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Perfect World: Deterministic 
• Exact pose from motion model 
• Global localisation by triangulation 

– Even if range-only or bearing-only sensors, can localise given 
enough measurements 

– Solve simultaneous equations: N equations for N unknowns 
 

 

Real World: Uncertain 
• All measurements have errors 
• In SLAM, measurement errors induce dependencies in the 

landmark and vehicle pose estimates 
– Everything is correlated 
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How to quantify uncertainty ?  
Probability to the rescue… 
• FATHER(F): Nurse, what is the probability that the drug will work?  
• NURSE (N): I hope it works, we’ll know tomorrow.  
• F: Yes, but what is the probability that it will?  
• N: Each case is different, we have to wait. 
• F: But let’s see, out of a hundred patients that are treated under similar 

conditions, how many times would you expect it to work?  
• N (somewhat annoyed): I told you, every person is different, for some it 

works, for some it doesn’t. 
• F (insisting): Then tell me, if you had to bet whether it will work or not, 

which side of the bet would you take?  
• N (cheering up for a moment): I’d bet it will work.  
• F (somewhat relieved): OK, now, would you be willing to lose two dollars 

if it doesn’t work, and gain one dollar if it does? 
• N (exasperated): What a sick thought! You are wasting my time! 

Bertsekas & Tsitsiklis,  
Introduction to Probability. 

 

Probability review 1/4: Probabilistic Modeling 

• View:  
– Experiments with random outcome. 
– Quantifiable properties of the outcome.  

• Three components: 
– Sample space: Set of all possible outcomes. 
– Events: Subsets of sample space. 
– Probability: Quantify how likely an event occurs. 
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Probability review 2/4: Probability 

• Probability: A function that maps events to real numbers 
satisfying these axioms: 
1. Non-negativity: 
2. Normalization:  
3. Additivity of finite / countably infinite events.  
 
 
 



P(E) 0, where E is an event.



P(S) 1, where S is the sample space.



P U
i1

 /n

E i








 P E i 

i1

 /n

 ,  

where E i are disjoint / mutually exclusive,  i :  natural number.

 

Probability review 3/4: Random Variables 

• Interest is on numerical values associated w. samples, e.g.: 
– Sample 50 students enrolled in METR4202, what's the major of 

most of the students.  
– Roll a fair dice, get $5 if the outcome is even, & loose $5 if the 

outcome is odd. 
• Random variable X is a function                          . 

– Num: countable set (e.g., integer)  discrete random variable. 
– Num: uncountable set (e.g., real)  continuous random variable. 

 


X :SNum
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Probability review 4/4: Characterizing Random Variables 

• Cumulative distribution function (cdf) 
 
 

• Discrete: Probability mass function (pmf) 
 
 

• Continuous: Probability density function/probability 
distribution function (pdf) 

 
 
 
 
 

 

 



fX x 
dFX x 
dx

; P a  X  b  fX x dx
a

b



fX x  P X  x 


FX x  P X  x  P sX(s)  x,sS  

 

Brief Overview of Probability Theory 

• Probability density function (PDF) over N-D state 
space           is denoted 
 

• Properties of a PDF 
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Brief Overview of Probability Theory 

• State vector 
 

• Joint PDF is 
 

• Conditional PDF of x1 given x2 and x3 

 
• Conditional independence: if x1 is independent of x2 

given x3 then  
 

 

Two Essential Rules for Manipulating Probabilities 

• Sum rule 
 
 

• Product rule 
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Implications of the Product Rule 

• Conditionals 
 

• Independence 
 

• Markov Models 

 
• Bayes theorem 

 
 

 

Marginalisation: Remove old states 

• As per the sum rule 
 
 
 
 

• Marginal says: what is PDF of x1 when we don’t care what 
value x2 takes; ie, p(x1) regardless of x2 

• Important distinction: x1 is still dependent on x2, but p(x1) is 
not a function of x2 
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Bayesian Update: Inverse probability 

• Bayes theorem 
 

• Observation model 
 

• Conditional probability 
 
 
 

• Likelihood function 

 

Bayes Update 

• Update 
 

• Denominator term often seen as just a normalising 
constant, but is important for saying how likely a 
model or hypothesis is 

– Used in FastSLAM for determining particle weights 
– Used in multi-hypothesis data association 
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Bayesian Estimation 

• Standard theory for dealing with uncertain 
information in a consistent manner 
 

 

More Cool Robotics Share! 

file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/PhotoTourismFull.wmv
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What is SLAM? 

• SLAM asks the following question: 
 

 Is it possible for an autonomous vehicle to start at an unknown location in an 
unknown environment and then to incrementally build a map of this 
environment while simultaneously using this map to compute vehicle 
location? 

 
• SLAM has many indoor, outdoor, in-air and underwater applications for 

both manned and autonomous vehicles.  
 

• Examples 
– Explore and return to starting point (Newman) 
– Learn trained paths to different goal locations 
– Traverse a region with complete coverage (eg, mine fields, lawns, reef 

monitoring) 
– … 

 

Components of SLAM 
• Localisation 

– Determine pose given a priori map 
• Mapping 

–  Generate map when pose is accurately known from auxiliary 
source. 

• SLAM 
– Define some arbitrary coordinate origin 
– Generate a map from on-board sensors  
– Compute pose from this map 
– Errors in map and in pose estimate are dependent. 
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Basic SLAM Operation 
 

 

Example: SLAM in Victoria Park 
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Basic SLAM Operation 

 

Basic SLAM Operation 
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Basic SLAM Operation 

 

Basic SLAM Operation 
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Dependent Errors 

 

Correlated Estimates 
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SLAM Convergence  
• An observation acts like a displacement to a spring system 

– Effect is greatest in a close neighbourhood  
– Effect on other landmarks diminishes with distance 
– Propagation depends on local stiffness (correlation) properties 

• With each new observation the springs become increasingly (and 
monotonically) stiffer. 

• In the limit, a rigid map of landmarks is obtained. 
– A perfect relative map of the environment 

• The location accuracy of the robot is bounded by 
– The current quality of the map  
– The relative sensor measurement  

 

Spring Analogy 
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Monotonic Convergence 

• With each new 
observation, the 
determinant 
decreases over 
the map and for 
any submatrix in 
the map. 

 

Models 

• Models are central to creating a representation of the 
world. 

• Must have a mapping between sensed data (eg, laser, 
cameras, odometry) and the states of interest (eg, 
vehicle pose, stationary landmarks) 

• Two essential model types: 
– Vehicle motion  
– Sensing of external objects 
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An Example System 

RADAR 

Steering 

angle 

Wheel 

speed  

MODEL 

 

Gyro 

(INS) 

 

Observation 

 
 

Estimator 

 

 

GPS 

 

MAP states 

Vehicle pose 

Comparison 

 

Objects Detection 

Data Association 

Additional 

Landmarks 

properties 

Compass 

LASER 

States, Controls, Observations 

Joint state with 
momentary pose 

Joint state with 
pose history 

Control inputs: 
Observations: 
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Vehicle Motion Model 

• Ackerman 
steered vehicles: 
Bicycle model 
 
 

• Discrete time 
model: 
 

 

SLAM Motion Model 
 
 

 
 
• Joint state: Landmarks are assumed stationary 
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Observation Model 
• Range-bearing measurement  

 

 

Applying Bayes to SLAM: Available Information 
• States       (Hidden or inferred values) 

– Vehicle poses 
– Map; typically composed of discrete parts called landmarks or 

features 
• Controls 

– Velocity  
– Steering angle 

• Observations 
– Range-bearing measurements 
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Augmentation: Adding new poses and landmarks 

• Add new pose 
 
 
 

• Conditional probability is a Markov Model 
 

 

Augmentation 

 
 
 

• Product rule to create joint PDF p(xk) 
 
 

• Same method applies to adding new landmark states 
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Marginalisation:  
Removing past poses and obsolete landmarks 

 
• Augmenting with new pose and marginalising the old pose 

gives the classical SLAM prediction step 

 

Fusion: Incorporating observation information 
• Conditional PDF according to observation model 

 
 
 

• Bayes update:  
proportional to product of likelihood and prior 
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Implementing Probabilistic SLAM 
• The problem is that Bayesian operations are intractable in 

general. 
– General equations are good for analytical derivations, not good 

for implementation 
 

• We need approximations 
– Linearised Gaussian systems (EKF, UKF, EIF, SAM) 
– Monte Carlo sampling methods (Rao-Blackwellised particle 

filters) 

 

EKF SLAM 
• The complicated Bayesian equations for augmentation, 

marginalisation, and fusion have simple and efficient 
closed form solutions for linear Gaussian systems 
 

• For non-linear systems, just linearise 
– EKF, EIF: Jacobians 
– UKF: use deterministic samples 
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Kalman Implementation 
• So can we just plug the process and observation models 

into the standard EKF equations and turn the crank? 
 

• Several additional issues: 
– Structure of the SLAM problem permits more efficient 

implementation than naïve EKF. 
– Data association. 
– Feature initialisation. 

 

Structure of SLAM  
• Key property of stochastic SLAM  

– Largely a parameter estimation problem 
 

• Since the map is stationary 
– No process model, no process noise 

 
• For Gaussian SLAM 

– Uncertainty in each landmark reduces monotonically after landmark 
initialisation 

– Map converges  
 

• Examine computational consequences of this structure in next 
session. 
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Data Association 
• Before the Update Stage we need to determine if the 

feature we are observing is:  
– An old feature  
– A new feature 

 
• If there is a  match with only one known feature, the 

Update stage is run with this feature information. 
 

( ) ( ) ( / 1) ( )T
x xS k h k P k k h k R   ( ) ( ) ( ( / ))k z k h x k k  1

1 2
0.95( ) ( ) ( )T k S k k    

 

Validation Gating 
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New Features 
• If there is no match then a potential new feature has been detected 

 
• We do not want to incorporate a spurious observation as a new 

feature 
– It will not be observed again and will consume computational time and 

memory 
– It will add clutter, increasing risk of future mis-associations 
– The features are assumed to be static. We don’t not want to accept 

dynamic objects as features: cars, people etc. 

 

Acceptance of New Features 

• Get the feature in a list of potential features 
• Incorporate the feature once it has been observed for a number of times 

 
• Advantages: 

– Simple to implement 
– Appropriate for High Frequency external sensor 

 
• Disadvantages: 

– Loss of information 
– Potentially a problem with sensor with small field of view: a feature may 

only be seen very few times 

• APPROACH 1 
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Acceptance of New Features 

• The state vector is extended with past vehicle positions and the estimation of the 
cross-correlation between current and previous vehicle states is maintained. With 
this approach improved data association is possible by combining data form 
various points 

– J. J. Leonard and R. J. Rikoski. Incorporation of delayed decision making into 
stochastic mapping  

– Stephan Williams, PhD Thesis, 2001, University of Sydney 
 

• Advantages: 
– No Loss of Information 
– Well suited to low frequency external sensors ( ratio between vehicle velocity and 

feature rate information ) 
– Absolutely necessary for some sensor modalities (eg, range-only, bearing-only) 

 
• Disadvantages: 

– Cost of augmenting state with past poses 
– The implementation is more complicated 

• APPROACH 2 

Incorporation of New Features 
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We observed a new feature and the 
covariance and cross-covariance 
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Incorporation of New Features 

• Approach 1 
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• Easy to understand and 
implement 
 

• Very large values of A 
may introduce numerical 
problems 

Analytical Approach 
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• We can also evaluate the 
analytical expressions of 
the new terms 
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Constrained Local Submap Filter 

 

CLSF Registration 
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CLSF Global Estimate 
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Path-Planning Approaches 
• Roadmap 

Represent the connectivity of the free space by a network 
of 1-D curves 

• Cell decomposition 
Decompose the free space into simple cells and represent 
the connectivity of the free space by the adjacency graph 
of these cells 

• Potential field 
Define a function over the free space that has a global 
minimum at the goal configuration and follow its steepest 
descent 

 

 

I. Rotational Sweep 
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Rotational Sweep 

 

Rotational Sweep 
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Rotational Sweep 

 

Rotational Sweep 
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II. Cell-Decomposition Methods 
Two classes of methods: 
• Exact cell decomposition 

– The free space F is represented by a collection of non-
overlapping cells whose union is exactly F 
 

– Example: trapezoidal decomposition 
 

• Approximate cell decomposition 
– F is represented by a collection of  

non-overlapping cells whose union is contained in F 
Examples: quadtree, octree, 2n-tree 
 

 

Trapezoidal decomposition 
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Planar sweep  O(n log n) time, O(n) space 

Trapezoidal decomposition 

 

Trapezoidal decomposition 
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Trapezoidal decomposition 

 

Trapezoidal decomposition 
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III. Roadmap Methods 
• Visibility graph 
• Voronoi diagram  
• Silhouette 

First complete general method that applies to spaces of 
any dimension and is singly exponential in # of 
dimensions [Canny, 87] 

• Probabilistic roadmaps  (PRMS)  
 and Rapidly-exploring Randomized Trees (RRTs) 

 

 

Roadmap Methods 
• Visibility graph 

Introduced in the Shakey project at SRI in the late 60s. 
Can produce shortest paths in 2-D configuration spaces 

g 

s 
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Roadmap Methods 

• Voronoi diagram  
Introduced by 
Computational 
Geometry researchers. 
Generate paths that 
maximizes clearance.  
 
O(n log n) time 
O(n) space 

 

II.Visibility Graph 

tangent segments 
 Eliminate concave obstacle vertices 

can’t be shortest path 
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Generalized (Reduced) -- Visibility Graph 

tangency point 

 

Three-Dimensional Space 

Computing the shortest collision-free path in a  
polyhedral space is NP-hard 

Shortest path passes  
through none of the  
vertices 

locally shortest  
path homotopic  
to globally shortest  
path 
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Sketch of Grid Algorithm (with best-first search) 
• Place regular grid G over space 
• Search G using best-first search algorithm with potential 

as heuristic function 

 

 

Simple Algorithm (for Visibility Graphs) 
• Install all obstacles vertices in VG, plus the start and goal 

positions 
• For every pair of nodes u, v in VG 
 If segment(u,v) is an obstacle edge then 
   insert (u,v) into VG 
 else 
 for every obstacle edge e 
  if segment(u,v) intersects e 
   then go up to segment 
       insert (u,v) into VG 
• Search VG using A*  
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IV. Potential Field Methods 
• Approach initially proposed for  

real-time collision avoidance [Khatib, 86] 
 

Goal

Goal Force

O
bs

ta
cl

e 
Fo

rc
eMotion

Robot

 

 

Attractive and Repulsive fields 
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Local-Minimum Issue 

•  Perform best-first search (possibility of  
   combining with approximate cell decomposition) 

•  Alternate descents and random walks 
•  Use local-minimum-free potential (navigation function) 

 

Configuration Space 

• A robot configuration is a specification of the positions of all robot 
points relative to a fixed coordinate system 

• Usually a configuration is expressed as a “vector” of 
position/orientation parameters 
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Motion Planning in C-Space 
 

q=(q1,…,qn) 

q1 
q2 

q3 

qn 

 

 

Configuration Space of a Robot 

• Space of all its possible configurations 
• But the topology of this space is usually not that of a 

Cartesian space 

C = S1 x S1 
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Disc Robot in 2-D Workspace 

 

Rigid Robot Translating and Rotating in 2-D 
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Geometric Planning Methods 

• Several Geometric 
Methods: 
– Vertical (Trapezoidal)  

Cell Decomposition 
 
 

– Roadmap Methods 
• Cell (Triangular) 

Decomposition 
• Visibility Graphs 
• Veroni Graphs 

 

 
 

Start 

Goal 

 

Sample-Based Motion Planning 

• PRMs • RRTs 
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Rapidly Exploring Random Trees (RRT) 

q(m) 

   
  

q(
m

/s
) 

x init  
s(m) 

r(m
) 

x goal x rand  

Sampling and the “Bug Trap” Problem  
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Multiple Points & Sequencing 
• Sequencing 

– Determining the “best” order to 
go in  

 Travelling Salesman Problem 
 
A salesman has to visit each city on a given list exactly once. 
In doing this, he starts from his home city and in the end he 
has to return to his home city. It is plausible for him to select 
the order in which he visits the cities so that the total of the 
distances travelled in his tour is as small as possible.  
 

 
 
 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 

Travelling Salesman Problem 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 

• Given a  distance 
matrix C=(cij) 
 

• Minimize: 
 
 

• Note that this problem is NP-Hard  
 
 
 
 
 

  BUT, Special Cases are Well-Solvable! 
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Travelling Salesman Problem [2] 
• This problem is NP-Hard  

 
 
 
 

 BUT,  
 Special Cases are  
 Well-Solvable! 
 

 
 

For the Euclidean case  
(where the points are on the 2D Euclidean plane) : 
• The shortest TSP tour does not intersect itself, and thus 

geometry makes the problem somewhat easier. 
• If all cities lie on the boundary of a convex polygon, the 

optimal tour is a cyclic walk along the boundary of the 
polygon (in clockwise or counterclockwise direction). 
 

The k-line TSP 
• The a special case where the cities lie on k parallel (or 

almost parallel) lines in the Euclidean plane. 
• EG:  Fabrication of printed circuit boards 
• Solvable in O(n3) time by Dynamic Programming  

(Rote's algorithm) 
 

The necklace TSP 

• The special Euclidean TSP case  
where there exist n circles around  
the n cities such that every cycle  
intersects exactly two adjacent  
circles 

 

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

http://robotics.itee.uq.edu.au/~metr4202/
http://robotics.itee.uq.edu.au/~metr4202/
http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US


50 

State-Space Modelling 
(“Hear Ye!  It be stated”) 

 

Affairs of state 
• Introductory brain-teaser: 

– If you have a dynamic system model with history (ie. 
integration) how do you represent the instantaneous state of the 
plant? 
 

Eg. how would you setup a simulation of a step response, mid-step? 

t = 0 
t 

start 
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Introduction to state-space 
• Linear systems can be written as networks of simple 

dynamic elements: 
 

𝐻 = 
𝑠 + 2

𝑠2 + 7𝑠 + 12
=

2

𝑠 + 4
+

−1

𝑠 + 3
 

S   
1
𝑠
   

1
𝑠
 S

−7 

1 

−12 

2 

S

u y 

 

Introduction to state-space 
• We can identify the nodes in the system 

– These nodes contain the integrated time-history values of the 
system response 

– We call them “states” 
 

S   
1
𝑠
   

1
𝑠
 S

−7 

1 

−12 

2 

S

u y 
x1 x2 
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Linear system equations 
• We can represent the dynamic relationship between the 

states with a linear system: 
 

 𝑥1  = −7𝑥1 − 12𝑥2  +   𝑢 
 𝑥2  =      𝑥1 +   0𝑥2 + 0𝑢 
 

  𝑦  =      𝑥1 +   2𝑥2 + 0𝑢 
 

 

State-space representation 
• We can write linear systems in matrix form: 

 𝒙  = −7 12
1 0

𝒙 +
1
0
𝑢 

 𝒚  = 1 2 𝒙 + 0𝑢 
 
Or, more generally: 

𝒙 = 𝐀𝒙 + 𝐁𝑢 
𝑦 = 𝐂𝒙 + 𝐷𝑢 

 

“State-space 
equations” 
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State-space representation 
• State-space matrices are not necessarily a unique 

representation of a system 
– There are two common forms 

 
• Control canonical form 

– Each node – each entry in x – represents a state of the system 
(each order of s maps to a state) 
 

• Modal form 
– Diagonals of the state matrix A are the poles (“modes”) of the 

transfer function 

 

State variable transformation 
• Important note! 

– The states of a control canonical form system are not the same as 
the modal states 

– They represent the same dynamics, and give the same output, but 
the vector values are different! 

 
• However we can convert between them: 

– Consider state representations, x and q where 
 

x = Tq 

 

T is a “transformation matrix” 
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State variable transformation 
• Two homologous representations: 

and 
 
 

We can write: 
𝒙 = 𝐓𝒒 = 𝐀𝐓𝒛 + 𝐁𝑢 
𝒒 = 𝐓−𝟏𝐀𝐓𝒛 + 𝐓−𝟏𝐁𝑢 

 
Therefore, 𝐅 = 𝐓−𝟏𝐀𝐓 and 𝐆 = 𝐓−𝟏𝐁 
 
Similarly, 𝐂 = 𝐇𝐓 and 𝐷 = 𝐽  

𝒙 = 𝐀𝒙 + 𝐁𝑢 
𝑦 = 𝐂𝒙 + 𝐷𝑢 

𝒒 = 𝐅𝒒 + 𝐆𝑢 
𝑦 = 𝐇𝒒 + 𝐽𝑢 

 

Controllability matrix 
 

• To convert an arbitrary state representation in F, G, H and 
J to control canonical form A, B, C and D, the 
“controllability matrix” 

 
𝓒 = 𝐆 𝐅𝐆     𝐅2𝐆 ⋯ 𝐅𝑛−1𝐆  

must be nonsingular. 
 
 
 
 

Why is it called the “controllability” matrix? 
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Example: 
(Back To) Robot Arms 

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control” 

 

Remembering the Motion Models: 
• Recall from Dynamics, the Required Joint Torque is: 

Dynamical 
Manipulator 

Inertial Tensor – 
a function of 
position and 
acceleration 

Coupled joint 
effects 

(centrifugal and 
coriolis) issues 
due to multiple 
moving joints 

Gravitational 
Effects 

Frictional Effect 
due to Joint/Link 

movement 
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Lets simplify the model 
• This torque model is a 2nd order one (in position) lets look 

at it as a velocity model rather than positional one then it 
becomes a system of highly coupled 1st order differential 
equations 
 
 

• We will then isolate Acceleration terms (acceleration is 
the 1st derivative of velocity) 

 
 

 

Considering Control: 
• Each Link’s torque is influenced by each other links motion 

– We say that the links are highly coupled 
 

• Solution then suggests that control should come from a 
simultaneous solution of these torques 
 

• We will model the solution as a “State Space” design and try to 
balance the torque-in with positional control-out – the most 
common way it is done! 
– But we could also use ‘force control’ to solve the control problem! 
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The State-Space Control Model: 

D-1(q) 1/s 1/s
Output

Positions 
Kinematics

b

C

h

+

+

+

Torque accel Vel pos

Friction

Coriolis
Centrifugal 

Effects

Gravitation 
Effects

Inertial Coupling

 

Setting up a Real Control 
• We will (start) by using positional error to drive our 

torque devices 
 
 
 
 
 
 
 

• This simple model is called a PE (proportional error) 
controller 
 

+ KeError

State Space Model,
Generalized Torque Needed

Feedback, Qa

Qd

+

-

Q
Joint Drive
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PE Controller: 
• To a 1st approximation,  = Km*I 

• Torque is proportional to motor current 
 
 

• And the Torque required is a function of ‘Inertial’ 
(Acceleration) and ‘Friction’ (velocity) effects as suggested by 
our L-E models 
 
 

  Which can be approximated as: 
 
 

 

Setting up a “Control Law” 
• We will use the positional error (as drawn in the state 

model) to develop our torque control 
• We say then for PE control: 

 
 
 
 
 

• Here, kpe is a “gain” term that guarantees sufficient current 
will be generated to develop appropriate torque based on 
observed positional error 
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Using this Control Type: 
• It is a representation of the physical system of a mass on a 

spring! 
• We say after setting our target as a ‘zero goal’ that: 

 
 

  
 the solution of which is: 
  

 
a is a function of 

the servo 
feedback as a 

function of time! 

 

State Space Model of PD: 

+ KeError

State Space Model,
Generalized Torque Needed

Feedback, Qa

Qd

+

-

Q
Joint Drive

Kd

dQ/dt
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PID State Space Model: 

+ KeError

State Space Model,
Generalized Torque Needed

Feedback, Qa

Qd

+

-

Q

Kd

dQ/dt

ki   dt

Joint Drive

 

State Model of Adjustable Controller 

+ Controller w/ Adj.
Parameters

Error Control Input

Feedback, Qa

Qd
+

-

Drive Position/Torque Actual
Pos

Performance
Index

Measure

Robot Sys.
Transfer

Functions

Desired Drive

Calc. Drive

Actual Drive using
Separate Feedback

Sensors
Decision

Logic

Modifications

Kinematic/
Kinetic Models

Physical
Parameters
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Controllability  

 

Controllability matrix 
 

• If you can write it in CCF, then the system equations must 
be linearly independent.  
 

• Transformation by any nonsingular matrix preserves the 
controllability of the system. 
 

• Thus, a nonsingular controllability matrix means x can be 
driven to any value. 
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State evolution 
• Consider the system matrix relation: 

𝒙 = 𝐅𝒙 + 𝐆𝑢 
𝑦 = 𝐇𝒙 + 𝐽𝑢 

 
 

The time solution of this system is: 

𝒙 𝑡 = 𝑒𝐅 𝑡−𝑡0 𝒙 𝑡0 + = 𝑒𝐅 𝑡−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑡

𝑡0

 
 
 

If you didn’t know, the matrix exponential is: 
𝑒𝐊𝑡 = 𝐈 + 𝐊𝑡 +

1

2!
𝐊2𝑡2 +

1

3!
𝐊3𝑡3 +⋯ 

 

Stability 
• We can solve for the natural response  

to initial conditions 𝒙𝟎: 
 

𝒙 𝑡 = 𝑒𝑝𝑖𝑡𝒙0 

∴ 𝒙 𝑡 = 𝑝𝑖𝑒
𝑝𝑖𝑡𝒙0 = 𝐅𝑒𝑝𝑖𝑡𝒙0 

 
 
 

Clearly, a system will be stable provided  
eig 𝐅 < 0 
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Characteristic polynomial 
 

• From this, we can see 𝐅𝒙0 = 𝑝𝑖𝒙0   
or, (𝑝𝑖I − 𝐅)𝒙0 = 0 

which is true only when det(𝑝𝑖I − 𝐅)𝒙0 = 0 
Aka. the characteristic equation! 

 
 
 

• We can reconstruct the CP in s by writing: 
det(𝑠I − 𝐅)𝒙0 = 0 

 

 

Great, so how about control? 
• Given 𝒙 = 𝐅𝒙 + 𝐆𝑢, if we know 𝐅 and 𝐆, we can design a 

controller 𝑢 = −𝐊𝒙 such that 
eig 𝐅 − 𝐆𝐊 < 0 

 
 
 
 
 
 
• In fact, if we have full measurement and control of the states of 𝒙, 

we can position the poles of the system in arbitrary locations! 
 

(Of course, that never happens in reality.) 
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Example: PID control 
• Consider a system parameterised by three states:  

– 𝑥1, 𝑥2, 𝑥3 
– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 
 

𝑥2is the output state of the system;  
𝑥1is the value of the integral;  

𝑥3 is the velocity. 

 

• We can choose 𝐊 to move the eigenvalues of the system  
as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 
 
 

It’s straightforward to see how adding derivative gain  
𝐾3 can stabilise the system.  
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Just scratching the surface 
 
 

• There is a lot of stuff to state-space control 
 
 
 
 

• One  lecture (or even two) can’t possibly cover it all in 
depth 

 
Go play with Matlab and check it out! 

 

State-space control design 

• Design for discrete state-space systems is just like 
the continuous case. 
– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 
such that  det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧) 
where 𝛼𝑐(𝑧) is the desired control characteristic equation 
 

Predictably, this requires the system controllability matrix 
𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
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Solving State Space (optional notes) … 

 

 
Solving State Space (optional notes) 
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Solving State Space (optional notes) 

 

 
Solving State Space (optional notes) 
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Solving State Space (optional notes) 

 

 
Solving State Space (optional notes) 
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Example: 
Inverted Pendulum 

 

 

Digital Control 

Wikipedia,  
Cart and pole 
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Inverted Pendulum 

 

• The equations of motion of an inverted pendulum (under a 
small angle approximation) may be linearized as: 

𝜃 = 𝜔 
𝜔 = 𝜃 = 𝑄2𝜃 + 𝑃𝑢 

Where: 

𝑄2 =
𝑀 +𝑚

𝑀𝑙
𝑔 

𝑃 =
1

𝑀𝑙
.   

 
If we further assume unity Ml (𝑀𝑙 ≈ 1), then 𝑃 ≈ 1 

Inverted Pendulum – Equations of Motion 
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• We then select a state-vector as:  

𝒙 =
𝜃
𝜔

, hence 𝒙 = 𝜃 

𝜔 
=

𝜔
𝜔 

 

• Hence giving a state-space model as: 

𝐴 =
0 1
𝑄2 0

,𝐵 =
0
1

 

• The resolvent of which is: 

Φ 𝑠 = 𝑠𝐼 − 𝐴 −1 =
𝑠 −1

−𝑄2 𝑠

−1

=
1

𝑠2 − 𝑄2

𝑠 1
𝑄2 𝑠

 

• And a state-transition matrix as: 

Φ 𝑡 =
cosh𝑄𝑡

sinh𝑄𝑡

𝑄
𝑄 𝑠𝑖𝑛ℎ 𝑄𝑡 cosh𝑄𝑡

 

 

Inverted Pendulum –State Space 

 

Stability 
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• For small T: 
 
 
 
 

• Hence, the unit circle under the map from z to s-plane becomes: 
 
 

Fast sampling revisited 

 

Specification bounds 
• Recall in the continuous domain, response performance 

metrics map to the s-plane: 

Img(s) 

Re(s) 

𝑠 =
4.6

𝑡𝑠
 

𝑠 = 𝜎 

Img(s) 

Re(s) 

𝜃 = sin−1𝜁 

𝜃 
Img(s) 

Re(s) 

𝑠 =
1.8

𝑡𝑟
 

𝜔𝑛 = 𝑠  
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2nd Order  
System Response  

 

• Response of a 2nd order system to increasing levels of 
damping: 

2nd Order System Response  
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Damping and natural frequency 

[Adapted from Franklin, Powell and Emami-Naeini] 
-1.0 -0.8 -0.6 -0.4 0 -0.2 0.2 0.4 0.6 0.8 1.0 
0 

0.2 

0.4 

0.6 

0.8 

1.0 

Re(z) 

Img(z) 

𝑧 = 𝑒𝑠𝑇  where 𝑠 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2 

0.1 

0.2 

0.3 

0.4 
0.5 
0.6 
0.7 
0.8 

0.9 

𝜔𝑛 =
𝜋

2𝑇
 

3𝜋

5𝑇
 

7𝜋

10𝑇
 

9𝜋

10𝑇
 

2𝜋

5𝑇
 

1 

2𝜋

5𝑇
 

𝜔𝑛 =
𝜋

𝑇
 

𝜁 = 0 

3𝜋

10𝑇
 

𝜋

5𝑇
 

𝜋

10𝑇
 

𝜋

20𝑇
 

 

• Poles inside the unit circle 
are stable 
 

• Poles outside the unit circle 
unstable 
 

• Poles on the unit circle 
are oscillatory 
 

• Real poles at 0 < z < 1 
give exponential response 
 

• Higher frequency of 
oscillation for larger  
 

• Lower apparent damping 
for larer  and r 

Pole positions in the z-plane 
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Characterizing the step response: 
 
 

2nd Order System Specifications 

• Rise time (10%   90%): 
 

• Overshoot:  
 

• Settling time (to 1%):  
 

• Steady state error to unit step:  
ess 

• Phase margin:  
 

 

Characterizing the step response: 
 
 

2nd Order System Specifications 

• Rise time (10%   90%)  & Overshoot:  
   tr, Mp  ζ, ω0 : Locations of dominant poles 

• Settling time (to 1%):  
   ts  radius of poles: 

• Steady state error to unit step:  
ess  final value theorem  
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Design a controller for a system with: 
• A continuous transfer function: 
• A discrete ZOH sampler  
• Sampling time (Ts):  Ts= 1s 
• Controller:  
 
 
The closed loop system is required to have: 
• Mp < 16% 
• ts < 10 s 
• ess < 1 

 

Ex: System Specifications  Control Design [1/4] 

 

 
Ex: System Specifications  Control Design [2/4] 
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Ex: System Specifications  Control Design [3/4] 

 

 
Ex: System Specifications  Control Design [4/4] 
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Discretization  
 Digital State Space 

 

 

• Difference equations in state-space form: 
 
 
 
 
 
 

• Where: 
– u[n], y[n]: input & output (scalars) 
– x[n]: state vector 

 
 
 

Digital State Space: 
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Discretisation FTW! 
• We can use the time-domain representation to produce 

difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, but rather 
an integrated time-series. 
We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  

 

Discretisation FTW! 
• Put this in the form of a new variable: 

𝜂 = 𝑘𝑇 + 𝑇 − 𝜏 
Then: 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝑭𝑇𝒙 𝑘𝑇 +  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇

𝑮𝑢 𝑘𝑇  

 

Let’s rename 𝚽 = 𝑒𝑭𝑇 and 𝚪 =  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇
𝑮 
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Discrete state matrices 
So, 

𝒙 𝑘 + 1 = 𝚽𝒙 𝑘 + 𝚪𝑢 𝑘  

 𝑦 𝑘 = 𝐇𝒙 𝑘 + 𝐉𝒖 𝑘  
 

Again, 𝒙 𝑘 + 1  is shorthand for 𝒙 𝑘𝑇 + 𝑇  
 

Note that we can also write 𝚽 as: 
𝚽 = 𝐈 + 𝐅𝑇𝚿 

where 

𝚿 = 𝐈 +
𝐅𝑇

2!
+
𝐅2𝑇2

3!
+⋯ 

 

 

Simplifying calculation 
• We can also use 𝚿 to calculate 𝚪 

– Note that: 

Γ =  
𝐅𝑘𝑇𝑘

𝑘 + 1 !
𝑇𝐆 

∞

𝑘=0

 

 = 𝚿𝑇𝐆 
𝚿 itself can be evaluated with the series: 

𝚿 ≅ 𝐈 +
𝐅𝑇

2
𝐈 +

𝐅𝑇

3
𝐈 +⋯

𝐅𝑇

𝑛 − 1
𝐈 +

𝐅𝑇

𝑛
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State-space z-transform 
We can apply the z-transform to our system: 

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘  
𝑌 𝑧 = 𝐇𝑿 𝑧  

 
which yields the transfer function: 

𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 − 𝚽 −𝟏𝚪 

 

 
Digital Control Law Design 
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Discretisation FTW! 
• We can use the time-domain representation to produce 

difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, but rather 
an integrated time-series. 
We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  

 

State-space z-transform 
 
We can apply the z-transform to our system: 

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘  
𝑌 𝑧 = 𝐇𝑿 𝑧  

 
which yields the transfer function: 

𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 − 𝚽 −𝟏𝚪 
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• Design for discrete state-space systems is just like the 

continuous case. 
– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 
 such that  det 𝑧𝐈 − 𝚽 + 𝚪𝐊 = 𝛼𝑐 𝑧  
 where 𝛼𝑐(𝑧) is the desired control characteristic equation 
 

Predictably, this requires the system controllability matrix 
𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 

 

State-space control design -- Controllability 

 

• In the conventional, frequency-domain approach the 
differential equations are converted to transfer functions as 
soon as possible 
– The dynamics of a system comprising several subsystems is 

obtained by combining the transfer functions! 
 

 
• With the state-space methods, on the other hand, the 

description of the system dynamics in the form of 
differential equations is retained throughout the analysis 
and design. 

Φ: Solving State Space 
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• Describes how the state x(t) of the system at some time t 
evolves into (or from) the state x(τ) at some other time T. 
 
 

• 𝚽 s = s𝐈 − 𝐀 −1   Φ 𝑡 = 𝑒𝑨𝑡 
 

• Matrix Exponential: 

𝑒𝐴𝑡 = exp 𝐴𝑡 = 𝐼 + 𝐴𝑡 +
𝐴2𝑡2

2!
+⋯+ 

𝐴𝑘𝑡𝑘

𝑘!
+ ⋯ 

 
• Similar idea, but different result, for the control u  Γ 

 
 
 
 
 

State-transition matrix Φ(t) 

 

• Γ =  
𝐴𝑘𝑇𝑘+1

𝑘+1 !
∞
𝑘=0 𝑇𝐵 ≈ 𝐼𝑇 + 𝐴

𝑇2

2
𝐵 

Why? 

•  𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝑥 𝑡0 +  𝑒𝐴 𝑡−𝜏 𝐵𝑢(𝜏)
𝑡

0
𝑑𝜏 

• 𝑥 𝑘𝑇 + 𝑇 = 𝑒𝐴𝑇𝑥 𝑘𝑇 +  𝑒
𝑘𝑇+𝑇

𝑘𝑇

𝐴 𝑘𝑡+𝑡−𝜏
𝐵𝑢 𝜏 𝑑𝜏 

• u(t) is specified in terms of a continuous time history, 
though we often assume u(t) is a ZOH: 

• 𝑢 𝜏 = 𝑢 𝑘𝑇 ⇒ Introduce 𝜂 = 𝑘𝑇 + 𝑇 − 𝜏  

• 𝑥 𝑘𝑇 + 𝑇 = 𝑒𝐴𝑇𝑥 𝑘𝑇 +  𝑒
𝑘𝑇+𝑇

𝑘𝑇

𝐹𝜂
𝑑𝜂𝐵𝑢 𝑘𝑇  

Φ = 𝑒𝐴𝑇, Γ=  𝑒
𝑇

0

𝐴𝜂
𝑑𝜂𝐵 

 

Γ: Gamma: Comes from Integrating 𝒙  
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Pole Placement 
 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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• FPW has a slightly different notation: 
Pole Placement (Following FPW – Chapter 6) 

 

• Start with a simple feedback control law (“controller”) 
 
 

• It’s actually a regulator 
∵ it does not allow for a reference input to the system. 
(there is no “reference” r  (r = 0)) 

 
•  Substitute in the difference equation 

𝑥 𝑘 + 1 = Φ𝑥 𝑘 − Γ𝐾𝑥(𝑘) 
• 𝒵 Transform: 

𝑧𝐼 − Φ + Γ𝐾 𝑋 𝑧 = 0 
Characteristic Eqn:   

det 𝑧𝐼 − Φ + Γ𝐾 = 0 

Pole Placement 

 

http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
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Pole placement: Big idea:  
• Arbitrarily select the desired root locations of the closed-

loop system and see if the approach will work.  
• AKA: full state feedback 

∵ enough parameters to influence all the closed-loop poles 
• Finding the elements of K so that the roots are in the 

desired locations. Unlike classical design, where we 
iterated on parameters in the compensator (hoping) to find 
acceptable root locations, the full state feedback, pole-
placement approach guarantees success and allows us to 
arbitrarily pick any root locations, providing that n roots 
are specified for an nth-order system. 

Pole Placement 

 

 
Meaning… 
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• Given: 
𝑧𝑖 = 𝛽1, 𝛽2, 𝛽3, … 

 
 
• This gives the desired control-characteristic equation as: 

𝑎𝑐 𝑧 = 𝑧 − 𝛽1 𝑧 − 𝛽2 𝑧 − 𝛽3 … = 
 
 
• Now we “just solve” for K and “bingo” 

Back to Pole Placement 

 

Pole Placement Example (FPW p. 241) 
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Pole Placement Example (FPW p. 241) 

 

Pole Placement Example (FPW p. 241) 
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Ackermann's Formula (FPW p. 245) 
• Gains maybe approximated with: 

 
 

• Where: C = controllability matrix, n is the order of the 
system (or number of state elements) and 𝛼𝑐: 
 
 
 
 
– 𝛼𝑖: coefficients of the desired characteristic equation 

 

Ackermann's Formula Example (FPW p.246) 
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Shaping of  
Dynamic Responses 

 

ELEC3004 Flashback: Another way to see P I|D 
• Derivative 

D provides: 
– High sensitivity 
– Responds to change  
– Adds “damping” &  
∴ permits larger KP 

– Noise sensitive 
– Not used alone 

(∵ its on rate change 
 of error – by itself it  
wouldn’t get there) 

 “Diet Coke of control” 

• Integral 
– Eliminates offsets 

(makes regulation ) 
– Leads to Oscillatory 

behaviour 
– Adds an “order” but 

instability 
(Makes a 2nd order system 3rd order) 

 
 
 “Interesting cake of control” 
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• The energy (and sensitivity) moves around  
(in this case in “frequency”) 
 
 
 
 
 
 

• Sensitivity reduction at low frequency unavoidably leads 
to sensitivity increase at higher frequencies. 
 
 
 
 
 
 
 

Seeing PID – No Free Lunch 

Source: Gunter Stein's interpretation of the water bed effect – G. Stein, IEEE Control Systems Magazine, 2003. 

 

PID control 
• Consider a system parameterised by three states:  

– 𝑥1, 𝑥2, 𝑥3 
– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 

𝑥2is the output state of the system;  
𝑥1is the value of the integral;  

𝑥3 is the velocity. 
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PID control [2] 
• We can choose 𝐊 to move the eigenvalues of the system  

as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 
 
 

It’s straightforward to see how adding derivative gain  
𝐾3 can stabilise the system.  

 

 
Implementation of Digital PID Controllers 

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1  
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Implementation of Digital PID Controllers (2) 

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1  

 

Let’s Generalize This: Shaping the Dynamic Response 
• A method of designing a control system for a process in 

which all the state variables are accessible for 
Measurement 

 This method is also known as pole-placement 
 

• Theory: 
– We will find that in a controllable system, with all the state variables 

accessible for measurement, it is possible to place the closed-loop poles 
anywhere we wish in the complex s plane! 

• Practice: 
– Unfortunately, however, what can be attained in principle may not be 

attainable in practice. Speeding the response of a  sluggish system requires 
the use of large control signals which the actuator (or power supply) may not 
be capable of delivering. And, control system gains are very sensitive to the 
location of the open-loop poles 
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Regulator Design 
• Here the problem is to determine the gain matrix G in a 

linear feedback law 
– Where: x0 is the vector of exogenous variables. The reason it is 

necessary to separate the exogenous variables from the process 
state x, rather than deal directly with the metastate  
is that we must assume that the underlying process is 
controllable.  

• Since the exogenous variables are not true state variables, but additional 
inputs that cannot be affected by the control action, they cannot be 
included in the state vector when using a design method that requires 
controllability.   

• HOWEVER, they can be used in a process for Observability! 
∴ when we are doing this as part of the sensing/mapping process!!  

 
 

 

Regulator Design 
• The assumption that all the state variables are accessible to 

measurement in the regulator means that the gain matrix G 
in is permitted to be any function of the state x that the 
design method requires 

    
 
 
– Where: x̂ is the state of an appropriate dynamic system known as 

an "observer."  
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SISO Regulator Design 
• Design of a gain matrix 

 
for the single-input, single-output system 
 
 
 
 
 

• Our objective is to find the matrix G = g' which places the 
poles of the closed-loop dynamics matrix 
at the locations desired. 

 

SISO Regulator Design [2] 
• One way of determining the gains would be to set up the 

characteristic polynomial for Ac: 
 
 

• The coefficients a1,a2, …,ak of the powers of s in the 
characteristic polynomial will be functions of the k 
unknown gains. Equating these functions to the numerical 
values desired for  a1,a2, …,ak will result in k simultaneous 
equations the solution of which will yield the desired gains 
gl, ... , gk. 
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SISO Regulator Design [3] 

 

SISO Regulator Design [4] 
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SISO Regulator Design [4] 
• But how to get this in companion form? 

 

SISO Regulator Design [5] 
 

 



99 

SISO Regulator Design [6] 

 

SISO Regulator Design [7] 
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SISO Regulator Design [8] 

 

SISO Regulator Design [9] 
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SISO Regulator Design [10] 
 

 

SISO Regulator Design [11] 
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How to Get the Gains? 
Ackermann's Formula (FPW p. 245) [ELEC3004] 
• Gains maybe approximated with: 

 
 

• Where: C = controllability matrix, n is the order of the 
system (or number of state elements) and 𝛼𝑐: 
 
 
 
 
– 𝛼𝑖: coefficients of the desired characteristic equation 

 

Ackermann's Formula [2] (FPW p.246) 
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Viewing State-Space as 
a Tool for Solving ODEs 

Simultaneously 

 

State Space as an ODE 
• The basic mathematical model for an LTI system consists 

of the state differential equation 
 

 
 

• The solution is can be expressed as a sum of terms owing 
to the initial state and to the input respectively: 
 
 
 

• This is a first-order solution similar to what we expect 
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State Equation Solution: Matrix Exponential 

• The first term can be handled via a Taylor Series  
 

 
 This case is known as the matrix exponential function 
 Also referred to as the state-transition matrix, 
 denoted by Φ (t, t0): 
 
•  The state-transition matrix satisfies the homogeneous state 

equation, thus, it represents the free response of the system. That is, 
it governs the response that is excited by the initial conditions only 

 

Output Equation Solution 
• Having the solution for the complete state response, a 

solution for the complete output equation can be obtained 
as: 
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State Equation Solution 
• Thus, the solution to the unforced system (u=0): 

 
 
 
Note: the term ϕij(t) can be interpreted as the response of the ith state variable 
due to an initial condition on the jth state variable when there are zero initial 
conditions on all other states. 

• The solution of the state differential equation can also be 
obtained using the Laplace transform: 
 
 

 
 

 

Properties of the Matrix Exponential 
• Note that eAt is just a notation used to represent a power series.  

 
• Example 1: Consider the following 4x4 matrix 
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Properties of the matrix exponential 

 

Using this to Solve State Space Problems 
• Example:  

– Solve the following linear second-order ordinary differential  
 

– Consider the input u(t) is a step of magnitude 3  
and the initial conditions  
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State-Space Exercise 
 

 

State-Space Exercise 
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Water Tank Example 

 

Example 
• Figure 18.1: Schematic diagram of two coupled tanks 
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• Water flows into the first tank through pump 1 a rate fi(t) 
that obviously affects the head of water in tank 1 (denoted 
by h1(t)).  Water flows out of tank 1 into tank 2 at a rate 
f12(t), affecting both h1(t) and h2(t).  Water than flows 
out of tank 2 at a rate fe controlled by pump 2. 
 

• Given this information, the challenge is to build a virtual 
sensor (or observer) to estimate the height of liquid in tank 
1 from measurements of the height of liquid in tank 2 and 
the flows f1(t) and f2(t). 

 

• Before we continue with the observer design, we first 
make a model of the system.  The height of liquid in tank 
1 can be described by the equation 
 

• Similarly, h2(t) is described by 
 

• The flow between the two tanks can be approximated by 
the free-fall velocity for the difference in height between 
the two tanks: 
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• We can linearize this model for a nominal steady-state 
height difference (or operating point).  Let 
 

• This yields the following linear model: 
 
 

• where 

 

• We are assuming that h2(t) can be measured and h1(t) 
cannot, so we set C = [0  1]  and  D = [0   0].  The 
resulting system is both controllable and observable (as 
you can easily verify).  Now we wish to design an 
observer 
 
 

• to estimate the value of h2(t).  The characteristic 
polynomial of the observer is readily seen to be 
 

• so we can choose the observer poles;  that choice gives us 
values for J1 and J2. 
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• If we assume that the operating point is H = 10%, then k = 
0.0411.  If we wanted poles at s = -0.9291 and  s = -
0.0531, then we would calculate that J1 = 0.3 and  J2 = 
0.9.  If we wanted two poles at s = -2, then  J2 = 3.9178 
and  J1 = 93.41. 

 

• The equation for the final observer is then 
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• The data below has been collected from the real system 
shown earlier 

0 50 100 150 200 250 300 350 400 
40 
50 
60 
70 
80 

Set point for height in tank 2 (%) 

Time (sec) 

Pe
rc

en
t 

0 50 100 150 200 250 300 350 400 
40 
50 
60 
70 
80 

Actual height in tank 2 (%) 

Time (sec) 

Pe
rc

en
t 

 

• The performance of the observer for tank height is 
compared below with the true tank height which is 
actually measured on this system. 

Actual height in tank 1 (blue),  
Observed height in tank 1 (red) 
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Revisiting  
Pole Placement 

 

Pole Assignment by State Feedback 
• We begin by examining the problem of closed-loop pole 

assignment.  For the moment, we make a simplifying 
assumption that all of the system states are measured.  We 
will remove this assumption later.  We will also assume 
that the system is completely controllable.  The following 
result then shows that the closed-loop poles of the system 
can be arbitrarily assigned by feeding back the state 
through a suitably chosen constant-gain vector. 
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State-Feedback Control Objectives 
• Regulation: Force state x to equilibrium state (usually 

0) with a desirable dynamic response.  

 

 

• Tracking: Force the output of the system y to tracks a 
given desired output yd with a desirable dynamic 
response.  
 

 

Pole Placement Problem as an Eignenvalue Problem 

Choose the state feedback gain to place the poles 
of the closed-loop system, i.e.,  

HKG:G of sEigenvalue 

At specified locations desdes

n
 ,,

1

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State Feedback Control of a System in CCF 

Consider a SISO system in CCF: 

State Feedback Control 

 11K,rKxu nkk 
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Choosing the Gain-CCF 

Closed-loop Characteristic Equation 

     121
1

1)( kazkazkazz nn

n
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 

Desired Characteristic Equation: 
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Control Gains: 

niaaK in
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Transformation to CCF 

Transform system uHGxx  To CCF 
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First, find how new state z1 is related to x:  
   vectorrow p,pxˆ 11 nppx 

Where x+(k)=x(k+1) (for simplicity) 
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Transformed State Equations 
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Vector p can be found if the system is 
controllable: 

State Transformation Invertibility 
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By the Cayley-Hamilton theorem. 
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Toeplitz Matrix 
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Matrix on the right is called Toeplitz matrix 

The Cayley-Hamilton theorem can further be used to 
show that 

State Transformation Formulas 
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State Feedback Control Gain Selection 
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Double Integrator-Matlab Solution 

T=0.5;  
lam=[0;0]; 
G=[1 T;0 1];  
H=[T^2/2;T];  
C=[1 0]; 
 
K=acker(G,H,lam); 
Gcl=G-H*K; 
clsys=ss(Gcl,H,C,0,T); 
step(clsys); 

Flexible System Example 

Consider the linear mass-spring system shown 
below: 

m1 
u 

m2 

x2 x1 

k 
Parameters: 

m1=m2=1Kg. 
K=50 N/m 

• Analyze PD controller based on a)x1, b)x2 

• Design state feedback controller, place poles 
at  j 125,20,20
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Collocated Control 

Transfer Function:  100
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Non-Collocated Control 
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Discrete Time State Model  
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Controllability matrix: 

Characteristic equation: 

|zI-G|=(z-1)2(z2-1.99z+1)=z4-3.99z3+5.98z2-3.99z+6 
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State Feedback Controller 

Characteristic Equations: 
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|zI-G|=(z-1)2(z2-1.99z+1)=z4-3.99z3+5.98z2-3.99z+6 

Matlab Solution 

%System Matrices 
m1=1; m2=1; k=50; T=0.01; 
syst=ss(A,B,C,D); 
A=[0 0 1 0;0 0 0 1;-50 50 0 0;50 -50 0 0]; 
B=[0; 0; 1; 0]; 
C=[1 0 0 0;0 1 0 0]; D=zeros(2,1); 
cplant=ss(A,B,C,D); 
 
%Discrete-Time Plant 
plant=c2d(cplant,T); 
[G,H,C,D]=ssdata(plant); 
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Matlab Solution 
%Desired Close-Loop Poles 

pc=[-20;-20; 

    -5*sqrt(2)*(1+j); 5*sqrt(2)*(1-j)]; 

pd=exp(T*pc); 

 

% State Feedback Controller 

K=acker(G,H,pd); 

 

%Closed-Loop System 

clsys=ss(G-H*K,H,C,0,T); 

grid 

step(clsys,1) 
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Steady-State Gain 

Closed-loop system: x(k+1)=Gclx(k)+Hr(k), Y=Cx(k) 

Y(z)=C(zI-Gcl)-1H R(z) 

If r(k)=r.1(k) then yss=C(I-Gcl)-1H  

Thus if the desired output is constant 

r=yd/gain, gain= C(I-Gcl)-1H  
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Integral Control 
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Double Integrator-Matlab Solution 

T=0.5;  
lam=[0;0;0]; 
G=[1 T;0 1]; H=[T^2/2;T]; C=[1 0]; 
 
Gbar=[G zeros(2,1);C 1]; 
Hbar=[H;0]; 
K=acker(Gbar,Hbar,lam); 
Gcl=Gbar-Hbar*K; 
yd=1; r=0; %unknown gain 
clsys=ss(Gcl,[H*r;-yd],[C 0;K],0,T); 
step(clsys); 

Closed-Loop Step Response 
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• Lemma 18.1:  Consider the state space nominal model 
 

• Let           denote an external signal. )( tr

 

• Then, provided that the pair (A0, B0) is completely 
controllable, there exists 
 
 

• such that the closed-loop characteristic polynomial is 
Acl(s), where Acl(s) is an arbitrary polynomial of degree  n. 
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• Note that state feedback does not introduce additional 
dynamics in the loop, because the scheme is based only on 
proportional feedback of certain system variables.  We can 
easily determine the overall transfer function from           
to y(t).  It is given by 
 

• where 
 

• and Adj stands for adjoint matrices.   

)( tr

 

[Matrix inversion lemma] 
• We can further simplify the expression given above.  To 

do this, we will need to use the following results from 
Linear Algebra. 

•  (Matrix inversion lemma).  
Consider three matrices  A,B,C  
Then, if A + BC is nonsingular, we have that 
 
 

• In the case for which B = g  n  and CT = h  n, the 
above result becomes  
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• Lemma 18.3:  Given a matrix W  nn and a pair of 
arbitrary vectors  1  n  and  2  n, then provided 
that W and                   are nonsingular, 
 
 
 

• Proof:  See the book. 

,21
TW 
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LQR 

 

Control Theory 
• The use of feedback to regulate a signal 

 
 

Controller 

Plant 

Desired 
signal xd 

Signal x Control input u 

Error e  = x-xd 

(By convention, xd = 0) x’ = f(x,u) 
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Model-free vs model-based 
• Two general philosophies: 

– Model-free: do not require a dynamics model to be provided  
– Model-based: do use a dynamics model during computation 

• Model-free methods:  
– Simpler (eg. PID) 
– Tend to require much more manual tuning to perform well 

• Model-based methods: 
– Can achieve good performance (optimal w.r.t. some cost function) 
– Are more complicated to implement 
– Require reasonably good models (system-specific knowledge) 
– Calibration: build a model using measurements before behaving  
– Adaptive control: “learn” parameters of the model online from sensors 

 

PID control 
• Proportional-Integral-Derivative controller 

– A workhorse of 1D control systems 
– Model-free 

• Proportional Case: 
 

– 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡) 
– Negative sign assumes control acts in the same direction as x 

 
 

x t 

Gain 
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PID control: Integral term 
 

• 𝑢 𝑡 =  −𝐾𝑝 𝑥 𝑡 −  𝐾𝑖 𝐼 𝑡  

• 𝐼(𝑡)  =   𝑥 𝑡 𝑑𝑡
𝑡

0
    (accumulation of errors) 

 

x t 

Residual steady-state errors 
driven asymptotically to 0 

Integral gain 

 

PID control: Integral term: Instability 
• I adds a pole 
• If not tuned correctly  this adds instability 
• Ex: For a 2nd order system (momentum), P control 

x t 

Divergence 
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PID control: Derivative term 
 

• 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡) –  𝐾𝑑 𝑥’(𝑡) 

x 

Derivative gain 

 

PID control: Together 
• P+I+D: 

– 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡)  −  𝐾𝑖 𝐼(𝑡)  −  𝐾𝑑 𝑥’(𝑡) 

– 𝐼(𝑡)  =   𝑥 𝑡 𝑑𝑡
𝑡

0
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Stability and Convergence 
• System is stable if errors stay bounded 

 
 
 
 

• System is convergent if errors -> 0 

 

Example: Trajectory following 
• Say a trajectory xdes(t) has been designed 

– E.g., a rocket’s ascent, a steering path for a car, a plane’s landing 
• Apply PID control 

– u(t) = Kp (xdes(t)- x(t)) - Ki I(t) + Kd (x’des(t)-x’(t)) 

– I(t) =  𝑥𝑑𝑒𝑠 𝑡 − 𝑥 𝑡 𝑑𝑡
𝑡

0
 

• The designer of xdes needs to be knowledgeable about the 
controller’s behavior! 

xdes(t) 
x(t) 

x(t) 
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Controller Tuning Workflow 
• Hypothesize a control policy 
• Analysis: 

– Assume a model 
– Assume disturbances to be handled 
– Test performance either through mathematical analysis, or 

through simulation 
• Go back and redesign control policy 

– Mathematical techniques give you more insight to improve 
redesign, but require more work 

 

Multivariate Systems 
• 𝑥’ =  𝑓(𝑥, 𝑢) 
• 𝑥 𝑋  𝑅𝑛  
• 𝑢 𝑈  𝑅𝑚 

 
• Because m  n, and variables are coupled, 
• This is not as easy as setting n PID controllers  
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Linear Quadratic Regulator 
 

• 𝑥’ =  𝐴𝑥 +  𝐵𝑢 
 

• Objective: minimize quadratic cost 
 𝑥𝑇𝑄 𝑥 +  𝑢𝑇𝑅 𝑢 𝑑𝑡 

 
 
 

• Over an infinite horizon 
 

Error term “Effort” penalization 

 

Closed form LQR solution 
• Closed form solution 

u = -K x, with K = R-1BP 
• Where P is a symmetric matrix that solves the Riccati 

equation 
– ATP + PA – PBR-1BTP + Q = 0 
– Derivation: calculus of variations 

• Packages available for finding solution 
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Toy Nonlinear Systems 
 

Cart-pole Acrobot 

Mountain car 

 

Deterministic Linear Quadratic Regulation 
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Deterministic Linear Quadratic Regulation 
 

 

Optimal Regulation 
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Optimal Regulation 
 

 

Optimal Regulation 

 



141 

Optimal State Feedback 

 

Optimal State Feedback 
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Optimal State Feedback 
 

 

LQR In MATLAB 
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From Linear to Nonlinear  
• We know how to solve (assuming gt, Ut, Xt convex): 

 
 
   
• How about nonlinear dynamics:  

 

Shooting Methods (feasible) 

Iterate for i=1, 2, 3, … 

  Execute                (from solving (1)) 

  Linearize around resulting trajectory 

  Solve (1) for current linearization 

Collocation Methods (infeasible) 

Iterate for i=1, 2, 3, … 

          --- (no execution)--- 

  Linearize around current solution of (1) 

  Solve (1) for current linearization 

 

 

(1) 

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using 
linearization, linearize equality constraints, convex-quadratic approximate objective function 

 

Model Predictive Control 
• Given:  
• For k=0, 1, 2, …, T 

– Solve 
 
 
 

– Execute uk 

– Observe resulting state, 
 

 



144 

Iterative LQR versus Sequential Convex 
Programming 
• Both can solve 

 
 
 
 

• Can run iterative LQR both as a shooting method or as a collocation method, it’s just a 
different way of executing “Solve (1) for current linearization.”  In case of shooting, the 
sequence of linear feedback controllers found can be used for (closed-loop) execution. 
 

• Iterative LQR might need some outer iterations, adjusting “t” of the log barrier 
 

 
   

 

Shooting Methods 

Iterate for i=1, 2, 3, … 

  Execute feedback controller (from solving (1)) 

  Linearize around resulting trajectory 

  Solve (1) for current linearization 

Collocation Methods 

Iterate for i=1, 2, 3, … 

          --- (no execution)--- 

  Linearize around current solution of (1) 

  Solve (1) for current linearization 

 

 

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using 
linearization, linearize equality constraints, convex-quadratic approximate objective function 

 

Example Shooting 
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Example Collocation 

 

+ : 
At all times the sequence of controls is meaningful, and the 
objective function optimized directly corresponds to the 
current control sequence 
-- : 
For unstable systems, need to run feedback controller during 
forward simulation 

– Why?  Open loop sequence of control inputs computed for the linearized 
system will not be perfect for the nonlinear system.  If the nonlinear system is 
unstable, open loop execution would give poor performance. 

– Fixes: 
• Run Model Predictive Control for forward simulation 
• Compute a linear feedback controller from the 2nd order Taylor expansion 

at the optimum 

Practical Benefits and Issues with Shooting 
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+ : 
Can initialize with infeasible trajectory.  Hence if you have a 
rough  idea of a sequence of states that would form a 
reasonable solution,  you can initialize with this sequence of 
states without needing to know a control sequence that 
would lead through them, and without needing to make them 
consistent with the dynamics 
 

-- : 
Sequence of control inputs and states might never converge 
onto a feasible sequence  

Practical Benefits and Issues with Collocation 

 

Direct policy synthesis: Optimal control 
• Input: cost function J(x), estimated dynamics f(x,u), finite 

state/control spaces X, U 
 

• Two basic classes: 
– Trajectory optimization: Hypothesize control sequence u(t), 

simulate to get x(t), perform optimization to improve u(t), repeat. 
– Output: optimal trajectory u(t) (in practice, only a locally optimal 

solution is found) 
– Dynamic programming: Discretize state and control spaces, 

form a discrete search problem, and solve it.  
– Output: Optimal policy u(x) across all of X 
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Discrete Search example 
• Split X, U into cells x1,…,xn, u1,…,um 

• Build transition function xj = f(xi,uk)dt for all i,k 
• State machine with costs dt J(xi) for staying in state I 
• Find u(xi) that minimizes sum 

of total costs. 
• Value iteration: repeated 

dynamic programming over 
V(xi) = sum of total future 
costs 

Value function for 1-joint acrobot 

 

Receding Horizon Control (aka model predictive 
control) 

 

... 

horizon 1 horizon h 
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Estimation 

 

Along multiple dimensions 
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State Space 
• We collect our set of uncertain variables into a vector … 
    x = [x1, x2,…, xN]T 

 
• The set of values that x might take on is termed the state 

space 
 

• There is a single true value for x,  
but it is unknown  
 

 

State Space Dynamics 
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Measured versus True 
• Measurement errors are inevitable 

 
• So, add Noise to State... 

– State Dynamics becomes: 
 
 

• Can represent this as a “Normal” Distribution 
 
 
 
 
 
 

 

Recovering The Truth 
• Numerous methods 
• Termed “Estimation”  because we are trying to estimate 

the truth from the signal 
• A strategy discovered by Gauss 
• Least Squares in Matrix Representation 
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Recovering the Truth: Terminology 
 
 
 

 

General Problem… 
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Duals and Dual Terminology 
 

 

Estimation Process in Pictures 
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Kalman Filter Process 
 

 

KF Process in Equations 
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KF Considerations 
 

 

Ex: Kinematic KF: Tracking 
• Consider a System with Constant Acceleration 
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In Summary 

• KF: 
– The true state (x) is separate from the measured (z) 
– Lets you combine prior controls knowledge with 

measurements to filter signals and find the truth 
– It regulates the covariance (P) 

• As P is the scatter between z and x 
• So, if P  0, then z  x  (measurements  truth) 

• EKF:   
– Takes a Taylor series approximation to get a local “F” (and 

“G” and “H”) 
 

 

 


