
1

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

PART II:

(Stochastic) Modelling, Planning & Control
of Robotic/Autonomous Systems

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

2

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

Localization: SFM  SLAM

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

3

Perfect World: Deterministic
• Exact pose from motion model
• Global localisation by triangulation

– Even if range-only or bearing-only sensors, can localise given
enough measurements

– Solve simultaneous equations: N equations for N unknowns

Real World: Uncertain
• All measurements have errors
• In SLAM, measurement errors induce dependencies in the

landmark and vehicle pose estimates
– Everything is correlated

4

How to quantify uncertainty ?
Probability to the rescue…
• FATHER(F): Nurse, what is the probability that the drug will work?
• NURSE (N): I hope it works, we’ll know tomorrow.
• F: Yes, but what is the probability that it will?
• N: Each case is different, we have to wait.
• F: But let’s see, out of a hundred patients that are treated under similar

conditions, how many times would you expect it to work?
• N (somewhat annoyed): I told you, every person is different, for some it

works, for some it doesn’t.
• F (insisting): Then tell me, if you had to bet whether it will work or not,

which side of the bet would you take?
• N (cheering up for a moment): I’d bet it will work.
• F (somewhat relieved): OK, now, would you be willing to lose two dollars

if it doesn’t work, and gain one dollar if it does?
• N (exasperated): What a sick thought! You are wasting my time!

Bertsekas & Tsitsiklis,
Introduction to Probability.

Probability review 1/4: Probabilistic Modeling

• View:
– Experiments with random outcome.
– Quantifiable properties of the outcome.

• Three components:
– Sample space: Set of all possible outcomes.
– Events: Subsets of sample space.
– Probability: Quantify how likely an event occurs.

5

Probability review 2/4: Probability

• Probability: A function that maps events to real numbers
satisfying these axioms:
1. Non-negativity:
2. Normalization:
3. Additivity of finite / countably infinite events.



P(E) 0, where E is an event.



P(S) 1, where S is the sample space.



P U
i1

 /n

E i








 P E i 

i1

 /n

 ,

where E i are disjoint / mutually exclusive, i : natural number.

Probability review 3/4: Random Variables

• Interest is on numerical values associated w. samples, e.g.:
– Sample 50 students enrolled in METR4202, what's the major of

most of the students.
– Roll a fair dice, get $5 if the outcome is even, & loose $5 if the

outcome is odd.
• Random variable X is a function .

– Num: countable set (e.g., integer)  discrete random variable.
– Num: uncountable set (e.g., real)  continuous random variable.



X :SNum

6

Probability review 4/4: Characterizing Random Variables

• Cumulative distribution function (cdf)

• Discrete: Probability mass function (pmf)

• Continuous: Probability density function/probability
distribution function (pdf)



fX x 
dFX x 
dx

; P a  X  b  fX x dx
a

b



fX x  P X  x 


FX x  P X  x  P sX(s)  x,sS  

Brief Overview of Probability Theory

• Probability density function (PDF) over N-D state
space is denoted

• Properties of a PDF

7

Brief Overview of Probability Theory

• State vector

• Joint PDF is

• Conditional PDF of x1 given x2 and x3

• Conditional independence: if x1 is independent of x2

given x3 then

Two Essential Rules for Manipulating Probabilities

• Sum rule

• Product rule

8

Implications of the Product Rule

• Conditionals

• Independence

• Markov Models

• Bayes theorem

Marginalisation: Remove old states

• As per the sum rule

• Marginal says: what is PDF of x1 when we don’t care what
value x2 takes; ie, p(x1) regardless of x2

• Important distinction: x1 is still dependent on x2, but p(x1) is
not a function of x2

9

Bayesian Update: Inverse probability

• Bayes theorem

• Observation model

• Conditional probability

• Likelihood function

Bayes Update

• Update

• Denominator term often seen as just a normalising
constant, but is important for saying how likely a
model or hypothesis is

– Used in FastSLAM for determining particle weights
– Used in multi-hypothesis data association

10

Bayesian Estimation

• Standard theory for dealing with uncertain
information in a consistent manner

More Cool Robotics Share!

file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/PhotoTourismFull.wmv

11

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

SLAM!

(Better than SMAL!)

http://robotics.itee.uq.edu.au/~metr4202/
http://robotics.itee.uq.edu.au/~metr4202/
http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

12

What is SLAM?

• SLAM asks the following question:

 Is it possible for an autonomous vehicle to start at an unknown location in an
unknown environment and then to incrementally build a map of this
environment while simultaneously using this map to compute vehicle
location?

• SLAM has many indoor, outdoor, in-air and underwater applications for

both manned and autonomous vehicles.

• Examples
– Explore and return to starting point (Newman)
– Learn trained paths to different goal locations
– Traverse a region with complete coverage (eg, mine fields, lawns, reef

monitoring)
– …

Components of SLAM
• Localisation

– Determine pose given a priori map
• Mapping

– Generate map when pose is accurately known from auxiliary
source.

• SLAM
– Define some arbitrary coordinate origin
– Generate a map from on-board sensors
– Compute pose from this map
– Errors in map and in pose estimate are dependent.

13

Basic SLAM Operation

Example: SLAM in Victoria Park

14

Basic SLAM Operation

Basic SLAM Operation

15

Basic SLAM Operation

Basic SLAM Operation

16

Dependent Errors

Correlated Estimates

17

SLAM Convergence
• An observation acts like a displacement to a spring system

– Effect is greatest in a close neighbourhood
– Effect on other landmarks diminishes with distance
– Propagation depends on local stiffness (correlation) properties

• With each new observation the springs become increasingly (and
monotonically) stiffer.

• In the limit, a rigid map of landmarks is obtained.
– A perfect relative map of the environment

• The location accuracy of the robot is bounded by
– The current quality of the map
– The relative sensor measurement

Spring Analogy

18

Monotonic Convergence

• With each new
observation, the
determinant
decreases over
the map and for
any submatrix in
the map.

Models

• Models are central to creating a representation of the
world.

• Must have a mapping between sensed data (eg, laser,
cameras, odometry) and the states of interest (eg,
vehicle pose, stationary landmarks)

• Two essential model types:
– Vehicle motion
– Sensing of external objects

19

An Example System

RADAR

Steering

angle

Wheel

speed

MODEL

Gyro

(INS)

Observation

Estimator

GPS

MAP states

Vehicle pose

Comparison

Objects Detection

Data Association

Additional

Landmarks

properties

Compass

LASER

States, Controls, Observations

Joint state with
momentary pose

Joint state with
pose history

Control inputs:
Observations:

20

Vehicle Motion Model

• Ackerman
steered vehicles:
Bicycle model

• Discrete time
model:

SLAM Motion Model

• Joint state: Landmarks are assumed stationary

21

Observation Model
• Range-bearing measurement

Applying Bayes to SLAM: Available Information
• States (Hidden or inferred values)

– Vehicle poses
– Map; typically composed of discrete parts called landmarks or

features
• Controls

– Velocity
– Steering angle

• Observations
– Range-bearing measurements

22

Augmentation: Adding new poses and landmarks

• Add new pose

• Conditional probability is a Markov Model

Augmentation

• Product rule to create joint PDF p(xk)

• Same method applies to adding new landmark states

23

Marginalisation:
Removing past poses and obsolete landmarks

• Augmenting with new pose and marginalising the old pose

gives the classical SLAM prediction step

Fusion: Incorporating observation information
• Conditional PDF according to observation model

• Bayes update:
proportional to product of likelihood and prior

24

Implementing Probabilistic SLAM
• The problem is that Bayesian operations are intractable in

general.
– General equations are good for analytical derivations, not good

for implementation

• We need approximations
– Linearised Gaussian systems (EKF, UKF, EIF, SAM)
– Monte Carlo sampling methods (Rao-Blackwellised particle

filters)

EKF SLAM
• The complicated Bayesian equations for augmentation,

marginalisation, and fusion have simple and efficient
closed form solutions for linear Gaussian systems

• For non-linear systems, just linearise
– EKF, EIF: Jacobians
– UKF: use deterministic samples

25

Kalman Implementation
• So can we just plug the process and observation models

into the standard EKF equations and turn the crank?

• Several additional issues:
– Structure of the SLAM problem permits more efficient

implementation than naïve EKF.
– Data association.
– Feature initialisation.

Structure of SLAM
• Key property of stochastic SLAM

– Largely a parameter estimation problem

• Since the map is stationary
– No process model, no process noise

• For Gaussian SLAM

– Uncertainty in each landmark reduces monotonically after landmark
initialisation

– Map converges

• Examine computational consequences of this structure in next
session.

26

Data Association
• Before the Update Stage we need to determine if the

feature we are observing is:
– An old feature
– A new feature

• If there is a match with only one known feature, the

Update stage is run with this feature information.

() () (/ 1) ()T
x xS k h k P k k h k R   () () ((/))k z k h x k k  1

1 2
0.95() () ()T k S k k    

Validation Gating

27

New Features
• If there is no match then a potential new feature has been detected

• We do not want to incorporate a spurious observation as a new

feature
– It will not be observed again and will consume computational time and

memory
– It will add clutter, increasing risk of future mis-associations
– The features are assumed to be static. We don’t not want to accept

dynamic objects as features: cars, people etc.

Acceptance of New Features

• Get the feature in a list of potential features
• Incorporate the feature once it has been observed for a number of times

• Advantages:

– Simple to implement
– Appropriate for High Frequency external sensor

• Disadvantages:

– Loss of information
– Potentially a problem with sensor with small field of view: a feature may

only be seen very few times

• APPROACH 1

28

Acceptance of New Features

• The state vector is extended with past vehicle positions and the estimation of the
cross-correlation between current and previous vehicle states is maintained. With
this approach improved data association is possible by combining data form
various points

– J. J. Leonard and R. J. Rikoski. Incorporation of delayed decision making into
stochastic mapping

– Stephan Williams, PhD Thesis, 2001, University of Sydney

• Advantages:
– No Loss of Information
– Well suited to low frequency external sensors (ratio between vehicle velocity and

feature rate information)
– Absolutely necessary for some sensor modalities (eg, range-only, bearing-only)

• Disadvantages:

– Cost of augmenting state with past poses
– The implementation is more complicated

• APPROACH 2

Incorporation of New Features

0 0
, ,

0 0 0
, ,

v v v m

m v m m

P P
P

P P
 

  
 

• We have the vehicle states and previous map

We observed a new feature and the
covariance and cross-covariance
terms need to be evaluated

0 0
, ,

0 0
1 , ,

?
?

? ? ?

v v v m

m v m m

P P
P P P

 
 

  
 
 

29

Incorporation of New Features

• Approach 1

0 0

0 0
0

0
0

0 0

vv vm

mv mm

P P
P P P

A

 
 

  
 
 

With A very large

1() (/ 1) () ()

() () (/ 1) ()

(/) (/ 1) () () ()

T
x

T
x x

T

W k P k k h k S k
S k h k P k k h k R

P k k P k k W k S k W k

  

   

  

1 1 1

1 1 1
1

1 1 1

vv vm vn

mv mm mn

nv nm nn

P P P
P P P P

P P P

 
 

  
 
 

• Easy to understand and
implement

• Very large values of A
may introduce numerical
problems

Analytical Approach

0 0
, ,

0 0 0
, ,

v v v m

m v m m

P P
P

P P
 

  
 

• We can also evaluate the
analytical expressions of
the new terms

0 0
, ,

0 0
1 , ,

?
?

? ? ?

v v v m

m v m m

P P
P P P

 
 

  
 
 

30

Constrained Local Submap Filter

CLSF Registration

31

CLSF Global Estimate

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

32

Path-Planning Approaches
• Roadmap

Represent the connectivity of the free space by a network
of 1-D curves

• Cell decomposition
Decompose the free space into simple cells and represent
the connectivity of the free space by the adjacency graph
of these cells

• Potential field
Define a function over the free space that has a global
minimum at the goal configuration and follow its steepest
descent

I. Rotational Sweep

33

Rotational Sweep

Rotational Sweep

34

Rotational Sweep

Rotational Sweep

35

II. Cell-Decomposition Methods
Two classes of methods:
• Exact cell decomposition

– The free space F is represented by a collection of non-
overlapping cells whose union is exactly F

– Example: trapezoidal decomposition

• Approximate cell decomposition
– F is represented by a collection of

non-overlapping cells whose union is contained in F
Examples: quadtree, octree, 2n-tree

Trapezoidal decomposition

36

Planar sweep  O(n log n) time, O(n) space

Trapezoidal decomposition

Trapezoidal decomposition

37

Trapezoidal decomposition

Trapezoidal decomposition

38

III. Roadmap Methods
• Visibility graph
• Voronoi diagram
• Silhouette

First complete general method that applies to spaces of
any dimension and is singly exponential in # of
dimensions [Canny, 87]

• Probabilistic roadmaps (PRMS)
 and Rapidly-exploring Randomized Trees (RRTs)

Roadmap Methods
• Visibility graph

Introduced in the Shakey project at SRI in the late 60s.
Can produce shortest paths in 2-D configuration spaces

g

s

39

Roadmap Methods

• Voronoi diagram
Introduced by
Computational
Geometry researchers.
Generate paths that
maximizes clearance.

O(n log n) time
O(n) space

II.Visibility Graph

tangent segments
 Eliminate concave obstacle vertices

can’t be shortest path

40

Generalized (Reduced) -- Visibility Graph

tangency point

Three-Dimensional Space

Computing the shortest collision-free path in a
polyhedral space is NP-hard

Shortest path passes
through none of the
vertices

locally shortest
path homotopic
to globally shortest
path

41

Sketch of Grid Algorithm (with best-first search)
• Place regular grid G over space
• Search G using best-first search algorithm with potential

as heuristic function

Simple Algorithm (for Visibility Graphs)
• Install all obstacles vertices in VG, plus the start and goal

positions
• For every pair of nodes u, v in VG
 If segment(u,v) is an obstacle edge then
 insert (u,v) into VG
 else
 for every obstacle edge e
 if segment(u,v) intersects e
 then go up to segment
 insert (u,v) into VG
• Search VG using A*

42

IV. Potential Field Methods
• Approach initially proposed for

real-time collision avoidance [Khatib, 86]

Goal

Goal Force

O
bs

ta
cl

e
Fo

rc
eMotion

Robot

Attractive and Repulsive fields

43

Local-Minimum Issue

• Perform best-first search (possibility of
 combining with approximate cell decomposition)

• Alternate descents and random walks
• Use local-minimum-free potential (navigation function)

Configuration Space

• A robot configuration is a specification of the positions of all robot
points relative to a fixed coordinate system

• Usually a configuration is expressed as a “vector” of
position/orientation parameters

44

Motion Planning in C-Space

q=(q1,…,qn)

q1
q2

q3

qn

Configuration Space of a Robot

• Space of all its possible configurations
• But the topology of this space is usually not that of a

Cartesian space

C = S1 x S1

45

Disc Robot in 2-D Workspace

Rigid Robot Translating and Rotating in 2-D

46

Geometric Planning Methods

• Several Geometric
Methods:
– Vertical (Trapezoidal)

Cell Decomposition

– Roadmap Methods
• Cell (Triangular)

Decomposition
• Visibility Graphs
• Veroni Graphs

Start

Goal

Sample-Based Motion Planning

• PRMs • RRTs

47

Rapidly Exploring Random Trees (RRT)

q(m)

q(
m

/s
)

x init
s(m)

r(m
)

x goal x rand

Sampling and the “Bug Trap” Problem

48

Multiple Points & Sequencing
• Sequencing

– Determining the “best” order to
go in

 Travelling Salesman Problem

A salesman has to visit each city on a given list exactly once.
In doing this, he starts from his home city and in the end he
has to return to his home city. It is plausible for him to select
the order in which he visits the cities so that the total of the
distances travelled in his tour is as small as possible.

Start

Goal

Goal

Goal

Goal

Goal

Travelling Salesman Problem

Start

Goal

Goal

Goal

Goal

Goal

• Given a distance
matrix C=(cij)

• Minimize:

• Note that this problem is NP-Hard

 BUT, Special Cases are Well-Solvable!

49

Travelling Salesman Problem [2]
• This problem is NP-Hard

 BUT,
 Special Cases are
 Well-Solvable!

For the Euclidean case
(where the points are on the 2D Euclidean plane) :
• The shortest TSP tour does not intersect itself, and thus

geometry makes the problem somewhat easier.
• If all cities lie on the boundary of a convex polygon, the

optimal tour is a cyclic walk along the boundary of the
polygon (in clockwise or counterclockwise direction).

The k-line TSP
• The a special case where the cities lie on k parallel (or

almost parallel) lines in the Euclidean plane.
• EG: Fabrication of printed circuit boards
• Solvable in O(n3) time by Dynamic Programming

(Rote's algorithm)

The necklace TSP

• The special Euclidean TSP case
where there exist n circles around
the n cities such that every cycle
intersects exactly two adjacent
circles

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

http://robotics.itee.uq.edu.au/~metr4202/
http://robotics.itee.uq.edu.au/~metr4202/
http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

50

State-Space Modelling
(“Hear Ye! It be stated”)

Affairs of state
• Introductory brain-teaser:

– If you have a dynamic system model with history (ie.
integration) how do you represent the instantaneous state of the
plant?

Eg. how would you setup a simulation of a step response, mid-step?

t = 0
t

start

51

Introduction to state-space
• Linear systems can be written as networks of simple

dynamic elements:

𝐻 =
𝑠 + 2

𝑠2 + 7𝑠 + 12
=

2

𝑠 + 4
+

−1

𝑠 + 3

S
1
𝑠

1
𝑠
 S

−7

1

−12

2

S

u y

Introduction to state-space
• We can identify the nodes in the system

– These nodes contain the integrated time-history values of the
system response

– We call them “states”

S
1
𝑠

1
𝑠
 S

−7

1

−12

2

S

u y
x1 x2

52

Linear system equations
• We can represent the dynamic relationship between the

states with a linear system:

 𝑥1 = −7𝑥1 − 12𝑥2 + 𝑢
 𝑥2 = 𝑥1 + 0𝑥2 + 0𝑢

 𝑦 = 𝑥1 + 2𝑥2 + 0𝑢

State-space representation
• We can write linear systems in matrix form:

 𝒙 = −7 12
1 0

𝒙 +
1
0
𝑢

 𝒚 = 1 2 𝒙 + 0𝑢

Or, more generally:

𝒙 = 𝐀𝒙 + 𝐁𝑢
𝑦 = 𝐂𝒙 + 𝐷𝑢

“State-space
equations”

53

State-space representation
• State-space matrices are not necessarily a unique

representation of a system
– There are two common forms

• Control canonical form

– Each node – each entry in x – represents a state of the system
(each order of s maps to a state)

• Modal form
– Diagonals of the state matrix A are the poles (“modes”) of the

transfer function

State variable transformation
• Important note!

– The states of a control canonical form system are not the same as
the modal states

– They represent the same dynamics, and give the same output, but
the vector values are different!

• However we can convert between them:

– Consider state representations, x and q where

x = Tq

T is a “transformation matrix”

54

State variable transformation
• Two homologous representations:

and

We can write:
𝒙 = 𝐓𝒒 = 𝐀𝐓𝒛 + 𝐁𝑢
𝒒 = 𝐓−𝟏𝐀𝐓𝒛 + 𝐓−𝟏𝐁𝑢

Therefore, 𝐅 = 𝐓−𝟏𝐀𝐓 and 𝐆 = 𝐓−𝟏𝐁

Similarly, 𝐂 = 𝐇𝐓 and 𝐷 = 𝐽

𝒙 = 𝐀𝒙 + 𝐁𝑢
𝑦 = 𝐂𝒙 + 𝐷𝑢

𝒒 = 𝐅𝒒 + 𝐆𝑢
𝑦 = 𝐇𝒒 + 𝐽𝑢

Controllability matrix

• To convert an arbitrary state representation in F, G, H and
J to control canonical form A, B, C and D, the
“controllability matrix”

𝓒 = 𝐆 𝐅𝐆 𝐅2𝐆 ⋯ 𝐅𝑛−1𝐆

must be nonsingular.

Why is it called the “controllability” matrix?

55

Example:
(Back To) Robot Arms

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control”

Remembering the Motion Models:
• Recall from Dynamics, the Required Joint Torque is:

Dynamical
Manipulator

Inertial Tensor –
a function of
position and
acceleration

Coupled joint
effects

(centrifugal and
coriolis) issues
due to multiple
moving joints

Gravitational
Effects

Frictional Effect
due to Joint/Link

movement

56

Lets simplify the model
• This torque model is a 2nd order one (in position) lets look

at it as a velocity model rather than positional one then it
becomes a system of highly coupled 1st order differential
equations

• We will then isolate Acceleration terms (acceleration is
the 1st derivative of velocity)

Considering Control:
• Each Link’s torque is influenced by each other links motion

– We say that the links are highly coupled

• Solution then suggests that control should come from a
simultaneous solution of these torques

• We will model the solution as a “State Space” design and try to
balance the torque-in with positional control-out – the most
common way it is done!
– But we could also use ‘force control’ to solve the control problem!

57

The State-Space Control Model:

D-1(q) 1/s 1/s
Output

Positions
Kinematics

b

C

h

+

+

+

Torque accel Vel pos

Friction

Coriolis
Centrifugal

Effects

Gravitation
Effects

Inertial Coupling

Setting up a Real Control
• We will (start) by using positional error to drive our

torque devices

• This simple model is called a PE (proportional error)
controller

+ KeError

State Space Model,
Generalized Torque Needed

Feedback, Qa

Qd

+

-

Q
Joint Drive

58

PE Controller:
• To a 1st approximation,  = Km*I

• Torque is proportional to motor current

• And the Torque required is a function of ‘Inertial’
(Acceleration) and ‘Friction’ (velocity) effects as suggested by
our L-E models

  Which can be approximated as:

Setting up a “Control Law”
• We will use the positional error (as drawn in the state

model) to develop our torque control
• We say then for PE control:

• Here, kpe is a “gain” term that guarantees sufficient current
will be generated to develop appropriate torque based on
observed positional error

59

Using this Control Type:
• It is a representation of the physical system of a mass on a

spring!
• We say after setting our target as a ‘zero goal’ that:

 the solution of which is:

a is a function of

the servo
feedback as a

function of time!

State Space Model of PD:

+ KeError

State Space Model,
Generalized Torque Needed

Feedback, Qa

Qd

+

-

Q
Joint Drive

Kd

dQ/dt

60

PID State Space Model:

+ KeError

State Space Model,
Generalized Torque Needed

Feedback, Qa

Qd

+

-

Q

Kd

dQ/dt

ki dt

Joint Drive

State Model of Adjustable Controller

+ Controller w/ Adj.
Parameters

Error Control Input

Feedback, Qa

Qd
+

-

Drive Position/Torque Actual
Pos

Performance
Index

Measure

Robot Sys.
Transfer

Functions

Desired Drive

Calc. Drive

Actual Drive using
Separate Feedback

Sensors
Decision

Logic

Modifications

Kinematic/
Kinetic Models

Physical
Parameters

61

Controllability

Controllability matrix

• If you can write it in CCF, then the system equations must
be linearly independent.

• Transformation by any nonsingular matrix preserves the
controllability of the system.

• Thus, a nonsingular controllability matrix means x can be
driven to any value.

62

State evolution
• Consider the system matrix relation:

𝒙 = 𝐅𝒙 + 𝐆𝑢
𝑦 = 𝐇𝒙 + 𝐽𝑢

The time solution of this system is:

𝒙 𝑡 = 𝑒𝐅 𝑡−𝑡0 𝒙 𝑡0 + = 𝑒𝐅 𝑡−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑡

𝑡0

If you didn’t know, the matrix exponential is:
𝑒𝐊𝑡 = 𝐈 + 𝐊𝑡 +

1

2!
𝐊2𝑡2 +

1

3!
𝐊3𝑡3 +⋯

Stability
• We can solve for the natural response

to initial conditions 𝒙𝟎:

𝒙 𝑡 = 𝑒𝑝𝑖𝑡𝒙0

∴ 𝒙 𝑡 = 𝑝𝑖𝑒
𝑝𝑖𝑡𝒙0 = 𝐅𝑒𝑝𝑖𝑡𝒙0

Clearly, a system will be stable provided
eig 𝐅 < 0

63

Characteristic polynomial

• From this, we can see 𝐅𝒙0 = 𝑝𝑖𝒙0
or, (𝑝𝑖I − 𝐅)𝒙0 = 0

which is true only when det(𝑝𝑖I − 𝐅)𝒙0 = 0
Aka. the characteristic equation!

• We can reconstruct the CP in s by writing:
det(𝑠I − 𝐅)𝒙0 = 0

Great, so how about control?
• Given 𝒙 = 𝐅𝒙 + 𝐆𝑢, if we know 𝐅 and 𝐆, we can design a

controller 𝑢 = −𝐊𝒙 such that
eig 𝐅 − 𝐆𝐊 < 0

• In fact, if we have full measurement and control of the states of 𝒙,

we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

64

Example: PID control
• Consider a system parameterised by three states:

– 𝑥1, 𝑥2, 𝑥3
– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢

𝑦 = 0 1 0 𝒙 + 0𝑢

𝑥2is the output state of the system;
𝑥1is the value of the integral;

𝑥3 is the velocity.

• We can choose 𝐊 to move the eigenvalues of the system
as desired:

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎

All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
𝐾3 can stabilise the system.

65

Just scratching the surface

• There is a lot of stuff to state-space control

• One lecture (or even two) can’t possibly cover it all in
depth

Go play with Matlab and check it out!

State-space control design

• Design for discrete state-space systems is just like
the continuous case.
– Apply linear state-variable feedback:

𝑢 = −𝐊𝒙
such that det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧)
where 𝛼𝑐(𝑧) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
𝓒 = 𝚪 𝚽𝚪 𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪 to be full-rank.

66

Solving State Space (optional notes) …

Solving State Space (optional notes)

67

Solving State Space (optional notes)

Solving State Space (optional notes)

68

Solving State Space (optional notes)

Solving State Space (optional notes)

69

Example:
Inverted Pendulum

Digital Control

Wikipedia,
Cart and pole

70

Inverted Pendulum

• The equations of motion of an inverted pendulum (under a
small angle approximation) may be linearized as:

𝜃 = 𝜔
𝜔 = 𝜃 = 𝑄2𝜃 + 𝑃𝑢

Where:

𝑄2 =
𝑀 +𝑚

𝑀𝑙
𝑔

𝑃 =
1

𝑀𝑙
.

If we further assume unity Ml (𝑀𝑙 ≈ 1), then 𝑃 ≈ 1

Inverted Pendulum – Equations of Motion

71

• We then select a state-vector as:

𝒙 =
𝜃
𝜔

, hence 𝒙 = 𝜃

𝜔
=

𝜔
𝜔

• Hence giving a state-space model as:

𝐴 =
0 1
𝑄2 0

,𝐵 =
0
1

• The resolvent of which is:

Φ 𝑠 = 𝑠𝐼 − 𝐴 −1 =
𝑠 −1

−𝑄2 𝑠

−1

=
1

𝑠2 − 𝑄2

𝑠 1
𝑄2 𝑠

• And a state-transition matrix as:

Φ 𝑡 =
cosh𝑄𝑡

sinh𝑄𝑡

𝑄
𝑄 𝑠𝑖𝑛ℎ 𝑄𝑡 cosh𝑄𝑡

Inverted Pendulum –State Space

Stability

72

• For small T:

• Hence, the unit circle under the map from z to s-plane becomes:

Fast sampling revisited

Specification bounds
• Recall in the continuous domain, response performance

metrics map to the s-plane:

Img(s)

Re(s)

𝑠 =
4.6

𝑡𝑠

𝑠 = 𝜎

Img(s)

Re(s)

𝜃 = sin−1𝜁

𝜃
Img(s)

Re(s)

𝑠 =
1.8

𝑡𝑟

𝜔𝑛 = 𝑠

73

2nd Order
System Response

• Response of a 2nd order system to increasing levels of
damping:

2nd Order System Response

74

Damping and natural frequency

[Adapted from Franklin, Powell and Emami-Naeini]
-1.0 -0.8 -0.6 -0.4 0 -0.2 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

Re(z)

Img(z)

𝑧 = 𝑒𝑠𝑇 where 𝑠 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2

0.1

0.2

0.3

0.4
0.5
0.6
0.7
0.8

0.9

𝜔𝑛 =
𝜋

2𝑇

3𝜋

5𝑇

7𝜋

10𝑇

9𝜋

10𝑇

2𝜋

5𝑇

1

2𝜋

5𝑇

𝜔𝑛 =
𝜋

𝑇

𝜁 = 0

3𝜋

10𝑇

𝜋

5𝑇

𝜋

10𝑇

𝜋

20𝑇

• Poles inside the unit circle
are stable

• Poles outside the unit circle
unstable

• Poles on the unit circle
are oscillatory

• Real poles at 0 < z < 1
give exponential response

• Higher frequency of
oscillation for larger

• Lower apparent damping
for larer and r

Pole positions in the z-plane

75

Characterizing the step response:

2nd Order System Specifications

• Rise time (10%  90%):

• Overshoot:

• Settling time (to 1%):

• Steady state error to unit step:
ess

• Phase margin:

Characterizing the step response:

2nd Order System Specifications

• Rise time (10%  90%) & Overshoot:
 tr, Mp  ζ, ω0 : Locations of dominant poles

• Settling time (to 1%):
 ts  radius of poles:

• Steady state error to unit step:
ess  final value theorem

76

Design a controller for a system with:
• A continuous transfer function:
• A discrete ZOH sampler
• Sampling time (Ts): Ts= 1s
• Controller:

The closed loop system is required to have:
• Mp < 16%
• ts < 10 s
• ess < 1

Ex: System Specifications  Control Design [1/4]

Ex: System Specifications  Control Design [2/4]

77

Ex: System Specifications  Control Design [3/4]

Ex: System Specifications  Control Design [4/4]

78

Discretization
 Digital State Space

• Difference equations in state-space form:

• Where:
– u[n], y[n]: input & output (scalars)
– x[n]: state vector

Digital State Space:

79

Discretisation FTW!
• We can use the time-domain representation to produce

difference equations!

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 + 𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

Notice 𝒖 𝜏 is not based on a discrete ZOH input, but rather
an integrated time-series.
We can structure this by using the form:

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇

Discretisation FTW!
• Put this in the form of a new variable:

𝜂 = 𝑘𝑇 + 𝑇 − 𝜏
Then:

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝑭𝑇𝒙 𝑘𝑇 + 𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇

𝑮𝑢 𝑘𝑇

Let’s rename 𝚽 = 𝑒𝑭𝑇 and 𝚪 = 𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇
𝑮

80

Discrete state matrices
So,

𝒙 𝑘 + 1 = 𝚽𝒙 𝑘 + 𝚪𝑢 𝑘

 𝑦 𝑘 = 𝐇𝒙 𝑘 + 𝐉𝒖 𝑘

Again, 𝒙 𝑘 + 1 is shorthand for 𝒙 𝑘𝑇 + 𝑇

Note that we can also write 𝚽 as:
𝚽 = 𝐈 + 𝐅𝑇𝚿

where

𝚿 = 𝐈 +
𝐅𝑇

2!
+
𝐅2𝑇2

3!
+⋯

Simplifying calculation
• We can also use 𝚿 to calculate 𝚪

– Note that:

Γ =
𝐅𝑘𝑇𝑘

𝑘 + 1 !
𝑇𝐆

∞

𝑘=0

 = 𝚿𝑇𝐆
𝚿 itself can be evaluated with the series:

𝚿 ≅ 𝐈 +
𝐅𝑇

2
𝐈 +

𝐅𝑇

3
𝐈 +⋯

𝐅𝑇

𝑛 − 1
𝐈 +

𝐅𝑇

𝑛

81

State-space z-transform
We can apply the z-transform to our system:

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘
𝑌 𝑧 = 𝐇𝑿 𝑧

which yields the transfer function:

𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 − 𝚽 −𝟏𝚪

Digital Control Law Design

82

Discretisation FTW!
• We can use the time-domain representation to produce

difference equations!

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 + 𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

Notice 𝒖 𝜏 is not based on a discrete ZOH input, but rather
an integrated time-series.
We can structure this by using the form:

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇

State-space z-transform

We can apply the z-transform to our system:

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘
𝑌 𝑧 = 𝐇𝑿 𝑧

which yields the transfer function:

𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 − 𝚽 −𝟏𝚪

83

• Design for discrete state-space systems is just like the

continuous case.
– Apply linear state-variable feedback:

𝑢 = −𝐊𝒙
 such that det 𝑧𝐈 − 𝚽 + 𝚪𝐊 = 𝛼𝑐 𝑧
 where 𝛼𝑐(𝑧) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
𝓒 = 𝚪 𝚽𝚪 𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪 to be full-rank.

State-space control design -- Controllability

• In the conventional, frequency-domain approach the
differential equations are converted to transfer functions as
soon as possible
– The dynamics of a system comprising several subsystems is

obtained by combining the transfer functions!

• With the state-space methods, on the other hand, the

description of the system dynamics in the form of
differential equations is retained throughout the analysis
and design.

Φ: Solving State Space

84

• Describes how the state x(t) of the system at some time t
evolves into (or from) the state x(τ) at some other time T.

• 𝚽 s = s𝐈 − 𝐀 −1  Φ 𝑡 = 𝑒𝑨𝑡

• Matrix Exponential:

𝑒𝐴𝑡 = exp 𝐴𝑡 = 𝐼 + 𝐴𝑡 +
𝐴2𝑡2

2!
+⋯+

𝐴𝑘𝑡𝑘

𝑘!
+ ⋯

• Similar idea, but different result, for the control u  Γ

State-transition matrix Φ(t)

• Γ =
𝐴𝑘𝑇𝑘+1

𝑘+1 !
∞
𝑘=0 𝑇𝐵 ≈ 𝐼𝑇 + 𝐴

𝑇2

2
𝐵

Why?

• 𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝑥 𝑡0 + 𝑒𝐴 𝑡−𝜏 𝐵𝑢(𝜏)
𝑡

0
𝑑𝜏

• 𝑥 𝑘𝑇 + 𝑇 = 𝑒𝐴𝑇𝑥 𝑘𝑇 + 𝑒
𝑘𝑇+𝑇

𝑘𝑇

𝐴 𝑘𝑡+𝑡−𝜏
𝐵𝑢 𝜏 𝑑𝜏

• u(t) is specified in terms of a continuous time history,
though we often assume u(t) is a ZOH:

• 𝑢 𝜏 = 𝑢 𝑘𝑇 ⇒ Introduce 𝜂 = 𝑘𝑇 + 𝑇 − 𝜏

• 𝑥 𝑘𝑇 + 𝑇 = 𝑒𝐴𝑇𝑥 𝑘𝑇 + 𝑒
𝑘𝑇+𝑇

𝑘𝑇

𝐹𝜂
𝑑𝜂𝐵𝑢 𝑘𝑇

Φ = 𝑒𝐴𝑇, Γ= 𝑒
𝑇

0

𝐴𝜂
𝑑𝜂𝐵

Γ: Gamma: Comes from Integrating 𝒙

85

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

Pole Placement

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

86

• FPW has a slightly different notation:
Pole Placement (Following FPW – Chapter 6)

• Start with a simple feedback control law (“controller”)

• It’s actually a regulator
∵ it does not allow for a reference input to the system.
(there is no “reference” r (r = 0))

• Substitute in the difference equation

𝑥 𝑘 + 1 = Φ𝑥 𝑘 − Γ𝐾𝑥(𝑘)
• 𝒵 Transform:

𝑧𝐼 − Φ + Γ𝐾 𝑋 𝑧 = 0
Characteristic Eqn:

det 𝑧𝐼 − Φ + Γ𝐾 = 0

Pole Placement

http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf

87

Pole placement: Big idea:
• Arbitrarily select the desired root locations of the closed-

loop system and see if the approach will work.
• AKA: full state feedback

∵ enough parameters to influence all the closed-loop poles
• Finding the elements of K so that the roots are in the

desired locations. Unlike classical design, where we
iterated on parameters in the compensator (hoping) to find
acceptable root locations, the full state feedback, pole-
placement approach guarantees success and allows us to
arbitrarily pick any root locations, providing that n roots
are specified for an nth-order system.

Pole Placement

Meaning…

88

• Given:
𝑧𝑖 = 𝛽1, 𝛽2, 𝛽3, …

• This gives the desired control-characteristic equation as:

𝑎𝑐 𝑧 = 𝑧 − 𝛽1 𝑧 − 𝛽2 𝑧 − 𝛽3 … =

• Now we “just solve” for K and “bingo”

Back to Pole Placement

Pole Placement Example (FPW p. 241)

89

Pole Placement Example (FPW p. 241)

Pole Placement Example (FPW p. 241)

90

Ackermann's Formula (FPW p. 245)
• Gains maybe approximated with:

• Where: C = controllability matrix, n is the order of the
system (or number of state elements) and 𝛼𝑐:

– 𝛼𝑖: coefficients of the desired characteristic equation

Ackermann's Formula Example (FPW p.246)

91

Shaping of
Dynamic Responses

ELEC3004 Flashback: Another way to see P I|D
• Derivative

D provides:
– High sensitivity
– Responds to change
– Adds “damping” &
∴ permits larger KP

– Noise sensitive
– Not used alone

(∵ its on rate change
 of error – by itself it
wouldn’t get there)

 “Diet Coke of control”

• Integral
– Eliminates offsets

(makes regulation )
– Leads to Oscillatory

behaviour
– Adds an “order” but

instability
(Makes a 2nd order system 3rd order)

 “Interesting cake of control”

92

• The energy (and sensitivity) moves around
(in this case in “frequency”)

• Sensitivity reduction at low frequency unavoidably leads
to sensitivity increase at higher frequencies.

Seeing PID – No Free Lunch

Source: Gunter Stein's interpretation of the water bed effect – G. Stein, IEEE Control Systems Magazine, 2003.

PID control
• Consider a system parameterised by three states:

– 𝑥1, 𝑥2, 𝑥3
– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢

𝑦 = 0 1 0 𝒙 + 0𝑢

𝑥2is the output state of the system;
𝑥1is the value of the integral;

𝑥3 is the velocity.

93

PID control [2]
• We can choose 𝐊 to move the eigenvalues of the system

as desired:

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎

All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
𝐾3 can stabilise the system.

Implementation of Digital PID Controllers

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

94

Implementation of Digital PID Controllers (2)

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

Let’s Generalize This: Shaping the Dynamic Response
• A method of designing a control system for a process in

which all the state variables are accessible for
Measurement

 This method is also known as pole-placement

• Theory:
– We will find that in a controllable system, with all the state variables

accessible for measurement, it is possible to place the closed-loop poles
anywhere we wish in the complex s plane!

• Practice:
– Unfortunately, however, what can be attained in principle may not be

attainable in practice. Speeding the response of a sluggish system requires
the use of large control signals which the actuator (or power supply) may not
be capable of delivering. And, control system gains are very sensitive to the
location of the open-loop poles

95

Regulator Design
• Here the problem is to determine the gain matrix G in a

linear feedback law
– Where: x0 is the vector of exogenous variables. The reason it is

necessary to separate the exogenous variables from the process
state x, rather than deal directly with the metastate
is that we must assume that the underlying process is
controllable.

• Since the exogenous variables are not true state variables, but additional
inputs that cannot be affected by the control action, they cannot be
included in the state vector when using a design method that requires
controllability.

• HOWEVER, they can be used in a process for Observability!
∴ when we are doing this as part of the sensing/mapping process!!

Regulator Design
• The assumption that all the state variables are accessible to

measurement in the regulator means that the gain matrix G
in is permitted to be any function of the state x that the
design method requires

– Where: x̂ is the state of an appropriate dynamic system known as

an "observer."

96

SISO Regulator Design
• Design of a gain matrix

for the single-input, single-output system

• Our objective is to find the matrix G = g' which places the
poles of the closed-loop dynamics matrix
at the locations desired.

SISO Regulator Design [2]
• One way of determining the gains would be to set up the

characteristic polynomial for Ac:

• The coefficients a1,a2, …,ak of the powers of s in the
characteristic polynomial will be functions of the k
unknown gains. Equating these functions to the numerical
values desired for a1,a2, …,ak will result in k simultaneous
equations the solution of which will yield the desired gains
gl, ... , gk.

97

SISO Regulator Design [3]

SISO Regulator Design [4]

98

SISO Regulator Design [4]
• But how to get this in companion form?

SISO Regulator Design [5]

99

SISO Regulator Design [6]

SISO Regulator Design [7]

100

SISO Regulator Design [8]

SISO Regulator Design [9]

101

SISO Regulator Design [10]

SISO Regulator Design [11]

102

How to Get the Gains?
Ackermann's Formula (FPW p. 245) [ELEC3004]
• Gains maybe approximated with:

• Where: C = controllability matrix, n is the order of the
system (or number of state elements) and 𝛼𝑐:

– 𝛼𝑖: coefficients of the desired characteristic equation

Ackermann's Formula [2] (FPW p.246)

103

Viewing State-Space as
a Tool for Solving ODEs

Simultaneously

State Space as an ODE
• The basic mathematical model for an LTI system consists

of the state differential equation

• The solution is can be expressed as a sum of terms owing
to the initial state and to the input respectively:

• This is a first-order solution similar to what we expect

104

State Equation Solution: Matrix Exponential

• The first term can be handled via a Taylor Series

 This case is known as the matrix exponential function
 Also referred to as the state-transition matrix,
 denoted by Φ (t, t0):

• The state-transition matrix satisfies the homogeneous state

equation, thus, it represents the free response of the system. That is,
it governs the response that is excited by the initial conditions only

Output Equation Solution
• Having the solution for the complete state response, a

solution for the complete output equation can be obtained
as:

105

State Equation Solution
• Thus, the solution to the unforced system (u=0):

Note: the term ϕij(t) can be interpreted as the response of the ith state variable
due to an initial condition on the jth state variable when there are zero initial
conditions on all other states.

• The solution of the state differential equation can also be
obtained using the Laplace transform:



Properties of the Matrix Exponential
• Note that eAt is just a notation used to represent a power series.

• Example 1: Consider the following 4x4 matrix

106

Properties of the matrix exponential

Using this to Solve State Space Problems
• Example:

– Solve the following linear second-order ordinary differential

– Consider the input u(t) is a step of magnitude 3
and the initial conditions

107

State-Space Exercise

State-Space Exercise

108

Water Tank Example

Example
• Figure 18.1: Schematic diagram of two coupled tanks

109

• Water flows into the first tank through pump 1 a rate fi(t)
that obviously affects the head of water in tank 1 (denoted
by h1(t)). Water flows out of tank 1 into tank 2 at a rate
f12(t), affecting both h1(t) and h2(t). Water than flows
out of tank 2 at a rate fe controlled by pump 2.

• Given this information, the challenge is to build a virtual
sensor (or observer) to estimate the height of liquid in tank
1 from measurements of the height of liquid in tank 2 and
the flows f1(t) and f2(t).

• Before we continue with the observer design, we first
make a model of the system. The height of liquid in tank
1 can be described by the equation

• Similarly, h2(t) is described by

• The flow between the two tanks can be approximated by
the free-fall velocity for the difference in height between
the two tanks:

110

• We can linearize this model for a nominal steady-state
height difference (or operating point). Let

• This yields the following linear model:

• where

• We are assuming that h2(t) can be measured and h1(t)
cannot, so we set C = [0 1] and D = [0 0]. The
resulting system is both controllable and observable (as
you can easily verify). Now we wish to design an
observer

• to estimate the value of h2(t). The characteristic
polynomial of the observer is readily seen to be

• so we can choose the observer poles; that choice gives us
values for J1 and J2.

111

• If we assume that the operating point is H = 10%, then k =
0.0411. If we wanted poles at s = -0.9291 and s = -
0.0531, then we would calculate that J1 = 0.3 and J2 =
0.9. If we wanted two poles at s = -2, then J2 = 3.9178
and J1 = 93.41.

• The equation for the final observer is then

112

• The data below has been collected from the real system
shown earlier

0 50 100 150 200 250 300 350 400
40
50
60
70
80

Set point for height in tank 2 (%)

Time (sec)

Pe
rc

en
t

0 50 100 150 200 250 300 350 400
40
50
60
70
80

Actual height in tank 2 (%)

Time (sec)

Pe
rc

en
t

• The performance of the observer for tank height is
compared below with the true tank height which is
actually measured on this system.

Actual height in tank 1 (blue),
Observed height in tank 1 (red)

0 50 100 150 200 250 300 350 400 40
45
50
55
60
65
70
75
80
85

Time (sec)

Pe
rc

en
t

113

Revisiting
Pole Placement

Pole Assignment by State Feedback
• We begin by examining the problem of closed-loop pole

assignment. For the moment, we make a simplifying
assumption that all of the system states are measured. We
will remove this assumption later. We will also assume
that the system is completely controllable. The following
result then shows that the closed-loop poles of the system
can be arbitrarily assigned by feeding back the state
through a suitably chosen constant-gain vector.

114

State-Feedback Control Objectives
• Regulation: Force state x to equilibrium state (usually

0) with a desirable dynamic response.

• Tracking: Force the output of the system y to tracks a
given desired output yd with a desirable dynamic
response.

Pole Placement Problem as an Eignenvalue Problem

Choose the state feedback gain to place the poles
of the closed-loop system, i.e.,

HKG:G of sEigenvalue 

At specified locations desdes

n
 ,,

1


115

State Feedback Control of a System in CCF

Consider a SISO system in CCF:

State Feedback Control

 11K,rKxu nkk 

uHxGx cc kk )(ˆ)1(ˆ

nn

nn

c

nn

c

azazazzIs

,

aaaa



























































1
1

1

121

G)(
1
0

0
0

H
1000

0100
0010

G















Closed-Loop CCF System

 n

nn

kk

aaaa













1

121 1
0

0
0

1000

0100
0010

G





















































Closed loop A matrix:



























 nnnn kakakaka 112211

1000

0100
0010

G











116

Choosing the Gain-CCF

Closed-loop Characteristic Equation

     121
1

1)(kazkazkazz nn

n

n

n  

 

Desired Characteristic Equation:

  des

n

des

n

ndesn
n

i

des

i

des azazazzz  





 1
1

1
1

)(

Control Gains:

niaaK in

des

ini ,,2,1,11  

Transformation to CCF

Transform system uHGxx  To CCF































uxaxaxax

xx

xx

nnnn

cc

ˆˆˆˆ

ˆˆ
ˆˆ

ˆˆ

1211

32

21




uHxGx

First, find how new state z1 is related to x:
   vectorrow p,pxˆ 11 nppx 

Where x+(k)=x(k+1) (for simplicity)

117

Transformed State Equations

































ux

xux

xux

xux

nnn

n

n

nnn

n

HpGxpGxpG
HpGxpGxpG

pGHxpGpGx
pHpGxpx

11

212
1

3
2

2

21

ˆ
ˆˆ

ˆˆ
ˆˆ



0

0

0

1

Necessary Conditions for p:

   100HGGHHp 1  n

1Mep 
T

n

Vector p can be found if the system is
controllable:

State Transformation Invertibility

x

pG

pG
p

Tx

ˆ

ˆ
ˆ

1

2

1







































n

nx

x

x


State transformation:

Matrix T is invertible since

 










































 HpGHpG1

HpG10
100

HGGHH

pG

pG
p

22

1

1 nn

n

n

n 










By the Cayley-Hamilton theorem.

118

Toeplitz Matrix

I

001

01
1

TM 2

11

































n

n

a

aa

Matrix on the right is called Toeplitz matrix

The Cayley-Hamilton theorem can further be used to
show that

State Transformation Formulas

1

1

Mep,

pG

pG
p

T 
























T

n

n



Formula 1:

Formula 2:

1

2

11

001

01
1

MT























































n

n

a

aa

119

State Feedback Control Gain Selection

 11K̂,rx̂K̂u aaaa des

n

des

n  

  




















1

11
K

pG

pG
p

rTK̂u

n

des

n

des

n aaaaKx




By Cayley Hamilton: nn

nn GGaGaIa 1
11  

 

 IaGaGaGpK
11

1 desdesndesn

nn




  or

 GΦMeK desT

n

1

Bass-Gura Formula

1

2

11

1

11

100

10
1

MK
1





















































































 n

n

T

n

des

n

des

des

a

aa

aa

aa

aa

n

n

 11K̂,rx̂K̂u aaaa des

n

des

n  

1

2

11

11

11

001

01
1

MK




















































































n

n

T

des

des

nn

des

nn

a

aa

aa

aa

aa

120

Double Integrator-Matlab Solution

T=0.5;
lam=[0;0];
G=[1 T;0 1];
H=[T^2/2;T];
C=[1 0];

K=acker(G,H,lam);
Gcl=G-H*K;
clsys=ss(Gcl,H,C,0,T);
step(clsys);

Flexible System Example

Consider the linear mass-spring system shown
below:

m1
u

m2

x2 x1

k
Parameters:

m1=m2=1Kg.
K=50 N/m

• Analyze PD controller based on a)x1, b)x2

• Design state feedback controller, place poles
at  j 125,20,20

121

Collocated Control

Transfer Function:  100
50

)(
)(

22

2
1






ss

s

sU

sX
Gp

PD Control:   20,  aasKGc

-50 -40 -30 -20 -10 0
-25

-20

-15

-10

-5

0

5

10

15

20

25

Real Axis

Im
ag

 A
xi

s

Root-
Locus

Non-Collocated Control

Transfer Function:  100
50

)(
)(

22
2




sssU

sX
Gp

PD Control:   20,  aasKGc

Root-Locus

-35 -30 -25 -20 -15 -10 -5 0 5
-15

-10

-5

0

5

10

15

Real Axis

Im
ag

 A
xi

s

Unstable

122

Discrete Time State Model

u

x

x

x

x

050

050

1000

0100

x

x

x

x

4

3

2

1

4

3

2

1
















































































0
1
0
0

050
050









Discretized Model: x(k+1)=Gx(k)+Hu(k)










































0
01.0
0
0

,

9975.00025.04992.04992.0
0025.09975.04992.04992.0

01.00997500025.0
001.00025099750

H
.

..

G

Open-Loop System Information

    























003.00002.0001.00
0097.00098.00099.001.0
0000

0003.00002.00001.00

M

HGGGHGGHHM 2
Controllability matrix:

Characteristic equation:

|zI-G|=(z-1)2(z2-1.99z+1)=z4-3.99z3+5.98z2-3.99z+6

123

State Feedback Controller

Characteristic Equations:

    
5819.06675.25822.44963.3)(

0658.09294.08187.0)(
234

222





zzzzs

zzs

des

des

1

99.3000
99.3100

98.599.310
99.398.599.31

M

65819.0
99.36675.2

98.55822.4
99.34963.3

K













































































T

 
rxxxxu 



4321 75.10554.4517.144757
75.10554.4517.14400.757K

|zI-G|=(z-1)2(z2-1.99z+1)=z4-3.99z3+5.98z2-3.99z+6

Matlab Solution

%System Matrices
m1=1; m2=1; k=50; T=0.01;
syst=ss(A,B,C,D);
A=[0 0 1 0;0 0 0 1;-50 50 0 0;50 -50 0 0];
B=[0; 0; 1; 0];
C=[1 0 0 0;0 1 0 0]; D=zeros(2,1);
cplant=ss(A,B,C,D);

%Discrete-Time Plant
plant=c2d(cplant,T);
[G,H,C,D]=ssdata(plant);

124

Matlab Solution
%Desired Close-Loop Poles

pc=[-20;-20;

 -5*sqrt(2)*(1+j); 5*sqrt(2)*(1-j)];

pd=exp(T*pc);

% State Feedback Controller

K=acker(G,H,pd);

%Closed-Loop System

clsys=ss(G-H*K,H,C,0,T);

grid

step(clsys,1)

Time Respone

Time (sec.)

A
m

pl
itu

de

Step Response

0

0.5

1

1.5

2
x 10-3 From: U(1)

To
: Y

(1
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
x 10-3

To
: Y

(2
)

125

Steady-State Gain

Closed-loop system: x(k+1)=Gclx(k)+Hr(k), Y=Cx(k)

Y(z)=C(zI-Gcl)-1H R(z)

If r(k)=r.1(k) then yss=C(I-Gcl)-1H

Thus if the desired output is constant

r=yd/gain, gain= C(I-Gcl)-1H

Time Response

Time (sec.)

Am
pl

itu
de

Step Response

0

0.5

1

1.5
From: U(1)

To
: Y

(1
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

To
: Y

(2
)

126

Integral Control

g

y
je d

k

j

Is  




1

0
)(KxKuControl law:

Z-1 H

G

x
C

y

-Ks

yd u
 Ki

Integral
controller

plant

Automatically generates reference input r!

1/g

Closed-Loop Integral Control System

  

























































d

Is
y

r

k

k

k

k H
v
x

KK
0
H

)(v
)(x

IC
0G

)1(v
)1(x

Plant:
)(Cx)(y

)(uH)(Gx)1(x
kk

kkk





yyeKxKru  dIs kv),(Control:

Integral state:)()()1(kkk evv 

Closed-loop system

127

Double Integrator-Matlab Solution

T=0.5;
lam=[0;0;0];
G=[1 T;0 1]; H=[T^2/2;T]; C=[1 0];

Gbar=[G zeros(2,1);C 1];
Hbar=[H;0];
K=acker(Gbar,Hbar,lam);
Gcl=Gbar-Hbar*K;
yd=1; r=0; %unknown gain
clsys=ss(Gcl,[H*r;-yd],[C 0;K],0,T);
step(clsys);

Closed-Loop Step Response

Time (sec.)

A
m

pl
itu

de

Step Response

0

0.2

0.4

0.6

0.8

1
From: U(1)

To
: Y

(1
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4

To
: Y

(2
)

128

• Lemma 18.1: Consider the state space nominal model

• Let denote an external signal.)(tr

• Then, provided that the pair (A0, B0) is completely
controllable, there exists

• such that the closed-loop characteristic polynomial is
Acl(s), where Acl(s) is an arbitrary polynomial of degree n.

129

• Note that state feedback does not introduce additional
dynamics in the loop, because the scheme is based only on
proportional feedback of certain system variables. We can
easily determine the overall transfer function from
to y(t). It is given by

• where

• and Adj stands for adjoint matrices.

)(tr

[Matrix inversion lemma]
• We can further simplify the expression given above. To

do this, we will need to use the following results from
Linear Algebra.

• (Matrix inversion lemma).
Consider three matrices A,B,C
Then, if A + BC is nonsingular, we have that

• In the case for which B = g  n and CT = h  n, the
above result becomes

130

• Lemma 18.3: Given a matrix W  nn and a pair of
arbitrary vectors 1  n and 2  n, then provided
that W and are nonsingular,

• Proof: See the book.

,21
TW 

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

131

LQR

Control Theory
• The use of feedback to regulate a signal

Controller

Plant

Desired
signal xd

Signal x Control input u

Error e = x-xd

(By convention, xd = 0) x’ = f(x,u)

132

Model-free vs model-based
• Two general philosophies:

– Model-free: do not require a dynamics model to be provided
– Model-based: do use a dynamics model during computation

• Model-free methods:
– Simpler (eg. PID)
– Tend to require much more manual tuning to perform well

• Model-based methods:
– Can achieve good performance (optimal w.r.t. some cost function)
– Are more complicated to implement
– Require reasonably good models (system-specific knowledge)
– Calibration: build a model using measurements before behaving
– Adaptive control: “learn” parameters of the model online from sensors

PID control
• Proportional-Integral-Derivative controller

– A workhorse of 1D control systems
– Model-free

• Proportional Case:

– 𝑢(𝑡) = −𝐾𝑝 𝑥(𝑡)
– Negative sign assumes control acts in the same direction as x

x t

Gain

133

PID control: Integral term

• 𝑢 𝑡 = −𝐾𝑝 𝑥 𝑡 − 𝐾𝑖 𝐼 𝑡

• 𝐼(𝑡) = 𝑥 𝑡 𝑑𝑡
𝑡

0
 (accumulation of errors)

x t

Residual steady-state errors
driven asymptotically to 0

Integral gain

PID control: Integral term: Instability
• I adds a pole
• If not tuned correctly  this adds instability
• Ex: For a 2nd order system (momentum), P control

x t

Divergence

134

PID control: Derivative term

• 𝑢(𝑡) = −𝐾𝑝 𝑥(𝑡) – 𝐾𝑑 𝑥’(𝑡)

x

Derivative gain

PID control: Together
• P+I+D:

– 𝑢(𝑡) = −𝐾𝑝 𝑥(𝑡) − 𝐾𝑖 𝐼(𝑡) − 𝐾𝑑 𝑥’(𝑡)

– 𝐼(𝑡) = 𝑥 𝑡 𝑑𝑡
𝑡

0

135

Stability and Convergence
• System is stable if errors stay bounded

• System is convergent if errors -> 0

Example: Trajectory following
• Say a trajectory xdes(t) has been designed

– E.g., a rocket’s ascent, a steering path for a car, a plane’s landing
• Apply PID control

– u(t) = Kp (xdes(t)- x(t)) - Ki I(t) + Kd (x’des(t)-x’(t))

– I(t) = 𝑥𝑑𝑒𝑠 𝑡 − 𝑥 𝑡 𝑑𝑡
𝑡

0

• The designer of xdes needs to be knowledgeable about the
controller’s behavior!

xdes(t)
x(t)

x(t)

136

Controller Tuning Workflow
• Hypothesize a control policy
• Analysis:

– Assume a model
– Assume disturbances to be handled
– Test performance either through mathematical analysis, or

through simulation
• Go back and redesign control policy

– Mathematical techniques give you more insight to improve
redesign, but require more work

Multivariate Systems
• 𝑥’ = 𝑓(𝑥, 𝑢)
• 𝑥 𝑋 𝑅𝑛
• 𝑢 𝑈 𝑅𝑚

• Because m  n, and variables are coupled,
• This is not as easy as setting n PID controllers

137

Linear Quadratic Regulator

• 𝑥’ = 𝐴𝑥 + 𝐵𝑢

• Objective: minimize quadratic cost
 𝑥𝑇𝑄 𝑥 + 𝑢𝑇𝑅 𝑢 𝑑𝑡

• Over an infinite horizon

Error term “Effort” penalization

Closed form LQR solution
• Closed form solution

u = -K x, with K = R-1BP
• Where P is a symmetric matrix that solves the Riccati

equation
– ATP + PA – PBR-1BTP + Q = 0
– Derivation: calculus of variations

• Packages available for finding solution

138

Toy Nonlinear Systems

Cart-pole Acrobot

Mountain car

Deterministic Linear Quadratic Regulation

139

Deterministic Linear Quadratic Regulation

Optimal Regulation

140

Optimal Regulation

Optimal Regulation

141

Optimal State Feedback

Optimal State Feedback

142

Optimal State Feedback

LQR In MATLAB

143

From Linear to Nonlinear
• We know how to solve (assuming gt, Ut, Xt convex):

• How about nonlinear dynamics:

Shooting Methods (feasible)

Iterate for i=1, 2, 3, …

 Execute (from solving (1))

 Linearize around resulting trajectory

 Solve (1) for current linearization

Collocation Methods (infeasible)

Iterate for i=1, 2, 3, …

 --- (no execution)---

 Linearize around current solution of (1)

 Solve (1) for current linearization

(1)

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using
linearization, linearize equality constraints, convex-quadratic approximate objective function

Model Predictive Control
• Given:
• For k=0, 1, 2, …, T

– Solve

– Execute uk

– Observe resulting state,

144

Iterative LQR versus Sequential Convex
Programming
• Both can solve

• Can run iterative LQR both as a shooting method or as a collocation method, it’s just a
different way of executing “Solve (1) for current linearization.” In case of shooting, the
sequence of linear feedback controllers found can be used for (closed-loop) execution.

• Iterative LQR might need some outer iterations, adjusting “t” of the log barrier

Shooting Methods

Iterate for i=1, 2, 3, …

 Execute feedback controller (from solving (1))

 Linearize around resulting trajectory

 Solve (1) for current linearization

Collocation Methods

Iterate for i=1, 2, 3, …

 --- (no execution)---

 Linearize around current solution of (1)

 Solve (1) for current linearization

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using
linearization, linearize equality constraints, convex-quadratic approximate objective function

Example Shooting

145

Example Collocation

+ :
At all times the sequence of controls is meaningful, and the
objective function optimized directly corresponds to the
current control sequence
-- :
For unstable systems, need to run feedback controller during
forward simulation

– Why? Open loop sequence of control inputs computed for the linearized
system will not be perfect for the nonlinear system. If the nonlinear system is
unstable, open loop execution would give poor performance.

– Fixes:
• Run Model Predictive Control for forward simulation
• Compute a linear feedback controller from the 2nd order Taylor expansion

at the optimum

Practical Benefits and Issues with Shooting

146

+ :
Can initialize with infeasible trajectory. Hence if you have a
rough idea of a sequence of states that would form a
reasonable solution, you can initialize with this sequence of
states without needing to know a control sequence that
would lead through them, and without needing to make them
consistent with the dynamics

-- :
Sequence of control inputs and states might never converge
onto a feasible sequence

Practical Benefits and Issues with Collocation

Direct policy synthesis: Optimal control
• Input: cost function J(x), estimated dynamics f(x,u), finite

state/control spaces X, U

• Two basic classes:
– Trajectory optimization: Hypothesize control sequence u(t),

simulate to get x(t), perform optimization to improve u(t), repeat.
– Output: optimal trajectory u(t) (in practice, only a locally optimal

solution is found)
– Dynamic programming: Discretize state and control spaces,

form a discrete search problem, and solve it.
– Output: Optimal policy u(x) across all of X

147

Discrete Search example
• Split X, U into cells x1,…,xn, u1,…,um

• Build transition function xj = f(xi,uk)dt for all i,k
• State machine with costs dt J(xi) for staying in state I
• Find u(xi) that minimizes sum

of total costs.
• Value iteration: repeated

dynamic programming over
V(xi) = sum of total future
costs

Value function for 1-joint acrobot

Receding Horizon Control (aka model predictive
control)

...

horizon 1 horizon h

148

Estimation

Along multiple dimensions

149

State Space
• We collect our set of uncertain variables into a vector …
 x = [x1, x2,…, xN]T

• The set of values that x might take on is termed the state

space

• There is a single true value for x,
but it is unknown

State Space Dynamics

150

Measured versus True
• Measurement errors are inevitable

• So, add Noise to State...

– State Dynamics becomes:

• Can represent this as a “Normal” Distribution

Recovering The Truth
• Numerous methods
• Termed “Estimation” because we are trying to estimate

the truth from the signal
• A strategy discovered by Gauss
• Least Squares in Matrix Representation

151

Recovering the Truth: Terminology

General Problem…

152

Duals and Dual Terminology

Estimation Process in Pictures

153

Kalman Filter Process

KF Process in Equations

154

KF Considerations

Ex: Kinematic KF: Tracking
• Consider a System with Constant Acceleration

155

In Summary

• KF:
– The true state (x) is separate from the measured (z)
– Lets you combine prior controls knowledge with

measurements to filter signals and find the truth
– It regulates the covariance (P)

• As P is the scatter between z and x
• So, if P  0, then z  x (measurements  truth)

• EKF:
– Takes a Taylor series approximation to get a local “F” (and

“G” and “H”)

