

Week	Date	Lecture (W: 12:05-1:50, 50-N202)			
1	27-Jul	Introduction			
2	3-Aug	Representing Position & Orientation & State			
		(Frames, Transformation Matrices & Affine Transformations)			
3	10-Aug	Robot Kinematics Review (& Ekka Day)			
4	17-Aug	Robot Inverse Kinematics & Kinetics			
5	24-Aug	Robot Dynamics (Jacobeans)			
6	31-Aug	Robot Sensing: Perception & Linear Observers			
7	7-Sep	Robot Sensing: Single View Geometry & Lines			
8	14-Sep	Robot Sensing: Feature Detection			
9	21-Sep	Robot Sensing: Multiple View Geometry			
	28-Sep	Study break			
10	5-Oct	Motion Planning			
11	12-Oct	Probabilistic Robotics: Localization & SLAM			
12	19-Oct	Probabilistic Robotics: Planning & Control			
13	26-Oct	State-Space Automation (Shaping the Dynamic Response/LQR) + Course Review			

2-E	O Transforma	tions			
	Name	Matrix	# D.O.F.	Preserves:	Icon
	translation	$\left[egin{array}{c c} I & t \end{array} ight]_{2 imes 3}$	2	orientation $+\cdots$	
	rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
	similarity	$\left[\begin{array}{c c} sR & t \end{array} \right]_{2 \times 3}$	4	angles $+\cdots$	\diamond
	affine	$\begin{bmatrix} A \end{bmatrix}_{2 imes 3}$	6	parallelism $+\cdots$	\square
	projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	
NE	TR 4202: Robotics			S	eptember 21, 2016

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$\left[egin{array}{c c} I & t \end{array} ight]_{3 imes 4}$	3	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{3 imes 4}$	6	lengths $+\cdots$	\diamond
similarity	$\left[\left. sR \left t \right. ight]_{3 imes 4} ight.$	7	angles $+\cdots$	\diamondsuit
affine	$\begin{bmatrix} A \end{bmatrix}_{3 imes 4}$	12	parallelism $+\cdots$	
projective	$\left[\begin{array}{c} ilde{H} \end{array} ight]_{4 imes 4}$	15	straight lines	

Properties of Projection Preserves Lines and conics Incidence Invariants (cross-ratio) Does not preserve Lengths Angles Parallelism

"Fundamental" Multi-View Geometry

Stereo: epipolar geometry

- for two images (or images with collinear camera centers), can find epipolar lines
- epipolar lines are the projection of the pencil of planes passing through the centers
- Rectification: warping the input images (perspective transformation) so that epipolar lines are horizontal

Slide from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

September 21, 2016-33

Fundamental matrix

- Camera calibrations are unknown
- x' F x = 0 with F = $[e] \times H = K'[t] \times R K-1$
- Solve for F using least squares (SVD) - re-scale (xi, xi') so that |xi|≈1/2 [Hartley]
- e (epipole) is still the least singular vector of F
- H obtained from the other two s.v.s

From Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

- "plane + parallax" (projective) reconstruction
- use self-calibration to determine K [Pollefeys]

$$\mathbf{e} = \mathbf{P} \begin{pmatrix} -\mathbf{R}^{\mathsf{T}} \mathbf{t} \\ 1 \end{pmatrix} = \mathbf{K} \mathbf{R}^{\mathsf{T}} \mathbf{t} \quad \mathbf{e}' = \mathbf{P}' \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix} = \mathbf{K}' \mathbf{t}.$$

$$\mathtt{F} = [\mathbf{e}']_{\times}\mathtt{K}'\mathtt{R}\mathtt{K}^{-1} = \mathtt{K}'^{-\mathsf{T}}[\mathbf{t}]_{\times}\mathtt{R}\mathtt{K}^{-1} = \mathtt{K}'^{-\mathsf{T}}\mathtt{R}[\mathtt{R}^{\mathsf{T}}\mathbf{t}]_{\times}\mathtt{K}^{-1} = \mathtt{K}'^{-\mathsf{T}}\mathtt{R}\mathtt{K}^{\mathsf{T}}[\mathbf{e}]_{\times}$$

METR 4202: Robotics

...

September 21, 2016 -40

September 21, 2016 - 39

Matching criteria

- Raw pixel values (correlation)
- Band-pass filtered images [Jones & Malik 92]
- "Corner" like features [Zhang, ...]
- Edges [many people...]
- Gradients [Seitz 89; Scharstein 94]
- Rank statistics [Zabih & Woodfill 94]

Slide from Szeliski, Computer Vision: Algorithms and Applications

METR 4202: Robotics

September 21, 2016 - 45

Structure [from] Motion

- Given a set of feature tracks, estimate the 3D structure and 3D (camera) motion.
- Assumption: orthographic projection
- Tracks: (u_{fp}, v_{fp}) , f: frame, p: point
- Subtract out mean 2D position...

 \mathbf{i}_{f} : rotation, \mathbf{s}_{p} : position

$$u_{fp} = i_f^T s_p, v_{fp} = j_f^T s_p$$

From Szeliski, <u>Computer Vision: Algorithms and Applications</u> METR 4202: Robotics

September 21, 2016 - 51

- many more parameters: potentially slow
- poorer conditioning (high correlation)
- potentially lots of outliers
- gauge (coordinate) freedom

$$\hat{u}_{ij} = f(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

$$\hat{v}_{ij} = g(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

September 21, 2016 - 56

From Szeliski, <u>Computer Vision: Algorithms and Applications</u> METR 4202: Robotics

