 
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Properties of SIFT 
• Extraordinarily robust matching technique 

– Can handle changes in viewpoint 
• Up to about 60 degree out of plane rotation 

– Can handle significant changes in illumination 
• Sometimes even day vs. night (below) 

– Fast and efficient—can run in real time 
– Lots of code available 

• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT  

From David Lowe and Szeliski, Computer Vision: Algorithms and Applications 

 

Feature matching 
• Given a feature in I1, how to find the best match in I2? 

1. Define distance function that compares two descriptors 
2. Test all the features in I2, find the one with min distance 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Feature distance 

• How to define the difference between two features 
f1, f2? 
– Simple approach is SSD(f1, f2)  

• sum of square differences between entries of the two descriptors 
• can give good scores to very ambiguous (bad) matches  

I1 I2 

f1 f2 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Feature distance 
• How to define the difference between two features f1, f2? 

– Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’) 
• f2         is  best SSD match to f1 in I2 
• f2’        is  2nd   best SSD match to f1 in I2 

• gives small values for ambiguous matches 

I1 I2 

f1 f2 f2' 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Evaluating the results 
• How can we measure the performance of a feature matcher? 

50 

75 

200 

feature distance 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

True/false positives 
 
 
 
 
 
 
 
 
 

• The distance threshold affects performance 
– True positives = # of detected matches that are correct 

• Suppose we want to maximize these—how to choose threshold? 
– False positives = # of detected matches that are incorrect 

• Suppose we want to minimize these—how to choose threshold? 

50 

75 

200 

feature distance 

false match 

true match 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Levenberg-Marquardt 
• Iterative non-linear least squares [Press’92] 

– Linearize measurement equations 
 
 
 
 
 

– Substitute into log-likelihood equation:   
quadratic cost function in Dm 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Levenberg-Marquardt 
• What if it doesn’t converge? 

– Multiply diagonal by (1 + l), increase l until it does 
– Halve the step size Dm (my favorite) 
– Use line search 
– Other ideas? 

• Uncertainty analysis:  covariance S = A-1 
• Is maximum likelihood the best idea? 
• How to start in vicinity of global minimum? 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Feature Based  

Vision Extras 

Scale Invariant Feature Transforms 

• Goal was to define an algorithm to 
describe an image with features 
 

• This would enable a number of 
different applications: 
– Feature Matching 
– Object / Image Matching 
– Orientation / Homography Resolution 

Wikipedia: Scale Invariant 
Feature Transforms (2014) 
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SIFT: Feature Definition 
• SIFT features are defined as the local extrema in a 

Difference of Gaussian (D) Scale Pyramid. 
 

𝐷 𝑥, 𝑦, 𝜎 = 𝐿 𝑥, 𝑦, 𝑘𝑖𝜎 − 𝐿(𝑥, 𝑦, 𝑘𝑖𝜎) 
Where 

𝐿 𝑥, 𝑦, 𝑘𝑖𝜎 = 𝐺 𝑥, 𝑦, 𝑘𝜎 ∗ 𝐼(𝑥, 𝑦) 
 

 

SIFT: Scale Pyramid 
• D images are organised 

into a pyramid of 
progressively blurred 
images. 

• Separated into octaves 
and scale levels per 
octave. 

• Between octaves image 
is decimated by a factor 
of 2. 

Lowe, D. G. (2004). Distinctive image features from scale-invariant 
keypoints. International journal of computer vision, 60(2), 91-110. 
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SIFT: Scale Pyramid 

Lowe, D. G. (2004). Distinctive image features from scale-invariant 
keypoints. International journal of computer vision, 60(2), 91-110. 

 

SIFT: Feature Detection 
• Each scale level in the image is 

evaluated for features. 
• A feature is defined as a local 

maximum or minimum. 
• For efficiency the 26 surrounding 

points are evaluated. 

Lowe, D. G. (2004). Distinctive image features from scale-invariant 
keypoints. International journal of computer vision, 60(2), 91-110. 
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SIFT: Feature Reduction 
• Initial feature detection over 

detects features descriptive 
of the image. 

• Initially remove features 
with low contrast. 

• Then evaluate features to 
remove any edge responses.  

Wikipedia: Scale Invariant 
Feature Transforms (2014) 

 

SIFT: Feature Description 
• Features are described 

using the pixel gradients 
in a 16x16 square 
centring on the feature 
point. 

• These gradients are then 
segmented into 4x4 
boxes. An 8 bin 
orientation histogram is 
created to define the box. 
 

Lowe, D. G. (2004). Distinctive image features from scale-invariant 
keypoints. International journal of computer vision, 60(2), 91-110. 
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SIFT: Feature Matching 
• A match is defined as a pair 

of features with the closest 
Euclidian distance to each 
other. 

• Matches above a threshold 
are culled to improve match. 

OpenCV: Feature Matching (2014) 

 

Boosted Cascade Haar-like Weak Classifiers 
• Fast object detector designed 

primarily for use in face 
detection. 

• Uses a cascade of weak 
classifiers to define object 
match. 
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Viola Jones: Feature Definition 
• Feature is classified as being the 

difference between the average 
intensity of two or more image 
sections. 

• Can be any arithmetic 
combination of section values. 

 

Viola Jones: Efficient Calculation of Features 
• Fast calculation of the 

feature value is obtained 
by calculating the integral 
image. 

• This leaves at most 4 sum 
operations to calculate a 
feature.  
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Viola Jones: Boosting 
• Iteratively selects best classifier 

for detection. 
• Assigns weights to each classifier 

to indicate likelihood of classifier 
indicating positive detection 

• If the sum of the weights of 
positive classifier responses is 
above a threshold then there is a 
positive detection. 

Viola, P., & Jones, M. (2001). Rapid object detection using a 
boosted cascade of simple features 

 

Viola Jones: Boosted Cascades 
• Effective boosted classifiers 

require a high number of weak 
classifiers. 

• However, simple low count 
classifiers offer high rejection 
rate. 

• Solution is to use cascaded 
classifiers. 
 
 
 

Viola, P., & Jones, M. (2001). Rapid object detection using a 
boosted cascade of simple features 
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© 2016 School of Information Technology and Electrical Engineering at the University of Queensland 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 
6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Single View Geometry & Lines 
8 14-Sep Robot Sensing: Feature Detection 

9 21-Sep Robot Sensing: Multiple View Geometry 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct Probabilistic Robotics: Localization & SLAM 
12 19-Oct Probabilistic Robotics: Planning & Control 

13 26-Oct State-Space Automation (Shaping the Dynamic Response/LQR)  
+ Course Review 
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Sensing  and Vision 
• Multiple View Geometry 

– P. 47 
– Hartley & Zisserman: 

Chapter 6: Camera Models 
Chapter 7: Camera Matrix 

• Planning 
– pp. 91-103 

(Yup!  That’s all Peter Corke has to say 
on that – which explains why there is  
no planning at ACRV ). 

Today 

Reference Material 

UQ Library/ 
SpringerLink UQ Library 

(ePDF) 
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Multiple View 

Geometry 

 

Image Formation – Single View Geometry [I] 
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Image Formation – Single View Geometry [II] 
 Camera Projection Matrix 

• x = Image point 
• X = World point 
• K = Camera Calibration Matrix 

 
Perspective Camera as: 
 where: P is 3×4 and of rank 3 

 
 

Transformations  ✯ 

• x’:  New Image   &    x :  Old Image 
• Euclidean: 

(Distances preserved) 
 

• Similarity (Scaled Rotation):   
(Angles preserved) 
 Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 
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Transformations [2] 

• Affine : 
(|| lines remain ||) 

• Projective:   
(straight lines preserved) 
H: Homogenous 3x3 Matrix 
 

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 

 

2-D Transformations 
 x’ = point in the new (or 2nd) image 
 x = point in the old image 

 
• Translation  x’ = x + t 
• Rotation   x’ = R x + t 
• Similarity   x’ = sR x + t 
• Affine   x’ = A x 
• Projective   x’ = A x 
  here, x is an inhomogeneous pt (2-vector) 
   x’  is a homogeneous point 
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2-D Transformations 
 

 

3D Transformations 
 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

METR 4202: Compendium Page 283 of 467Lecture: 9



7 

Projection Models 
• Orthographic 

 
• Weak Perspective 

 
• Affine 

 
• Perspective 

 
• Projective 
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Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Properties of Projection 
• Preserves 

– Lines and conics 
– Incidence 
– Invariants (cross-ratio) 

 
• Does not preserve 

– Lengths 
– Angles 
– Parallelism 
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Planar Projective Transformations 
• Perspective projection of a plane 

– lots of names for this: 
• homography, colineation, planar projective map 

– Easily modeled using homogeneous coordinates 
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s
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H p p’   

To apply a homography H 
• compute p’ = Hp 
• p’’ = p’/s    normalize by dividing by third component 

(0,0,0) 
(sx,sy,s) 

image plane 

(x,y

,1) 

y 

x z 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Image Formation – Two-View Geometry [Stereopsis] 
 Fundamental Matrix 
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Image Rectification 
 
 

To unwarp (rectify) an image 
• solve for H given p’’ and p 
• solve equations of the form:  sp’’ = Hp 

– linear in unknowns:  s and coefficients of H 

– need at least 4 points 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

3D Projective Geometry 
• These concepts generalize naturally to 3D 

– Homogeneous coordinates 
• Projective 3D points have four coords:  P = (X,Y,Z,W) 

– Duality 
• A plane L is also represented by a 4-vector 
• Points and planes are dual in 3D: L P=0 

– Projective transformations 
• Represented by 4x4 matrices T:  P’ = TP,    L’ = L T-1 

– Lines are a special case… 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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3D → 2D Perspective Projection 
(Image Formation Equations) 

 
 

u 

(Xc,Yc,Zc) 

uc f 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

3D → 2D Perspective Projection 
• Matrix Projection (camera matrix): 

ΠPp 
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Slide from Szeliski, Computer Vision: Algorithms and Applications 
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The Projective Plane 
• Why do we need homogeneous coordinates? 

– Represent points at infinity, homographies, perspective 
projection, multi-view relationships 

• What is the geometric intuition? 
– A point in the image is a ray in projective space 

(0,0,0) 

(sx,sy,s) 

image plane 

(x,y,1) 

y 

x z 

• Each point (x,y) on the plane is represented by a ray 

(sx,sy,s) 

– all points on the ray are equivalent:  (x, y, 1)  (sx, sy, s) 
Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Projective Lines 
• What is a line in projective space? 

• A line is a plane of rays through origin 

• all rays (x,y,z) satisfying:  ax + by + cz = 0 

 


















z
y
x

cba0       :notationvectorin

• A line is represented as a homogeneous 3-vector l 
lT p 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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Ideal points and lines 
• Ideal point (“point at infinity”) 

– p  (x, y, 0) – parallel to image plane 
– It has infinite image coordinates 

(sx,sy,0) y 

x 

z image plane 

Line at infinity 
• l∞  (0, 0, 1) – parallel to image plane 

• Contains all ideal points 

(sx,sy,0) 

y 

x 

z image plane 

 

Point and Line Duality 
– A line l is a homogeneous 3-vector (a ray) 
– It is  to every point (ray) p on the line:  lT p=0 

 

• What is the intersection of two lines l1 and l2 ? 

• p is  to l1 and l2      p = l1  l2 

• Points and lines are dual in projective space 

• every property of points also applies to lines 

l p1 p2 l1 
l2 

p 

• What is the line l spanned by rays p1 and p2 ? 

• l is  to p1 and p2      l = p1  p2  (l is the plane normal) 

 

METR 4202: Compendium Page 289 of 467Lecture: 9



13 

Point and Line Duality [II]  ✯ 

Homogeneous ⇔ Cartesian 
• Point: 
      |  

 
 

•  Line: 
– Is such that  𝑙 𝑇𝑝 = 0     
– Point Eq of a line is: 𝑦 = 𝑚𝑥 + 𝑏 
 

 
 

 
 

Point and Line Duality [III] 

• 2 Points Make a Line 
 

 
 

 

• 2 Lines Make  Point! 
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Vanishing Points 
• Vanishing point 

– projection of a point at infinity 
– whiteboard 

capture, 
architecture,…  

image plane 

camera 
center 

ground plane 

vanishing point 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

 

“Fundamental”  

Multi-View Geometry 
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Fun With Vanishing Points 
 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Vanishing Points (2D) 
 

image plane 

camera 
center 

line on ground plane 

vanishing point 
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Vanishing Points 
• Properties 

– Any two parallel lines have the same vanishing point 
– The ray from C through v point is parallel to the lines 
– An image may have more than one vanishing point 

image plane 

camera 
center 

C 

line on ground plane 

vanishing point V 

line on ground plane 

 

Vanishing Lines 
• Multiple Vanishing Points 

– Any set of parallel lines on the plane define a vanishing point 
– The union of all of these vanishing points is the horizon line 

v1 v2 
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Stereo: epipolar geometry 
• for two images (or images with collinear camera centers), 

can find epipolar lines 
• epipolar lines are the projection of the pencil of planes 

passing through the centers 
 

• Rectification:  warping the input images (perspective 
transformation) so that epipolar lines are horizontal 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Two-View Geometry: Epipolar Plane 

• Epipole: The point of intersection of the line joining the camera centres (the baseline) with the image plane. 
Equivalently, the epipole is the image in one view of the camera centre of the other view.  
 

• Epipolar plane is a plane containing the baseline.  
There is a one-parameter family (a pencil) of epipolar planes  
 

• Epipolar line is the intersection of an epipolar plane with the image plane. All epipolar lines intersect at the 
epipole. An epipolar plane intersects the left and right image planes in epipolar lines, and defines the 
correspondence between the lines.  
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Two-frame methods 
• Two main variants: 
• Calibrated: “Essential matrix” E 

  use ray directions (xi, xi’ ) 
• Uncalibrated: “Fundamental matrix” F 

 
• [Hartley & Zisserman 2000] 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Essential matrix 
• Co-planarity constraint: 

–     x’ ≈  R x + t 
–  [t] x’ ≈ [t] R x 
–  x’ [t] x’ ≈ x’ [t] R x 
–  x’ E x = 0  with E =[t] R 
 

• Solve for E using least squares (SVD) 
• t is the least singular vector of E 
• R obtained from the other two s.v.s 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Stereo: Epipolar geometry 
• Match features along epipolar lines 

viewing ray epipolar plane 

epipolar line 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Fundamental Matrix 
• The fundamental matrix is the algebraic representation of 

epipolar geometry. 
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Fundamental matrix 
• Camera calibrations are unknown 
•  x’ F x = 0 with F  = [e] H = K’[t] R K-1 
• Solve for F using least squares (SVD) 

– re-scale (xi, xi’ ) so that |xi|≈1/2  [Hartley] 
• e (epipole) is still the least singular vector of F 
• H obtained from the other two s.v.s 
• “plane + parallax” (projective) reconstruction 
• use self-calibration to determine K [Pollefeys] 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Fundamental Matrix Example 
• Suppose the camera matrices are those of a calibrated 

stereo rig with the world origin at the first camera 
 

• Then: 
 
 

• Epipoles are at: 
 

∴ 
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Summary of fundamental matrix properties 
 

 

Cool Robotics Share 

D. Wedge, The Fundamental Matrix Song 
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Fundamental Matrix & Motion 

• Under a pure translational camera motion, 3D points appear to slide 
along parallel rails. The images of these parallel lines intersect in a 
vanishing point corresponding to the translation direction. The 
epipole e is the vanishing point. 
  

Finding correspondences 
• Apply feature matching criterion (e.g., correlation or 

Lucas-Kanade) at all pixels simultaneously 
• Search only over epipolar lines (many fewer candidate 

positions) 
 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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Matching criteria 
• Raw pixel values (correlation) 
• Band-pass filtered images [Jones & Malik 92] 
• “Corner” like features [Zhang, …] 
• Edges [many people…] 
• Gradients [Seitz 89;  Scharstein 94] 
• Rank statistics [Zabih & Woodfill 94] 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Feature-based stereo 
• Match “corner” (interest) points 

 
 
 
 
 
 
 

• Interpolate complete solution 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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SFM: Structure from Motion  
(& Cool Robotics Share (this week)) 

 

Structure [from] Motion 
• Given a set of feature tracks, 

estimate the 3D structure and 3D (camera) motion. 
 

• Assumption: orthographic projection 
 

• Tracks:  (ufp,vfp), f: frame, p: point 
• Subtract out mean 2D position… 
   if: rotation,  sp: position 
   

From  Szeliski, Computer Vision: Algorithms and Applications 
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Structure from motion 
• How many points do we need to match? 
• 2 frames: 

– (R,t): 5 dof + 3n point locations  
– 4n point measurements   
– n  5 

• k frames: 
– 6(k–1)-1 + 3n  2kn 

• always want to use many more 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Measurement equations 
• Measurement equations 
 ufp = if

T sp   if: rotation,  sp: position 
 vfp = jf

T sp 
 
 

• Stack them up… 
 W = R S 
 R = (i1,…,iF, j1,…,jF)T 

 S = (s1,…,sP) 

 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Factorization 

 W = R2F3 S3P 

SVD 
 W = U Λ V  Λ must be rank 3 
 W’ = (U Λ 1/2)(Λ1/2 V)  = U’ V’ 
Make R orthogonal 
 R = QU’ ,  S = Q-1V’ 
 if

TQTQif = 1 … 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Results  
• Look at paper figures… 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Bundle Adjustment 
• What makes this non-linear minimization hard? 

– many more parameters: potentially slow 
– poorer conditioning (high correlation) 
– potentially lots of outliers 
– gauge (coordinate) freedom 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

More Cool Robotics Share! 
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Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 
6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Single View Geometry & Lines 
8 14-Sep Robot Sensing: Feature Detection 
9 21-Sep Robot Sensing: Multiple View Geometry 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct Probabilistic Robotics: Localization & SLAM 
12 19-Oct Probabilistic Robotics: Planning & Control 

13 26-Oct State-Space Automation (Shaping the Dynamic Response/LQR)  
+ Course Review 
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

Planning & Control  
• Planning (Global Motion) 

– pp. 91-103 
(Yup! That’s all Peter Corke has to 
say! Yet there is a Chapter [15] on 
Visual Servoing, a local motion 
method that can’t handle obstacles). 

• SLAM 
– pp. 123-4 

(§6.4-6.5) 

Today 

Reference Material 

UQ Library / Online (PDF) 

UQ Library 
(TJ211.4 .L38 1991) 
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(Kinematic) 

Motion Planning 

 

Motion Planning?  Let’s Get Moving… 
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Motion Planning?  Let’s Get Moving? 

 

Motion Planning? The clutter can not be “ignored” 
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Motion Planning: Processing the Limits 

 

Path-Planning Approaches 
• Roadmap 

Represent the connectivity of the free space by a network 
of 1-D curves 

• Cell decomposition 
Decompose the free space into simple cells and represent 
the connectivity of the free space by the adjacency graph 
of these cells 

• Potential field 
Define a function over the free space that has a global 
minimum at the goal configuration and follow its steepest 
descent 
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See Also: http://robotics.itee.uq.edu.au/~ai/ 

 

External Configuration Is Important … 
Configuration Space 

• A robot configuration is a specification of the positions of all robot 
points relative to a fixed coordinate system 

• Usually a configuration is expressed as a “vector” of 
position/orientation parameters 
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Motion Planning in C-Space 
 

q=(q1,…,qn) 

q1 
q2 

q3 

qn 

 

 

Configuration Space of a Robot 

• Space of all its possible configurations 
• But the topology of this space is usually not that of a 

Cartesian space 

C = S1 x S1 
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Geometric Planning Methods 

• Several Geometric 
Methods: 
– Vertical (Trapezoidal)  

Cell Decomposition 
 
 

– Roadmap Methods 
• Cell (Triangular) 

Decomposition 
• Visibility Graphs 
• Veroni Graphs 

 

 
 

Start 

Goal 

 

I. Rotational Sweep 
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Rotational Sweep 

 

Rotational Sweep 
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Rotational Sweep 

 

Rotational Sweep 
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II. Cell-Decomposition Methods 
Two classes of methods: 
• Exact cell decomposition 

– The free space F is represented by a collection of non-
overlapping cells whose union is exactly F 
 

– Example: trapezoidal decomposition 
 

• Approximate cell decomposition 
– F is represented by a collection of  

non-overlapping cells whose union is contained in F 
Examples: quadtree, octree, 2n-tree 
 

 

Trapezoidal decomposition 
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Planar sweep  O(n log n) time, O(n) space 

Trapezoidal decomposition 

 

Trapezoidal decomposition 
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Trapezoidal decomposition 

 

Trapezoidal decomposition 
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II.Visibility Graph 

tangent segments 
 Eliminate concave obstacle vertices 

can’t be shortest path 

 

Generalized (Reduced) -- Visibility Graph 

tangency point 
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Three-Dimensional Space 

Computing the shortest collision-free path in a  
polyhedral space is NP-hard 

Shortest path passes  
through none of the  
vertices 

locally shortest  
path homotopic  
to globally shortest  
path 

 

Sketch of Grid Algorithm (with best-first search) 
• Place regular grid G over space 
• Search G using best-first search algorithm with potential 

as heuristic function 
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Simple Algorithm (for Visibility Graphs) 
• Install all obstacles vertices in VG, plus the start and goal 

positions 
• For every pair of nodes u, v in VG 
 If segment(u,v) is an obstacle edge then 
   insert (u,v) into VG 
 else 
 for every obstacle edge e 
  if segment(u,v) intersects e 
   then go up to segment 
       insert (u,v) into VG 
• Search VG using A*  

 

III. Potential Field Methods 
• Approach initially proposed for  

real-time collision avoidance [Khatib, 86] 
 

Goal

Goal Force

O
b
s
ta

c
le

 F
o
rc

eMotion

Robot
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Attractive and Repulsive fields 

 

Local-Minimum Issue 

•  Perform best-first search (possibility of  
   combining with approximate cell decomposition) 

•  Alternate descents and random walks 
•  Use local-minimum-free potential (navigation function) 
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Disc Robot in 2-D Workspace 

 

Rigid Robot Translating and Rotating in 2-D 
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IV. Roadmap Methods 
• Visibility graph 
• Voronoi diagram  
• Silhouette 

First complete general method that applies to spaces of 
any dimension and is singly exponential in # of 
dimensions [Canny, 87] 

• Probabilistic roadmaps  (PRMS)  
 and Rapidly-exploring Randomized Trees (RRTs) 

 

 

Roadmap Methods 
• Visibility graph 

Introduced in the Shakey project at SRI in the late 60s. 
Can produce shortest paths in 2-D configuration spaces 

g 

s 

 

 

METR 4202: Compendium Page 323 of 467Lecture: 10



20 

Roadmap Methods 

• Voronoi diagram  
Introduced by 
Computational 
Geometry researchers. 
Generate paths that 
maximizes clearance.  
 
O(n log n) time 
O(n) space 

 

Limits of Geometric Planning Methods 

• How does this scale to high 
degrees of freedom? 
 

• What about “dynamic 
constraints”? 
 

• What about optimality? 
 

• How to tie this to learning 
and optimization  

Start 

Goal 
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Sample-Based Motion Planning 

• PRMs • RRTs 

 

Rapidly Exploring Random Trees (RRT) 

q(m) 

  
  
 

q
(m

/s
) 

x init  
s(m) 

r(
m

) 

x goal x rand  
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Sampling and the “Bug Trap” Problem  

 

Multiple Points & Sequencing 
• Sequencing 

– Determining the “best” order to go in  
 Travelling Salesman Problem 

 
A salesman has to visit each city on a given list exactly once. 
In doing this, he starts from his home city and in the end he has to 
return to his home city. It is plausible for him to select the order in 
which he visits the cities so that the total of the distances travelled 
in his tour is as small as possible.  
 

 
Multi-Goal Problem 

 
A salesman has to visit each city on a given list exactly once. 
In doing this, he starts from his home city and in the end he has to 
return to his home city. It is plausible for him to select the order in 
which he visits the cities so that the total of the distances travelled 
in his tour is as small as possible.  
 
 
 
 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 
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Travelling Salesman Problem 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 

• Given a  distance 
matrix C=(cij) 
 

• Minimize: 
 
 

• Note that this problem is NP-Hard  
 
 
 
 
 

  BUT, Special Cases are Well-Solvable! 

 
 

Travelling Salesman Problem [2] 
• This problem is NP-Hard  

 
 
 
 

 BUT,  
 Special Cases are  
 Well-Solvable! 
 

 
 

For the Euclidean case  
(where the points are on the 2D Euclidean plane) : 
• The shortest TSP tour does not intersect itself, and thus 

geometry makes the problem somewhat easier. 
• If all cities lie on the boundary of a convex polygon, the 

optimal tour is a cyclic walk along the boundary of the 
polygon (in clockwise or counterclockwise direction). 
 

The k-line TSP 
• The a special case where the cities lie on k parallel (or 

almost parallel) lines in the Euclidean plane. 
• EG:  Fabrication of printed circuit boards 
• Solvable in O(n3) time by Dynamic Programming  

(Rote's algorithm) 
 

The necklace TSP 
• The special Euclidean TSP case  

where there exist n circles around  
the n cities such that every cycle  
intersects exactly two adjacent  
circles 
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Cool Robotics Share 
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13 26-Oct State-Space Automation (Shaping the Dynamic Response/LQR)  
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  SLAM  
• SLAM 

– pp. 123-4 
(§6.4-6.5) 

• Planning & Control 
– pp.  ?? 

Today 

Cool Robotics Share (It’s Back!) 

Cartographer  
• Google Open Source SLAM 

 
 
 
 
 
 
 
 

https://opensource.googleblog.com/2016/10/introducing-cartographer.html 

 

Compliant Materials/Robotics 
• Vision in ME Research 

 
 
 
 
 
 
 

 

 

 

http://news.mit.edu/2016/beaver-inspired-wetsuits-surfers-1005 
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Final Exam! 
• 4 Questions |  60 Minutes  
• Open Book 
• Similar in nature to the 2015 Quiz 

 
Topics: 
• Position, orientation and location 

in space 
• Robot analysis  

(forward/Inverse kinematics, 
recursive Newton-Euler 
formulations, etc.) 

• Sensing geometry (including 
camera calibration) 

• Multiple-view geometry 
• Motion planning and control 

Lab 3!: Sort | Play Domino  

• Option 1: Sort Dominos • Option 2: Play Dominos 

Source: https://upload.wikimedia.org/wikipedia/commons/0/04/Dominoes.jpg 
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Lab 3: Extension!  [“Lab-ey McLabFace”] 

• Robot Grading:  
November 3rd – 7th  
 

• Report: 
November 17 
 

• Open-House/Demo Day: 
November 21 
 

 
 

SFM: Structure from Motion  
(& Cool Robotics Share (this week)) 
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Structure [from] Motion 
• Given a set of feature tracks, 

estimate the 3D structure and 3D (camera) motion. 
 

• Assumption: orthographic projection 
 

• Tracks:  (ufp,vfp), f: frame, p: point 
• Subtract out mean 2D position… 
   if: rotation,  sp: position 
   

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Structure from motion 
• How many points do we need to match? 
• 2 frames: 

– (R,t): 5 dof + 3n point locations  
– 4n point measurements   
– n  5 

• k frames: 
– 6(k–1)-1 + 3n  2kn 

• always want to use many more 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Measurement equations 
• Measurement equations 
 ufp = if

T sp   if: rotation,  sp: position 
 vfp = jf

T sp 
 
 

• Stack them up… 
 W = R S 
 R = (i1,…,iF, j1,…,jF)T 

 S = (s1,…,sP) 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Factorization 

 W = R2F3 S3P 

SVD 
 W = U Λ V  Λ must be rank 3 
 W’ = (U Λ 1/2)(Λ1/2 V)  = U’ V’ 
Make R orthogonal 
 R = QU’ ,  S = Q-1V’ 
 if

TQTQif = 1 … 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Results  
• Look at paper figures… 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Bundle Adjustment 
• What makes this non-linear minimization hard? 

– many more parameters: potentially slow 
– poorer conditioning (high correlation) 
– potentially lots of outliers 
– gauge (coordinate) freedom 

From  Szeliski, Computer Vision: Algorithms and Applications 
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More Cool Robotics Share! 

 

SLAM! 
(Better than SMAL! ) 
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What is SLAM? 

• SLAM asks the following question: 
 

 Is it possible for an autonomous vehicle to start at an unknown location in an 
unknown environment and then to incrementally build a map of this 
environment while simultaneously using this map to compute vehicle 
location? 

 
• SLAM has many indoor, outdoor, in-air and underwater applications for 

both manned and autonomous vehicles.  
 

• Examples 
– Explore and return to starting point (Newman) 
– Learn trained paths to different goal locations 
– Traverse a region with complete coverage (eg, mine fields, lawns, reef 

monitoring) 
– … 

 

Components of SLAM 
• Localisation 

– Determine pose given a priori map 
• Mapping 

–  Generate map when pose is accurately known from auxiliary 
source. 

• SLAM 
– Define some arbitrary coordinate origin 
– Generate a map from on-board sensors  
– Compute pose from this map 
– Errors in map and in pose estimate are dependent. 
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SLAM: 30+ Year History! 

Source: Leonard (MIT) Hartley and Zisserman, Cambridge University Press, p. 437 
 

Jenkin Building Basement, Circa 1989 

Source: Leonard (MIT) 
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Basic SLAM Operation 
 

 

Example: SLAM in Victoria Park 
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Basic SLAM Operation 

 

Basic SLAM Operation 

 

METR 4202: Compendium Page 340 of 467Lecture: 11



13 

Basic SLAM Operation 

 

Basic SLAM Operation 
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Why is SLAM Difficult? 

Representation 

Inference 

Systems & Autonomy 

Source: Leonard (MIT) 

Representation 

Inference 

Systems & Autonomy 

Source: Leonard (MIT) 

Why is SLAM Difficult? 
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Inference 
State Estimation & Data Assocation 

Representation Systems & Autonomy 

Source: Leonard (MIT) 

Why is SLAM Difficult? 

Inference 
State Estimation & Data Assocation 
Learning 

Representation Systems & Autonomy 

Source: Leonard (MIT) 

Why is SLAM Difficult? 
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Inference 
State Estimation & Data Assocation 
Learning 

Representation 
Metric vs. Topological 
 

Systems & Autonomy 

Source: Leonard (MIT) 

Why is SLAM Difficult? 

Inference 
State Estimation & Data Assocation 
Learning 

Representation 
Metric vs. Topological 
Objects 
 

Systems & Autonomy 

Source: Leonard (MIT) 

Why is SLAM Difficult? 
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Inference 
State Estimation & Data Assocation 
Learning 

Representation 
Metric vs. Topological 
Objects 
Dense 
 

Systems & Autonomy 

Source: Leonard (MIT) 

Why is SLAM Difficult? 

Inference 
State Estimation & Data Assocation 
Learning 

Systems & Autonomy   
From Demo to  
Deployment 

 

Representation 
Metric vs. Topological 
Objects 
Dense 
 

Source: Leonard (MIT) 

Why is SLAM Difficult? 
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Dependent Errors 

 

Correlated Estimates 
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SLAM Convergence  
• An observation acts like a displacement to a spring system 

– Effect is greatest in a close neighbourhood  
– Effect on other landmarks diminishes with distance 
– Propagation depends on local stiffness (correlation) properties 

• With each new observation the springs become increasingly (and 
monotonically) stiffer. 

• In the limit, a rigid map of landmarks is obtained. 
– A perfect relative map of the environment 

• The location accuracy of the robot is bounded by 
– The current quality of the map  
– The relative sensor measurement  

 

Spring Analogy 
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Monotonic Convergence 

• With each new 
observation, the 
determinant 
decreases over 
the map and for 
any submatrix in 
the map. 

 

Models 

• Models are central to creating a representation of the 
world. 

• Must have a mapping between sensed data (eg, laser, 
cameras, odometry) and the states of interest (eg, 
vehicle pose, stationary landmarks) 

• Two essential model types: 
– Vehicle motion  
– Sensing of external objects 
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An Example System 

RADAR 

Steering 

angle 

Wheel 

speed  

MODEL 

 

Gyro 

(INS) 

 

Observation 

 
 

Estimator 

 

 

GPS 

 

MAP states 

Vehicle pose 

Comparison 

 

Objects Detection 

Data Association 

Additional 

Landmarks 

properties 

Compass 

LASER 

States, Controls, Observations 

Joint state with 
momentary pose 

Joint state with 
pose history 

Control inputs: 
Observations: 
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Vehicle Motion Model 

• Ackerman 
steered vehicles: 
Bicycle model 
 
 

• Discrete time 
model: 
 

 

SLAM Motion Model 
 
 

 
 
• Joint state: Landmarks are assumed stationary 
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Observation Model 
• Range-bearing measurement  

 

 

Applying Bayes to SLAM: Available Information 
• States       (Hidden or inferred values) 

– Vehicle poses 
– Map; typically composed of discrete parts called landmarks or 

features 
• Controls 

– Velocity  
– Steering angle 

• Observations 
– Range-bearing measurements 
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Augmentation: Adding new poses and landmarks 

• Add new pose 
 
 
 

• Conditional probability is a Markov Model 
 

 

Augmentation 

 
 
 

• Product rule to create joint PDF p(xk) 
 
 

• Same method applies to adding new landmark states 
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Marginalisation:  
Removing past poses and obsolete landmarks 

 
• Augmenting with new pose and marginalising the old pose 

gives the classical SLAM prediction step 

 

Fusion: Incorporating observation information 
• Conditional PDF according to observation model 

 
 
 

• Bayes update:  
proportional to product of likelihood and prior 
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Implementing Probabilistic SLAM 
• The problem is that Bayesian operations are intractable in 

general. 
– General equations are good for analytical derivations, not good 

for implementation 
 

• We need approximations 
– Linearised Gaussian systems (EKF, UKF, EIF, SAM) 
– Monte Carlo sampling methods (Rao-Blackwellised particle 

filters) 

 

EKF SLAM 
• The complicated Bayesian equations for augmentation, 

marginalisation, and fusion have simple and efficient 
closed form solutions for linear Gaussian systems 
 

• For non-linear systems, just linearise 
– EKF, EIF: Jacobians 
– UKF: use deterministic samples 
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Kalman Implementation 
• So can we just plug the process and observation models 

into the standard EKF equations and turn the crank? 
 

• Several additional issues: 
– Structure of the SLAM problem permits more efficient 

implementation than naïve EKF. 
– Data association. 
– Feature initialisation. 

 

Structure of SLAM  
• Key property of stochastic SLAM  

– Largely a parameter estimation problem 
 

• Since the map is stationary 
– No process model, no process noise 

 
• For Gaussian SLAM 

– Uncertainty in each landmark reduces monotonically after landmark 
initialisation 

– Map converges  
 

• Examine computational consequences of this structure in next 
session. 
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Data Association 
• Before the Update Stage we need to determine if the 

feature we are observing is:  
– An old feature  
– A new feature 

 
• If there is a  match with only one known feature, the 

Update stage is run with this feature information. 
 

( ) ( ) ( / 1) ( )T
x xS k h k P k k h k R   ( ) ( ) ( ( / ))k z k h x k k  1

1 2
0.95( ) ( ) ( )T k S k k    

 

Validation Gating 
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New Features 
• If there is no match then a potential new feature has been detected 

 
• We do not want to incorporate a spurious observation as a new 

feature 
– It will not be observed again and will consume computational time and 

memory 
– It will add clutter, increasing risk of future mis-associations 
– The features are assumed to be static. We don’t not want to accept 

dynamic objects as features: cars, people etc. 

 

Acceptance of New Features 

• Get the feature in a list of potential features 
• Incorporate the feature once it has been observed for a number of times 

 
• Advantages: 

– Simple to implement 
– Appropriate for High Frequency external sensor 

 
• Disadvantages: 

– Loss of information 
– Potentially a problem with sensor with small field of view: a feature may 

only be seen very few times 

• APPROACH 1 
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Acceptance of New Features 

• The state vector is extended with past vehicle positions and the estimation of the 
cross-correlation between current and previous vehicle states is maintained. With 
this approach improved data association is possible by combining data form 
various points 

– J. J. Leonard and R. J. Rikoski. Incorporation of delayed decision making into 
stochastic mapping  

– Stephan Williams, PhD Thesis, 2001, University of Sydney 
 

• Advantages: 
– No Loss of Information 
– Well suited to low frequency external sensors ( ratio between vehicle velocity and 

feature rate information ) 
– Absolutely necessary for some sensor modalities (eg, range-only, bearing-only) 

 
• Disadvantages: 

– Cost of augmenting state with past poses 
– The implementation is more complicated 

• APPROACH 2 

Incorporation of New Features 

0 0
, ,

0 0 0
, ,

v v v m

m v m m

P P
P

P P
 

  
 

• We have the vehicle states and previous map 

We observed a new feature and the 
covariance and cross-covariance 
terms need to be evaluated 

0 0
, ,

0 0
1 , ,

?
?

? ? ?

v v v m

m v m m

P P
P P P

 
 
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 
 
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Incorporation of New Features 

• Approach 1 

0 0

0 0
0

0
0

0 0

vv vm

mv mm

P P
P P P

A

 
 

  
 
 

With A very large 
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T
x

T
x x

T

W k P k k h k S k
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  

   

  

1 1 1

1 1 1
1

1 1 1

vv vm vn

mv mm mn

nv nm nn

P P P
P P P P

P P P

 
 

  
 
 

• Easy to understand and 
implement 
 

• Very large values of A 
may introduce numerical 
problems 

Analytical Approach 

0 0
, ,

0 0 0
, ,

v v v m

m v m m

P P
P

P P
 

  
 

• We can also evaluate the 
analytical expressions of 
the new terms 

0 0
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0 0
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?
?
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 
 
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 
 
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Constrained Local Submap Filter 

 

CLSF Registration 
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CLSF Global Estimate 
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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 
6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Single View Geometry & Lines 
8 14-Sep Robot Sensing: Feature Detection 
9 21-Sep Robot Sensing: Multiple View Geometry 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct Probabilistic Robotics: Localization & SLAM 

12 19-Oct Probabilistic Robotics: Planning & Control  
(State-Space/Shaping the Dynamic Response/LQR)  

13 26-Oct The Future of Robotics/Automation + Challenges + Course Review 
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Final Exam! 
• 4 Questions |  60 Minutes  
• Open Book 
• Similar in nature to the 2015 Quiz 

 
Topics: 
• Position, orientation and location 

in space 
• Robot analysis  

(forward/Inverse kinematics, 
recursive Newton-Euler 
formulations, etc.) 

• Sensing geometry (including 
camera calibration) 

• Multiple-view geometry 
• Motion planning and control 

Lab 3: Robotics of a Domino Sort 

I. Playing Dominoes of a Sort • Option 2: Play Dominos 

Source https://en.wikipedia.org/wiki/Muggins#/media/File:Muggins.jpg 
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Cool Robotics Share 

White House AI Symposium 
• Report on the opportunities, 

considerations, challenges of AI 
 
 
 
 
 
 

• Related Event (similar thread):  
ETHZ Cybathlon 
 
 
 
 
 
 

Planning & Control Robotics 
• Obstacles + Dynamics 

 
 
 
 

• Partial collisions allowed! 
 

 
 

 
Source: (top) https://youtu.be/voN9CCmzxYk |  

 (bottom) https://youtu.be/LS8sa42xevA   

Source: https://www.whitehouse.gov/blog/2016/10/12/administrations-
report-future-artificial-intelligence | http://www.nbcnews.com/health/ 
health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881 

(Oct 12, 2016) 

(Oct 14, 2016) 

Integrated Planning and Control Methods… 
• A motivating problem (for agility) 

– Cart and pole in a cluttered workspace … 
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Outline 
1. Guest Presentation:  

Josh Song, CHARM Planning  
 

2. Probabilistic Robotics 
 

3. Sample-Based Planning 
 

4. Control (State-Space | Shaping Response | LQR) 
 

5. Integrated Planning & Control 
 
  

Control 
 
 

(Feedback is our friend!) 
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Control Theory 
• The use of feedback to regulate a signal 

 
 

Controller 

Plant 

Desired 

signal xd 

Signal x Control input u 

Error e  = x-xd 

(By convention, xd = 0) x’ = f(x,u) 

 

Model-free vs model-based 
• Two general philosophies: 

– Model-free: do not require a dynamics model to be provided  
– Model-based: do use a dynamics model during computation 

• Model-free methods:  
– Simpler (eg. PID) 
– Tend to require much more manual tuning to perform well 

• Model-based methods: 
– Can achieve good performance (optimal w.r.t. some cost function) 
– Are more complicated to implement 
– Require reasonably good models (system-specific knowledge) 
– Calibration: build a model using measurements before behaving  
– Adaptive control: “learn” parameters of the model online from sensors 
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PID control 
• Proportional-Integral-Derivative controller 

– A workhorse of 1D control systems 
– Model-free 

• Proportional Case: 
 

– 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡) 
– Negative sign assumes control acts in the same direction as x 

 
 

x 
t 

Gain 

 

PID control: Integral term 
 

• 𝑢 𝑡 =  −𝐾𝑝 𝑥 𝑡 −  𝐾𝑖 𝐼 𝑡  

• 𝐼(𝑡)  =   𝑥 𝑡 𝑑𝑡
𝑡

0
    (accumulation of errors) 

 

x 
t 

Residual steady-state errors 
driven asymptotically to 0 

Integral gain 
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PID control: Integral term: Instability 
• I adds a pole 
• If not tuned correctly  this adds instability 
• Ex: For a 2nd order system (momentum), P control 

x 
t 

Divergence 

 

PID control: Derivative term 
 

• 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡) –  𝐾𝑑 𝑥’(𝑡) 

x 

Derivative gain 
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PID control: Together 
• P+I+D: 

– 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡)  −  𝐾𝑖 𝐼(𝑡)  −  𝐾𝑑 𝑥’(𝑡) 

– 𝐼(𝑡)  =   𝑥 𝑡 𝑑𝑡
𝑡

0
 

 

Stability and Convergence 
• System is stable if errors stay bounded 

 
 
 
 

• System is convergent if errors -> 0 
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Example: Trajectory following 
• Say a trajectory xdes(t) has been designed 

– E.g., a rocket’s ascent, a steering path for a car, a plane’s landing 
• Apply PID control 

– u(t) = Kp (xdes(t)- x(t)) - Ki I(t) + Kd (x’des(t)-x’(t)) 

– I(t) =  𝑥𝑑𝑒𝑠 𝑡 − 𝑥 𝑡 𝑑𝑡
𝑡

0
 

• The designer of xdes needs to be knowledgeable about the 
controller’s behavior! 

xdes(t) 
x(t) 

x(t) 

 

Controller Tuning Workflow 
• Hypothesize a control policy 
• Analysis: 

– Assume a model 
– Assume disturbances to be handled 
– Test performance either through mathematical analysis, or 

through simulation 
• Go back and redesign control policy 

– Mathematical techniques give you more insight to improve 
redesign, but require more work 
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Multivariate Systems 
What about more than more interacting aspect? 

 
𝑥’ =  𝑓(𝑥, 𝑢) 
𝑥𝐗ℝ𝑛  
𝑢𝐔ℝ𝑚 

 
• Note: 𝑚  𝑛 and variables are coupled 
 This is not as easy as setting 𝑛 PID controllers  

 
 Derive a “space” of controllers?? 

 

State-Space Modelling 
(ELEC3004 Super-Summary!) 

(“Hear Ye!  It be stated”) 
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Affairs of state 
• Introductory brain-teaser: 

– If you have a dynamic system model with history (ie. 
integration) how do you represent the instantaneous state of the 
plant? 
 

Eg. how would you setup a simulation of a step response, mid-step? 

t = 0 
t 

start 

 

Introduction to state-space 
• We can identify the nodes in the system 

– These nodes contain the integrated time-history values of the 
system response 

– We call them “states” 
 

S   
1
𝑠
   

1
𝑠
 S 

−7 

1 

−12 

2 

S 

u y 
x1 x2 
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Linear system equations 
• We can represent the dynamic relationship between the 

states with a linear system: 
 

 𝑥1  = −7𝑥1 − 12𝑥2  +   𝑢 
 𝑥2  =      𝑥1 +   0𝑥2 + 0𝑢 
 

  𝑦  =      𝑥1 +   2𝑥2 + 0𝑢 
 

 

State variable transformation 
• Important note! 

– The states of a control canonical form system are not the same as 
the modal states 

– They represent the same dynamics, and give the same output, but 
the vector values are different! 

 
• However we can convert between them: 

– Consider state representations, x and q where 
 

x = Tq 
 

T is a “transformation matrix” 
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State variable transformation 
• Two homologous representations: 

and 
 
 

We can write: 
𝒙 = 𝐓𝒒 = 𝐀𝐓𝒛 + 𝐁𝑢 
𝒒 = 𝐓−𝟏𝐀𝐓𝒛 + 𝐓−𝟏𝐁𝑢 

 
Therefore, 𝐅 = 𝐓−𝟏𝐀𝐓 and 𝐆 = 𝐓−𝟏𝐁 
 
Similarly, 𝐂 = 𝐇𝐓 and 𝐷 = 𝐽  

𝒙 = 𝐀𝒙 + 𝐁𝑢 
𝑦 = 𝐂𝒙 + 𝐷𝑢 

𝒒 = 𝐅𝒒 + 𝐆𝑢 
𝑦 = 𝐇𝒒 + 𝐽𝑢 

 

Example: 
(Back To) Robot Arms 

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control” 
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Remembering the Motion Models: 
• Recall from Dynamics, the Required Joint Torque is: 

Dynamical 
Manipulator 

Inertial Tensor – 
a function of 
position and 
acceleration 

Coupled joint 
effects 

(centrifugal and 
coriolis) issues 
due to multiple 
moving joints 

Gravitational 
Effects 

Frictional Effect 
due to Joint/Link 

movement 

 

Lets simplify the model 
• This torque model is a 2nd order one (in position) lets look 

at it as a velocity model rather than positional one then it 
becomes a system of highly coupled 1st order differential 
equations 
 
 

• We will then isolate Acceleration terms (acceleration is 
the 1st derivative of velocity) 
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The State-Space Control Model: 

D-1(q) 1/s 1/s
Output

Positions 

Kinematics

b

C

h

+

+

+

Torque accel Vel pos

Friction

Coriolis

Centrifugal 

Effects

Gravitation 

Effects

Inertial Coupling

 

Setting up a Real Control 
• We will (start) by using positional error to drive our 

torque devices 
 
 
 
 
 
 
 

• This simple model is called a PE (proportional error) 
controller 
 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q
Joint Drive
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PE Controller: 
• To a 1st approximation,  = Km*I 

• Torque is proportional to motor current 
 
 

• And the Torque required is a function of ‘Inertial’ 
(Acceleration) and ‘Friction’ (velocity) effects as suggested by 
our L-E models 
 
 

  Which can be approximated as: 
 
 

 

Setting up a “Control Law” 
• We will use the positional error (as drawn in the state 

model) to develop our torque control 
• We say then for PE control: 

 
 
 
 
 

• Here, kpe is a “gain” term that guarantees sufficient current 
will be generated to develop appropriate torque based on 
observed positional error 
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Using this Control Type: 
• It is a representation of the physical system of a mass on a 

spring! 
• We say after setting our target as a ‘zero goal’ that: 

 
 

  
 the solution of which is: 
  

 
a is a function of 

the servo 
feedback as a 

function of time! 

 

State Space Model of PD: 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q
Joint Drive

K
d

dQ/dt
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PID State Space Model: 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q

K
d

dQ/dt

ki   dt

Joint Drive

 

State Model of Adjustable Controller 

+ Controller w/ Adj.

Parameters
Error Control Input

Feedback, Q
a

Q
d

+

-

Drive Position/Torque
Actual

Pos

Performance

Index

Measure

Robot Sys.

Transfer

Functions

Desired Drive

Calc. Drive

Actual Drive using

Separate Feedback

Sensors

Decision

Logic

Modifications

Kinematic/

Kinetic Models

Physical

Parameters
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State-Space  

Control Design 
 

AKA, it’s all about  𝒖   
 
 

Punchline:  it’s an Optimization   
(Algebraic Riccati equation     Nonlinear optimization    Search! …   

Just like SLAM | Motion Planning!!) 

 

State-space control design 

• Design for discrete state-space systems is just like 
the continuous case. 
– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 
such that  det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧) 
where 𝛼𝑐(𝑧) is the desired control characteristic equation 
 

Predictably, this requires the system controllability matrix 
𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
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Great, so how about control? 
• Given 𝒙 = 𝐅𝒙 + 𝐆𝑢, if we know 𝐅 and 𝐆, we can design a 

controller 𝑢 = −𝐊𝒙 such that 
eig 𝐅 − 𝐆𝐊 < 0 

 
 
 
 
 
 
• In fact, if we have full measurement and control of the states of 𝒙, 

we can position the poles of the system in arbitrary locations! 
 

(Of course, that never happens in reality.) 

 

Example: PID control 
• Consider a system parameterised by three states:  

– 𝑥1, 𝑥2, 𝑥3 
– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 
 

𝑥2is the output state of the system;  
𝑥1is the value of the integral;  

𝑥3 is the velocity. 
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• We can choose 𝐊 to move the eigenvalues of the system  
as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 
 
 

It’s straightforward to see how adding derivative gain  
𝐾3 can stabilise the system.  

 

Example: 
Inverted Pendulum 
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Digital Control 

Wikipedia,  

Cart and pole 

 

 
Inverted Pendulum 
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• The equations of motion of an inverted pendulum (under a 
small angle approximation) may be linearized as: 

𝜃 = 𝜔 
𝜔 = 𝜃 = 𝑄2𝜃 + 𝑃𝑢 

Where: 

𝑄2 =
𝑀 +𝑚

𝑀𝑙
𝑔 

𝑃 =
1

𝑀𝑙
.   

 
If we further assume unity Ml (𝑀𝑙 ≈ 1), then 𝑃 ≈ 1 

Inverted Pendulum – Equations of Motion 

 

• We then select a state-vector as:  

𝒙 =
𝜃
𝜔

, hence 𝒙 = 𝜃 

𝜔 
=

𝜔
𝜔 

 

• Hence giving a state-space model as: 

𝐴 =
0 1
𝑄2 0

,𝐵 =
0
1

 

• The resolvent of which is: 

Φ 𝑠 = 𝑠𝐼 − 𝐴 −1 =
𝑠 −1

−𝑄2 𝑠

−1

=
1

𝑠2 − 𝑄2

𝑠 1
𝑄2 𝑠

 

• And a state-transition matrix as: 

Φ 𝑡 =
cosh 𝑄𝑡

sinh 𝑄𝑡

𝑄
𝑄 𝑠𝑖𝑛ℎ 𝑄𝑡 cosh𝑄𝑡

 

 

Inverted Pendulum –State Space 
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Shaping of  
Dynamic Responses 

 

ELEC3004 Flashback: Another way to see P I|D 
• Derivative 

D provides: 
– High sensitivity 
– Responds to change  
– Adds “damping” &  
∴ permits larger KP 

– Noise sensitive 
– Not used alone 

(∵ its on rate change 
 of error – by itself it  
wouldn’t get there) 

 “Diet Coke of control” 

• Integral 
– Eliminates offsets 

(makes regulation ) 
– Leads to Oscillatory 

behaviour 
– Adds an “order” but 

instability 
(Makes a 2nd order system 3rd order) 

 
 
 “Interesting cake of control” 
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PID control 
• Consider a system parameterised by three states:  

– 𝑥1, 𝑥2, 𝑥3 
– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 

𝑥2is the output state of the system;  
𝑥1is the value of the integral;  

𝑥3 is the velocity. 

 

PID control [2] 
• We can choose 𝐊 to move the eigenvalues of the system  

as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 
 
 

It’s straightforward to see how adding derivative gain  
𝐾3 can stabilise the system.  
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Implementation of Digital PID Controllers 

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1  

 

 
Implementation of Digital PID Controllers (2) 

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1  

 

METR 4202: Compendium Page 387 of 467Lecture: 12



27 

Let’s Generalize This: Shaping the Dynamic Response 
• A method of designing a control system for a process in 

which all the state variables are accessible for 
Measurement 

 This method is also known as pole-placement 
 

• Theory: 
– We will find that in a controllable system, with all the state variables 

accessible for measurement, it is possible to place the closed-loop poles 
anywhere we wish in the complex s plane! 

• Practice: 
– Unfortunately, however, what can be attained in principle may not be 

attainable in practice. Speeding the response of a  sluggish system requires 
the use of large control signals which the actuator (or power supply) may not 
be capable of delivering. And, control system gains are very sensitive to the 
location of the open-loop poles 

 

Pole Placement 
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• FPW has a slightly different notation: 
Pole Placement (Following FPW – Chapter 6) 

 

• Start with a simple feedback control law (“controller”) 
 
 

• It’s actually a regulator 
∵ it does not allow for a reference input to the system. 
(there is no “reference” r  (r = 0)) 

 
•  Substitute in the difference equation 

𝑥 𝑘 + 1 = Φ𝑥 𝑘 − Γ𝐾𝑥(𝑘) 
• 𝒵 Transform: 

𝑧𝐼 − Φ + Γ𝐾 𝑋 𝑧 = 0 
Characteristic Eqn:   

det 𝑧𝐼 − Φ + Γ𝐾 = 0 

Pole Placement 
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Pole placement: Big idea:  
• Arbitrarily select the desired root locations of the closed-

loop system and see if the approach will work.  
• AKA: full state feedback 

∵ enough parameters to influence all the closed-loop poles 
• Finding the elements of K so that the roots are in the 

desired locations. Unlike classical design, where we 
iterated on parameters in the compensator (hoping) to find 
acceptable root locations, the full state feedback, pole-
placement approach guarantees success and allows us to 
arbitrarily pick any root locations, providing that n roots 
are specified for an nth-order system. 

Pole Placement 

 

• The energy (and sensitivity) moves around  
(in this case in “frequency”) 
 
 
 
 
 
 

• Sensitivity reduction at low frequency unavoidably leads 
to sensitivity increase at higher frequencies. 
 
 
 
 
 
 
 

Meaning – No Free Lunch 

Source: Gunter Stein's interpretation of the water bed effect – G. Stein, IEEE Control Systems Magazine, 2003. 
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• Given: 
𝑧𝑖 = 𝛽1, 𝛽2, 𝛽3, … 

 
 
• This gives the desired control-characteristic equation as: 

𝑎𝑐 𝑧 = 𝑧 − 𝛽1 𝑧 − 𝛽2 𝑧 − 𝛽3 … = 
 
 
• Now we “just solve” for K and “bingo” 

Back to Pole Placement 

 

Pole Placement Example (FPW p. 241) 
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Pole Placement Example (FPW p. 241) 

 

Pole Placement Example (FPW p. 241) 
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Ackermann's Formula (FPW p. 245) 
• Gains maybe approximated with: 

 
 

• Where: C = controllability matrix, n is the order of the 
system (or number of state elements) and 𝛼𝑐: 
 
 
 
 
– 𝛼𝑖: coefficients of the desired characteristic equation 

 

Ackermann's Formula Example (FPW p.246) 
 

 

METR 4202: Compendium Page 393 of 467Lecture: 12



33 

Viewing State-Space as 
a Tool for Solving ODEs 

Simultaneously 

 

State Space as an ODE 
• The basic mathematical model for an LTI system consists 

of the state differential equation 
 

 
 

• The solution is can be expressed as a sum of terms owing 
to the initial state and to the input respectively: 
 
 
 

• This is a first-order solution similar to what we expect 
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State Equation Solution: Matrix Exponential 

• The first term can be handled via a Taylor Series  
 

 
 This case is known as the matrix exponential function 
 Also referred to as the state-transition matrix, 
 denoted by Φ (t, t0): 
 
•  The state-transition matrix satisfies the homogeneous state 

equation, thus, it represents the free response of the system. That is, 
it governs the response that is excited by the initial conditions only 

 

Output Equation Solution 
• Having the solution for the complete state response, a 

solution for the complete output equation can be obtained 
as: 
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State Equation Solution 
• Thus, the solution to the unforced system (u=0): 

 
 
 
Note: the term ϕij(t) can be interpreted as the response of the ith state variable 
due to an initial condition on the jth state variable when there are zero initial 
conditions on all other states. 

• The solution of the state differential equation can also be 
obtained using the Laplace transform: 
 
 

 
 

 

Properties of the Matrix Exponential 
• Note that eAt is just a notation used to represent a power series.  

 
• Example 1: Consider the following 4x4 matrix 
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Properties of the matrix exponential 

 

Using this to Solve State Space Problems 
• Example:  

– Solve the following linear second-order ordinary differential  
 

– Consider the input u(t) is a step of magnitude 3  
and the initial conditions  
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State-Space Exercise 
 

 

State-Space Exercise 
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LQR 

 

Linear Quadratic Regulator 
 

• 𝑥’ =  𝐴𝑥 +  𝐵𝑢 
 

• Objective: minimize quadratic cost 
 𝑥𝑇𝑄 𝑥 +  𝑢𝑇𝑅 𝑢 𝑑𝑡 

 
 
 

• Over an infinite horizon 
 

Error term “Effort” penalization 

 

METR 4202: Compendium Page 399 of 467Lecture: 12



39 

Closed form LQR solution 
• Closed form solution 

u = -K x, with K = R-1BP 
• Where P is a symmetric matrix that solves the Riccati 

equation 
– ATP + PA – PBR-1BTP + Q = 0 
– Derivation: calculus of variations 

• Packages available for finding solution 

 

Toy Nonlinear Systems 
 

Cart-pole Acrobot 

Mountain car 
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From Linear to Nonlinear  
• We know how to solve (assuming gt, Ut, Xt convex): 

 
 
   
• How about nonlinear dynamics:  

 

Shooting Methods (feasible) 

Iterate for i=1, 2, 3, … 

  Execute                (from solving (1)) 

  Linearize around resulting trajectory 

  Solve (1) for current linearization 

Collocation Methods (infeasible) 

Iterate for i=1, 2, 3, … 

          --- (no execution)--- 

  Linearize around current solution of (1) 

  Solve (1) for current linearization 

 

 

(1) 

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using 
linearization, linearize equality constraints, convex-quadratic approximate objective function 

 

Model Predictive Control 
• Given:  
• For k=0, 1, 2, …, T 

– Solve 
 
 
 

– Execute uk 

– Observe resulting state, 
 

 

METR 4202: Compendium Page 401 of 467Lecture: 12



41 

Iterative LQR versus Sequential Convex 
Programming 
• Both can solve 

 
 
 
 

• Can run iterative LQR both as a shooting method or as a collocation method, it’s just a 
different way of executing “Solve (1) for current linearization.”  In case of shooting, the 
sequence of linear feedback controllers found can be used for (closed-loop) execution. 
 

• Iterative LQR might need some outer iterations, adjusting “t” of the log barrier 
 

 
   

 

Shooting Methods 

Iterate for i=1, 2, 3, … 

  Execute feedback controller (from solving (1)) 

  Linearize around resulting trajectory 

  Solve (1) for current linearization 

Collocation Methods 

Iterate for i=1, 2, 3, … 

          --- (no execution)--- 

  Linearize around current solution of (1) 

  Solve (1) for current linearization 

 

 

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using 
linearization, linearize equality constraints, convex-quadratic approximate objective function 

 

Example Shooting 
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Example Collocation 

 

+ : 
At all times the sequence of controls is meaningful, and the 
objective function optimized directly corresponds to the 
current control sequence 
-- : 
For unstable systems, need to run feedback controller during 
forward simulation 

– Why?  Open loop sequence of control inputs computed for the linearized 
system will not be perfect for the nonlinear system.  If the nonlinear system is 
unstable, open loop execution would give poor performance. 

– Fixes: 
• Run Model Predictive Control for forward simulation 
• Compute a linear feedback controller from the 2nd order Taylor expansion 

at the optimum 

Practical Benefits and Issues with Shooting 
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+ : 
Can initialize with infeasible trajectory.  Hence if you have a 
rough  idea of a sequence of states that would form a 
reasonable solution,  you can initialize with this sequence of 
states without needing to know a control sequence that 
would lead through them, and without needing to make them 
consistent with the dynamics 
 

-- : 
Sequence of control inputs and states might never converge 
onto a feasible sequence  

Practical Benefits and Issues with Collocation 

 

Direct policy synthesis: Optimal control 
• Input: cost function J(x), estimated dynamics f(x,u), finite 

state/control spaces X, U 
 

• Two basic classes: 
– Trajectory optimization: Hypothesize control sequence u(t), 

simulate to get x(t), perform optimization to improve u(t), repeat. 
– Output: optimal trajectory u(t) (in practice, only a locally optimal 

solution is found) 
– Dynamic programming: Discretize state and control spaces, 

form a discrete search problem, and solve it.  
– Output: Optimal policy u(x) across all of X 
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Discrete Search example 
• Split X, U into cells x1,…,xn, u1,…,um 

• Build transition function xj = f(xi,uk)dt for all i,k 
• State machine with costs dt J(xi) for staying in state I 
• Find u(xi) that minimizes sum 

of total costs. 
• Value iteration: repeated 

dynamic programming over 
V(xi) = sum of total future 
costs 

Value function for 1-joint acrobot 

 

Receding Horizon Control (aka model predictive 
control) 

 

... 

horizon 1 horizon h 
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Integrated 

Planning & Control 
 
 

(Hooray!!!) 

 

Integrated Planning and Control Methods… 
• A motivating problem (for agility) 

– Cart and pole in a cluttered workspace … 
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Trajectory Generation with Constraints: 
Solutions from the Robotics Domain 
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Trajectory Optimization: 
 Integrated Planning & Feedback: 

Planning 

Methods 
Trajectory 

Optimization 

 

• Direct Collocation  

(x: pchip poly, u: lin poly) 

• Lyapunov f (POTools) 

• SNOPT 

• exploits: LQR can be 

solved efficiently 

LQG Control 

Functions 

 

Few Questions Before Starting… 
• Can it possibly be this hard?  
 Yes! 
 (1) Dynamic systems are nonlinear  
 (2) Decision-theoretic planning problems are combinatorial 

 
• Underactuated system?  
 [≜ control input cannot drive the state to any arbitrary direction] 
  DOF>actuators: car-like robot, airplane, cart and pole, etc   
   Actuator saturation! 

 
• Why Now? 

1. State-of-the-art  (LQR-Trees 2009 RSS best paper, kNitro, 
SDPARA).   

2. Convex Optimization (c/o relaxation) is ~ “online-able” 
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Viewing This From a Controls & Policy Perspective 

Core Idea: 
Feedback motion planning (Assistance function) built from a prior model 
and updated online  

 

Gain-Scheduled RRT 
• Rapidly Exploring Random Trees (RRT) (Background): 

 
Features (+): 
1. Solve a control problem 
2. Scalable 
3. Constrained environments 

 
Concerns (--): 
4. Works poorly under  

differential constraints 
5. Hard to avoid the connection gap 
 

𝑞(𝑚) 

𝑞  (𝑚) 
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Gain-Scheduled RRT: RRT Connection Gap 
• A RRT solution rarely reaches the goal (or connect the 

two trees) with zero error 
 

 

Gain-Scheduled RRT: Relaxing the Search 

Backwards tree 

Forward tree 

goal 

Feedback system 
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Gain-Scheduled RRT: RoA & Verification 
• Find a candidate 

 
•  

Maximize candidate ( ρ ) 
 
 
 
 

• Verify candidate  

**R. Tedrake, “LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees”, RSS 2009 

V(x) = 
In the LQR case:   J: optimal cost-to-go S: Algebraic Ricatti Eq. 

Sum of squares relaxation 

goal 

 

Gain-Scheduled RRT: Result 
• Cart and pole in a cluttered workspace … 

 

Same initial and final conditions. 

Every solution is different due to the random sampling 

obstacle 

Cart stopper Cart stopper 
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Gain-Scheduled RRT: Result 
• Cart and pole in a cluttered workspace … 

 

 

Conclusion 
No one answer… 
Much left to do! 

 
(it’s not really magic ) 

 

METR 4202: Compendium Page 412 of 467Lecture: 12



19/10/2016 

1 

https://youtu.be/z4qVI7Ybxac 

Overview 

• Task: sort coins on a moving turntable into bins 
• Solution: difficult to pick coins up, so slide them off 

Image 
processing 

Image Layout of coins, 
turntable speed 

Motion 
planning 

Trajectory 

Inverse kinematics 
(simple trigonometry) 

Joint angles 
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Motion planning problem 
• Given a coin and its goal bin, what path can be taken  

• Reference frame fixed on table  other coins are 
moving obstacles 

• We planned in a 3 dimensional state space: x, y, time 
(alternative is to plan in configuration space: joint 
angle 1, joint angle 2, time) 

Our simplified A* path finding 

• We slide the coin at a constant speed 

• We discretised the state space into a grid (we can 
get away with this due to sparse obstacles) 

• We check for collisions while exploring nodes 
instead of generating the entire map of valid nodes 
at the start 
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Fringe node 

Goal node 

Start node 

Fringe node 

Goal node 

Start node Keep unexplored fringe nodes in a priority queue 
Sort score = g(n) + h(n) 
g(n) is cost from start to n 
h(n) is heuristic (estimated cost from n to goal) 
 
In this case we start with 8 fringe nodes in the 
queue. Obviously the one on the right is first in 
the queue. 
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Fringe node 

Goal node 

Start node 

Expanded node 

Fringe node 

Goal node 

Start node 

Expanded node 

Collision node 
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Fringe node 

Goal node 

Start node 

Expanded node 

Collision node 

Fringe node 

Goal node 

Start node 

Expanded node 

Collision node 

Done! 
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If grid discretisation isn’t good 
enough: 
Instead of grid, randomly sample a bunch of valid 
states e.g. 
 
Probabilistic Roadmap (PRM) 
 
Rapidly-exploring Random Tree (RRT) 

Deciding on which coin to move 
first 
• We used a greedy approach whereby we plan 

trajectories for every coin and pick the shortest 
trajectory. 

• Estimate new positions of remaining coins (easy as 
we know turntable rotation speed and time 
required for the trajectory taken 

• Repeat 
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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 
4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 
6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Single View Geometry & Lines 
8 14-Sep Robot Sensing: Feature Detection 
9 21-Sep Robot Sensing: Multiple View Geometry 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct Probabilistic Robotics: Localization & SLAM 

12 19-Oct 
Probabilistic Robotics: Planning & Control  
(State-Space/Shaping the Dynamic Response/LQR)  

13 26-Oct The Future of Robotics/Automation + Challenges   
&  Course Review 
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Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

• Vision-Based Control  
– §15.1-15.3 (pp. 456-473) 

  Review 
• SLAM 

– pp. 123-4 
(§6.4-6.5) 

• Everything?  
– Many references… 

Today 

Reference Material 

On class webpage 

Password: metr4202 
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Reference Material 

UQ Library/ 
SpringerLink UQ Library 

(ePDF) 

Reference Material 

UQ Library / Online (PDF) 

UQ Library 
(TJ211.4 .L38 1991) 
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Cool Robotics Share 
HRI: Semi-Autonomous Robots Learning 
Interaction for Collaborative Tasks 

 
 
 
 
 
 
 

 

 

 

 

 

Maeda, G., et al. "Learning interaction for collaborative tasks with 
probabilistic movement primitives." 2014 IEEE-RAS International 

Conference on Humanoid Robotics. IEEE, 2014. 

https://youtu.be/2Ok6KQQQDNQ 

• Interactive Mobile Robots 
 

 
 

• New transmissions 
 

 

Source: (top) https://youtu.be/hX6pFcfr29c |  
 (bottom) http://spectrum.ieee.org/automaton/robotics/robotics-
hardware/sri-demonstrates-abacus-rotary-transmission 

Final Exam! 
• 4 Questions |  60 Minutes  
• Open Book 
• Similar in nature to the 2015 Quiz 

 
Topics: 
• Position, orientation and location 

in space 
• Robot analysis  

(forward/Inverse kinematics, 
recursive Newton-Euler 
formulations, etc.) 

• Sensing geometry (including 
camera calibration) 

• Multiple-view geometry 
• Motion planning and control 
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Grades! 

• Lab 1 
 
 
 
 
 
 
 
 

• MEAN: 82 | STD: 10 
• MIN: 52 | MAX: 95 
• MEDIAN: 83.5 

 

• Lab 2 

Coming Soon! 
 
PS: For those who have not 
LAB 2 “PAF-ed” please do 
so by tonight!  

Some 2017 Robotics Thesis Topics  

Projects (2017 | RDL | S. Singh) 
ID Title 
 1  Light Fields in Motion  
 2  Image Sensing and Control 
 3  One Sweet Robot 
 4  Remote Access CT imaging Laboratory for clinical skills education and training 
 5  Semi-Automatic Tracking of Athletes Diving using Pre-selected Keypoints 
 7  (RDL*) Dermatology Outback 
 8  Interactive Ball / Beeper Ball - Smart Tones 
 9  Affine Breathing: Tracking 
 10  Underactuated Robotics: Katita Walks The Line 
 11  Assistive Ultrasound Support 
 13  SuperResolve 3D [NEW] 
 14  Privacy Preserving Roadmap Planning [NEW] 
 15  Color My World (Art Meets Robotics) [NEW] 
 16  Robots: In Play (Probabilistically) [NEW] 
 17  Project with Sound and Hearing and Mechatronics [NEW] 
 18  Biomedical Engineering Meets Robotics [NEW] [ARC DP co-funding] 
 19  (Virtual) Robotics and Experimental Platform [NEW] 
 20  BYO Robot Project [NEW] 
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Learning Objectives 

 
Robotics:  
Facets of overarching 
principles 

 
• Scene Geometry  
• Structure | Unstructured 
• Adaptive models for control 
• Interactions: 

Deterministic | Probabilistic  
 

Estimation 
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Along multiple dimensions 
 

 

State Space 
• We collect our set of uncertain variables into a vector … 
    x = [x1, x2,…, xN]T 

 
• The set of values that x might take on is termed the state 

space 
 

• There is a single true value for x,  
but it is unknown  
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State Space Dynamics 
 

 

Measured versus True 
• Measurement errors are inevitable 

 
• So, add Noise to State... 

– State Dynamics becomes: 
 
 

• Can represent this as a “Normal” Distribution 
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Recovering The Truth 
• Numerous methods 
• Termed “Estimation”  because we are trying to estimate 

the truth from the signal 
• A strategy discovered by Gauss 
• Least Squares in Matrix Representation 

 
 
 
 
 

 

Recovering the Truth: Terminology 
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General Problem… 
 

 

Duals and Dual Terminology 
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Estimation Process in Pictures 
 

 

Kalman Filter Process 
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KF Process in Equations 
 

 

KF Considerations 
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Ex: Kinematic KF: Tracking 
• Consider a System with Constant Acceleration 

 
 
 
 

 

In Summary 

• KF: 
– The true state (x) is separate from the measured (z) 
– Lets you combine prior controls knowledge with 

measurements to filter signals and find the truth 
– It regulates the covariance (P) 

• As P is the scatter between z and x 
• So, if P  0, then z  x  (measurements  truth) 

• EKF:   
– Takes a Taylor series approximation to get a local “F” (and 

“G” and “H”) 
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Future of Robotics 
(Self-Driving Vehicles) 

(Notes from Prof. John Leonard, MIT) 

Robotic Tesla… 
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Other Robotic Tesla… 

Cars: Software/Robots With 4 Wheels 
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Robotics & Automation Has Limits Too 

 

More to Dynamic “Obstacles” than one’s own Control… 
Ethics in Engineering 
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Q: Why has Google has chosen to exclusively 
pursue level 4? 
 A: They don’t trust people to pay attention  

 Astro Teller, Head of GoogleX, March 2015 

t=41.56: "people do really stupid stuff when they are 

driving...it isn't pretty. The assumption that humans 

can be a reliable backup for the system was a total 

fallacy.   Once people trust the system, they trust it" 

 

Chris Urmson Keynote Address at the  Intelligent Transportation 
Systems 25th Annual Meeting & Expo, Pittsburgh, May 2015 

“Vehicle Avoids Accidents” vs.                              
“Vehicles Applies Breaks Unnecessarily”  
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September 13, 2015 

 

 

 

 by Clive Thompson, New York Times, September 11, 2015 

“When the company wanted a team of roboticists, it 
raided a University Lab to get them.  Can high-tech 
academia survive today's Silicon Valley talent binge?” 
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MIT DARPA Urban Challenge Team (2006-2007) 
 

Leonard et al., JFR 2008 ; Karaman and Frazzoli, IJRR 2011; Huang et al., AR 2009  

2007 DARPA Urban Challenge – Collision 
between MIT and Cornell 
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2007 DARPA Urban Challenge 
– Collision between MIT and Cornell 
 

 L. Fletcher, S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How, J. Leonard, I. Miller, M. 

Campbell, D. Huttenlocher, and others, "The MIT–Cornell collision and why it 

happened." In Journal of Field Robotics, 25(10), pages 775-807. 2008.  

 
From Prof. Ed Olson (Umich):  The logic of whether to represent an "obstacle" as a 
track (i.e., something with velocity) or as a blob, was this  (relevant part is 
highlighted):  
int use_track = 0, use_rects = 1; 
//        if (t->vmag > 4) 
//            use_rects = 0; 
  
 if (t->vmag > 3.0 && t->maturity > 8) 
            use_track = 1; 
 double MAX_DIM = 10; 
 if (t->box.size[0] > MAX_DIM || t->box.size[1] > MAX_DIM) 
            use_track = 0; 
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Lane Estimation (PhD Thesis of Albert Huang, 
supervised by Prof. Seth Teller) 

 

Road paint 
detectors 

Curb 
Detectors 

Lane centerline  
estimator 

Lane tracker  

RNDF 

 

• The Google Car is an amazing research project that 
might one day transform mobility 

• The technology of the Google Car, however, has been 
over-hyped and is poorly misunderstood  

• This has led many people to say that self-driving is a 
“solved” problem 

• “Just because it works for Google”, doesn’t mean it will 
work for everyone else 

2015: Self-Driving Vehicles Have a Perception Problem 
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How Does Google’s Self Driving Car Work? 

http://www.youtube.com/watch?v=KA_C6OpL_Ao 
 

Source: Dave Ferguson “Solve for X” talk, July 2013 

 

Google: Lidar Localization with an a priori map 

https://plus.google.com/+GoogleSelfDrivingCars/videos 
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SDVs: The Big Questions Going Forward 
• Technical Challenges: 
• Maintaining Maps 
• Adverse Weather 
• Interacting with People 
• Robust Computer Vision (towards PD=1.0, PFA = 0.0)? 

 

 

SDVs: The Big Questions Going Forward 
• Technical Challenges: 
• Maintaining Maps 
• Adverse Weather 
• Interacting with People 
• Robust Computer Vision (towards PD=1.0, PFA = 0.0)? 
• The big question for Level 3 approaches? (i.e., Musk) 
• Can humans be trusted to take control when necessary?  
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SDVs: The Big Questions Going Forward 
• Technical Challenges: 
• Maintaining Maps 
• Adverse Weather 
• Interacting with People 
• Robust Computer Vision (towards PD=1.0, PFA = 0.0)? 
• The big question for Level 3 approaches? (i.e., Musk) 
• Can humans be trusted to take control when necessary?  
• The big question for Level 4 approaches? (i.e., Urmson) 
• Can near-perfect ROC curves be obtained in a wide 

variety of demanding settings? 
 

 

SDVs: The Big Questions Going Forward 
• Technical Challenges: 
• Maintaining Maps 
• Adverse Weather 
• Interacting with People 
• Robust Computer Vision (towards PD=1.0, PFA = 0.0)? 
• The big question for Level 3 approaches? (i.e., Musk) 
• Can humans be trusted to take control when necessary?  
• The big question for Level 4 approaches? (i.e., Urmson) 
• Can near-perfect ROC curves be obtained in a wide 

variety of demanding settings? 
• Level 2.99 – Hidden Autonomy (Human must pay 

attention, but autonomy will jump in to prevent accidents) 
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Summary – Self-Driving Vehicles 
• Transformative technology that can/will change the world, but 

many open questions 
• Hope for reducing accidents and saving lives 
• Admiration for Google’s audacious vision and amazing 

progress 
• Impressed by recent efforts by auto manufacturers 
• Pride for the robotics community’s contributions 
• Fear that the technology is being over-hyped 
• Uncertainty about open technological challenges, such as:  

– left-turn across high-speed traffic onto busy roads 
– Interpretation of gestures by traffic cops, crossing guards etc 
– Effect of changes in road surface appearance on map-based 

localization 
– Capability to “predict what will happen next” in demanding situations 
– Operations in adverse weather 

 
 

 

Future of Robotics 
 

Move Heaven & Earth 
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“Field Arm” Motion Generation  

Terrain is Not “Structured,” But It’s Not Random… 
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top soil  

(soft, loose, dry) 

cohesive soil  

(clay, compact, wet) 

(from 20 cm 

digging resistance 

Compactation during dragging 

dragging 
lifting 

N
a
tu

ra
l 
c
o
m

p
a
c
ta

ti
o
n
 

sharp cutting tool 

(flat blade theory) 

cutting tool? 

Excavation as Terrain Manipulation 

Nonlinear 

Plant 

+ 

_ 

Xref X 

feedforward command 

(open-loop policy) 

compensated dynamics 

terrain+ τfriction+ τ

Operation Space (Computed Torque)  
(2 DOF Example) 

Model 

Based 

Model 

“Free” 
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Nonlinear 

Plant 

+ 

_ 

Xref X 

feedforward command 

(open-loop policy) 

compensated dynamics 

terrain  + τ friction  + τ 

terrain+ τfriction+ τ

Operation Space (Computed Torque)  
(2 DOF Example) 

→ → → →

Model 

Based 

Model 

“Free” 

Reminder: Compensated Manipulation 

→ → → →
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Nonlinear 

Plant 

+ 

_ 

Xref X 

ff(t) 

digging resistance 

ff(t3) 
ff(t2) 

ff(t1) 

ff(t4) 
ff(t5) 

Thus for Excavation … 

Manipulation under Large Disturbances 
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Inverse dynamics helps, but performance  is dependent on model structure and parameter identification 

 z = [...  

        d11*q1dot - u1 - q3dot*(L2*L3c*m3*q3dot*sin(q3 + qcm3) + L1*L3c*m3*q3dot*sin(q2 + q3 + qcm3)) - q1dot*(2*L1*L2c*m2*q2dot*sin(q2 + qcm2) + 2*L2*L3c*m3*q3dot*sin(q3 + qcm3) + 2*L1*L2*m3*q2dot*sin(q2) + 

2*L1*L3c*m3*q2dot*sin(q2 + q3 + qcm3) + 2*L1*L3c*m3*q3dot*sin(q2 + q3 + qcm3)) - q2dot*(L1*L2c*m2*q2dot*sin(q2 + qcm2) + 2*L2*L3c*m3*q3dot*sin(q3 + qcm3) + L1*L2*m3*q2dot*sin(q2) + L1*L3c*m3*q2dot*sin(q2 + q3 + 

qcm3) + 2*L1*L3c*m3*q3dot*sin(q2 + q3 + qcm3)) - ((q1dot - q1dot_k)*(m1*L1c^2 + Izz1 + Izz2 + Izz3 + m2*(L1^2 + 2*cos(q2 + qcm2)*L1*L2c + L2c^2) + m3*(L1^2 + 2*cos(q2)*L1*L2 + 2*cos(q2 + q3 + qcm3)*L1*L3c + L2^2 + 

2*cos(q3 + qcm3)*L2*L3c + L3c^2)))/dt - ((Izz3 + L3c*m3*(L3c + L2*cos(q3 + qcm3) + L1*cos(q2 + q3 + qcm3)))*(q3dot - q3dot_k))/dt + g*m3*(L3c*cos(q1 + q2 + q3 + qcm3) + L2*cos(q1 + q2) + L1*cos(q1)) - ((q2dot - q2dot_k)*(Izz2 + 

Izz3 + m3*(L2^2 + 2*cos(q3 + qcm3)*L2*L3c + L1*cos(q2)*L2 + L3c^2 + L1*cos(q2 + q3 + qcm3)*L3c) + L2c*m2*(L2c + L1*cos(q2 + qcm2))))/dt + g*m2*(L1*cos(q1) + L2c*cos(q1 + q2 + qcm2)) + L1c*g*m1*cos(q1 + qcm1) 

        d22*q2dot - u2 + q1dot*(L1*L2c*m2*q1dot*sin(q2 + qcm2) - 2*L2*L3c*m3*q3dot*sin(q3 + qcm3) + L1*L2*m3*q1dot*sin(q2) + L1*L3c*m3*q1dot*sin(q2 + q3 + qcm3)) + g*m3*(L3c*cos(q1 + q2 + q3 + qcm3) + L2*cos(q1 + q2)) - 

((q2dot - q2dot_k)*(m2*L2c^2 + Izz2 + Izz3 + m3*(L2^2 + 2*cos(q3 + qcm3)*L2*L3c + L3c^2)))/dt - ((q3dot - q3dot_k)*(Izz3 + L3c*m3*(L3c + L2*cos(q3 + qcm3))))/dt - ((q1dot - q1dot_k)*(Izz2 + Izz3 + m3*(L2^2 + 2*cos(q3 + 

qcm3)*L2*L3c + L1*cos(q2)*L2 + L3c^2 + L1*cos(q2 + q3 + qcm3)*L3c) + L2c*m2*(L2c + L1*cos(q2 + qcm2))))/dt + L2c*g*m2*cos(q1 + q2 + qcm2) - L2*L3c*m3*q3dot^2*sin(q3 + qcm3) - 2*L2*L3c*m3*q2dot*q3dot*sin(q3 + qcm3) 

        q1dot*(L2*L3c*m3*q1dot*cos(q3)*sin(qcm3) + L2*L3c*m3*q1dot*cos(qcm3)*sin(q3) + 2*L2*L3c*m3*q2dot*cos(q3)*sin(qcm3) + 2*L2*L3c*m3*q2dot*cos(qcm3)*sin(q3) + L1*L3c*m3*q1dot*cos(q2)*cos(q3)*sin(qcm3) + 

L1*L3c*m3*q1dot*cos(q2)*cos(qcm3)*sin(q3) + L1*L3c*m3*q1dot*cos(q3)*cos(qcm3)*sin(q2) - L1*L3c*m3*q1dot*sin(q2)*sin(q3)*sin(qcm3)) - u3 + d33*q3dot + q2dot*(L2*L3c*m3*q2dot*cos(q3)*sin(qcm3) + 

L2*L3c*m3*q2dot*cos(qcm3)*sin(q3)) - ((Izz3 + L3c*m3*(L3c + L2*cos(q3 + qcm3) + L1*cos(q2 + q3 + qcm3)))*(q1dot - q1dot_k))/dt - ((q2dot - q2dot_k)*(Izz3 + L3c*m3*(L3c + L2*cos(q3 + qcm3))))/dt - ((m3*L3c^2 + Izz3)*(q3dot - 

q3dot_k))/dt + L3c*g*m3*cos(q1 + q2 + q3 + qcm3) 

        ]; 

terrain
- τ

friction
-τ

model error
- τ

Nonlinear 

Plant 

+ 

_ 

Xref X 

inverse dynamics 

Inverse Dynamics is Not Trivial 

x      x 

PD ∑ 

v  + g 

J 
T M x ∑ FK 

fric τ 
Model needed 

 + terrain reactions 
u(x) 

X 
ref 
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Least-square: 1 trajectory 

Local Compensation 

• Modelling globally is hard 
• Local models are easy, but can destabalize 
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X 

X 
. 

true : 1 

mod : 1 

model: 1.1 

model: 0.9 

true : 0.9 

mod : 1 
X 

X 
ref 

Local model + Disturbance = Wrong Compensation 
• Unless tracking is perfect, a state that is far from xref will 

require a different model 
 

 

• Where does it fit in the CDM topics (adaptation, collaboration, 

structure)? 

 

 

• Are parts of the method worth pursuing, and in what area do you 

think they would be useful? 

 

• Are there other areas where similar methods would be 

applicable (particularly with respect to this group)? 

local policy (k) 

Bellman’s 

equation 

dynamics 

trajectory (k) 

dynamics 
local policy (k+1) 

trajectory (k+1) 

xref 

xref 

DDP 

local policy (k)

Bellman’s 

equation

dynamics

trajectory (k)

dynamics
local policy (k+1)

trajectory (k+1)

xref

xref

DDP

dynamics controller 
+ 

_ 

feedback improves the next policy during execution of 

the current policy 

xref 

ILC 

+ 

+ 

local policy (k) 

Model Updating & Iterative Tracking… 

METR 4202: Compendium Page 449 of 467Lecture: 13



32 

Broken red bricks 

Clay friction 

Clay friction 

1.4 meter 

Pay Dirt! 

Pay Dirt: 
Looking at Trajectories 

0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

y
 (

m
)

x (m)

workspace motion
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terrain  + τ friction  + τ 
Nonlinear 

Plant 

+ 

_ 

Xref X 

Pay Dirt: 
Looking at Trajectories 

However… Dirt is not all that it appears! 
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Future of Robotics 
 

Medical Robotics 

Conclusion and Future Research Challenges 
“Soft” robots yield “hard” problems 

Goals: 
• My dream is to achieve dynamic motion, 

 particularly of compliant systems under feedback.  
• To adapt & learn in highly dynamic environments 
• Can we robustly integrate continuous planning/control with continuum mechanics 

to extend our reach 
 
Open Questions: 
• Robustness – we would love to have guarantees of performance, but we do not 

have them for most approaches  
• Representation – how can we integrate many different types? 
• We need dynamic understanding and robust control  

(recent work in computer vision/machine learning is exciting,  
but current precision-recall curves indicate we have a long way to go) 

 
Clinically-motivated applications: 
• Surgical robotics and guided therapeutic techniques 
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Deep Brian Stimulation is Deeply Challenging 
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Accuracy is sine qua non 

• STN • PAG 

Source: Nauta, Feirtag, and Donner, Fundamental Neuroanatomy, Freeman, 1986 

Accuracy is sine qua non 
• Accuracy of Frame Based Stereotactic Placement  

via CT/MRI Comparison 

Source: Holloway, Docef, Neurosurgery 72[ONS Suppl 1]:ons47–ons57, 2013 
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DBS Targeting is Hard 

 

It has consequences… 
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Computer Aided Surgery: Lots of Potential 

• Unstructured environment (patient tissue) makes this harder 

 

Neurosurgical Robotics 
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• Biomechanics approach: 
Predict expected tissue trajectories 
 
 
 
 
 
 
 
 

Neurosurgical Robotics: 
 

ARC DP160100714 

“Soft” is “Hard” (but not impossible) 

 Many Issues: Including Craniotomy Induced Brain Shift 

S. List, UWA 
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Soft Tissue Mechanics: Brain Shift/Brain Sag 
Ex: Image-guided neurosurgery 

 

Courtesy: SPL, Harvard 

 

Brain Shift Identified in Neurosurgery Community 
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A Robotic “Plan”: Handling Brian Shift 
 

 

Treating Brain Shift Mechanically 

• Post this as a  
Biomechanics Problem 

• Non-linear Continuum 
Mechanics Problem 

 ij
V

 ijdV  fi
B

V

 uidV  fi
S

S

 uidS
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Red contours –  
Intra-operative 

 
 

Blue contours –  
Warped pre-operative  

 
 

Green contours –  
Overlap 

Biomechanics BSpline 

Mostayed et al. (2013) Annals of Biomed. Eng. 41(11), 2409-2425 

Qualitative Evaluation – Canny Edges 
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AXIAL PLANE

BIOMECH

RIGID

0 10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

6

7

8

9

10

Percentile of Hausdorff Distance(HD) metric

H
a
u
s
d
o
rf

f 
D

is
ta

n
c
e
 m

e
tr

ic
(m

m
)

 

 

CORONAL PLANE

BIOMECH
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BIOMECH

RIGID

Large deformation case (10 mm) Small deformation case (3 mm) 

Garlapati et al. (2014) J Neurosurg. 120(6): 1477–1483.  

Comparison:Hausdorff Distance Metric 

• Comparison of Biomechanics-based & rigid registrations 
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Mostayed et al. (2013) Biomechanical Model as a Registration Tool for Image-Guided Neurosurgery:  

Evaluation Against BSpline Registration. Annals of Biomedical Engineering. 41(11), 2409-2425 

Qualitative Evaluation: Deformation Field 
 

 

Accuracy for Mesh-free Models 

Left: Finite Element Models 
 
 
 

Middle: Fuzzy Mesh-free Model 
 
 
 

Right : Difference of the  
simulation results  

Zhang et al. (2013) IJNMBE 29(2): 293–308 
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Targeting:  
We Already Do Careful Preoperative Planning 

The Best Laid Plans … 

Source: Burchiel, McCartney, et al., J Neurosurg 119:301–306, 2013 

Axial plane 
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Does This Suggest Steering/Path Correction? 
• Plan: • Result: 

• Stereotactic (Leksell) frames alone are not enough… 
• Brain Shift, Compliance, Drift, etc. 

In-Vivo Feedback: Incorporating MER 
Incorporating tissue signal signatures 
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What’s Next? Incorporating Stiffness: 
Visual Deformable Object Analysis  

Dansereau, Singh, Leitner, ICRA 2016 

 

What’s Next: Open Access Robotics Infrastructure for 
High-Fidelity Telesurgical Research 

ARC LE170100030 (Proposed) 

 

METR 4202: Compendium Page 464 of 467Lecture: 13



47 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

SECaT Time! … Brought To You By the Number 5 

“4” Is Average 
• What is a 3? 
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• I shall only use my own slides 
 

• Less is more! 
– Smaller assignments 
– More time for Examples 

 
• Better organization 

– Better tutorials 
– More examples!!   
– I get that.  But, we’ve come a long way 

 
 To make this happen I need your support! 
 

 

SECaTs: Some Lessons in the Works for Next 
Year 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Now Finally Some Philosophy (I am a Dr of it!!!) 

Systems: Signals, Controls…A Fundamental Yearn! 

© National Geographic. Mount Everest at night  
(the lights along the apex are the headlamps of other mountaineers) 

We keep moving forward, opening new doors, 
and doing new things because we're curious and 
curiosity keeps leading us down new paths. 
 
-Walt Disney 
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UQ Robotics: Dynamic Systems in Motion 

Planning 
Mechanics 
        of motion 

Aerial Systems 

      Bio-inspired  
                Systems 

Hanna Kurniwati  
(NUS/MIT) 
Paul Pounds 
(ANU/Yale) 
Surya Singh 
(Stanford/Syd) 

Diverse international 
research group 
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