
1

© 2016 School of Information Technology and Electrical Engineering at the University of Queensland

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: AAAAA

Schedule of Events

Week Date Lecture (W: 12:05-1:50, 50-N202)

1 27-Jul Introduction

2 3-Aug
Representing Position & Orientation & State

(Frames, Transformation Matrices & Affine Transformations)

3 10-Aug Robot Kinematics Review (& Ekka Day)

4 17-Aug Robot Inverse Kinematics & Kinetics

5 24-Aug Robot Dynamics (Jacobeans)

6 31-Aug Robot Sensing: Perception & Linear Observers

7 7-Sep
Robot Sensing:

Multiple View Geometry & Feature Detection
8 14-Sep Probabilistic Robotics: Localization

9 21-Sep Probabilistic Robotics: SLAM

 28-Sep Study break

10 5-Oct Motion Planning

11 12-Oct State-Space Modelling

12 19-Oct Shaping the Dynamic Response

13 26-Oct LQR + Course Review

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

2

Follow Along Reading:

Robotics, Vision & Control

by Peter Corke

Also online:SpringerLink

UQ Library eBook:

364220144X

 Sensing and Vision

• Multiple View Geometry

– Chapter 14: Using Multiple Images
§ 14.2 Geometry of Multiple Views

• Multiple View Geometry

– Hartley & Zisserman:
Chapter 6: Camera Models
Chapter 7: Camera Matrix

• Localization

– Chapter 6: Localization

Today

Reference Material

UQ Library/

SpringerLink UQ Library

(ePDF)

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b3087948~S7

3

Sensing:

Image Formation /
Single-View Geometry

Image Formation: Simple Lens Optics ≅ Thin-Lens

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/

4

Calibration matrix

• Is this form of K good enough?

• non-square pixels (digital video)

• skew

• radial distortion

From Szeliski, Computer Vision: Algorithms and Applications

Calibration

See: Camera Calibration Toolbox for Matlab
(http://www.vision.caltech.edu/bouguetj/calib_doc/)

• Intrinsic: Internal Parameters
– Focal length: The focal length in pixels.

– Principal point: The principal point

– Skew coefficient:

 The skew coefficient defining the angle between the x and y pixel axes.

– Distortions: The image distortion coefficients (radial and tangential distortions)

(typically two quadratic functions)

• Extrinsics: Where the Camera (image plane) is placed:
– Rotations: A set of 3x3 rotation matrices for each image

– Translations: A set of 3x1 translation vectors for each image

http://szeliski.org/Book/
http://szeliski.org/Book/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

5

Camera calibration

• Determine camera parameters from known 3D points or

calibration object(s)

• internal or intrinsic parameters such as focal length,

optical center, aspect ratio:

what kind of camera?

• external or extrinsic (pose)

parameters:

where is the camera?

• How can we do this?

From Szeliski, Computer Vision: Algorithms and Applications

a university for the
world real

®

© Peter Corke

Complete camera model

intrinsic

parameters

extrinsic parameters

camera matrix

http://szeliski.org/Book/
http://szeliski.org/Book/

6

Camera Image Formation “Aberrations”[I]:

Lens Optics (Aperture / Depth of Field)

http://en.wikipedia.org/wiki/File:Aperture_in_Canon_50mm_f1.8_II_lens.jpg

Camera Image Formation “Aberrations”[II]:

Lens Distortions

Barrel Pincushion

Fig. 2.1.3 from Szeliski, Computer Vision: Algorithms and Applications

Fisheye

 Explore these with visualize_distortions in the

Camera Calibration Toolbox

http://en.wikipedia.org/wiki/File:Aperture_in_Canon_50mm_f1.8_II_lens.jpg
http://szeliski.org/Book/
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html

7

Camera Image Formation “Aberrations” [II]:

Lens Optics: Chromatic Aberration

• Chromatic Aberration:

– In a lens subject to chromatic aberration, light at different

wavelengths (e.g., the red and blur arrows) is focused with a

different focal length 𝑓’ and hence a different depth 𝑧𝑖, resulting

in both a geometric (in-plane) displacement and a loss of focus

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications

Camera Image Formation “Aberrations” [III]:

Lens Optics: Vignetting

• Vignetting:

– The tendency for the brightness of the image to fall off towards

the edge of the image

– The amount of light hitting a pixel of surface area 𝛿𝑖 depends on

the square of the ratio of the aperture diameter 𝑑 to the focal

length 𝑓, as well as the fourth power of the off-axis angle 𝛼,

cos4 𝛼

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/

8

Measurements on Planes

(You can not just add a tape measure!)

1 2 3 4

1

2

3

4

Approach: unwarp then measure

Slide from Szeliski, Computer Vision: Algorithms and Applications

Perception

• Making Sense from Sensors

http://www.michaelbach.de/ot/mot_rotsnake/index.html

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://www.michaelbach.de/ot/mot_rotsnake/index.html

9

Perception

• Perception is about understanding

the image for informing latter

robot / control action

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

Perception

• Perception is about understanding

the image for informing latter

robot / control action

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

10

Basic Features:

Colour

Edges & Lines

Features -- Colour Features ✯

• RGB is NOT an absolute (metric) colour space

Also!

• RGB (display or additive colour) does not map to

CYMK (printing or subtractive colour) without calibration

• Y-Cr-Cb or HSV does not solve this either

Bayer Patterns

Fig: Ch. 10, Robotics Vision and Control

11

Colour Spaces

• HSV

• YCrCb

Gamma Corrected Luma (Y) +

Chrominance

BW  Colour TVs : Just add the

Chrominance

γ Correction: CRTs γ=2.2-2.5

• L*ab

Source: Wikipedia – HSV and YCrCb

Subtractive (CMYK) & Uniform (L*ab) Color Spaces

• 𝐶 = 𝑊 − 𝑅

• 𝑀 = 𝑊 − 𝐺

• 𝑌 = 𝑊 − 𝐵

• 𝐾 = −𝑊 

• A Uniform color space is one in which

the distance in coordinate space is a fair

guide to the significance of the difference

between the two colors

• Start with RGB  CIE XYZ

(Under Illuminant D65)

https://en.wikipedia.org/wiki/Illuminant_D65
https://en.wikipedia.org/wiki/Illuminant_D65
https://en.wikipedia.org/wiki/Illuminant_D65

12

Colour: Illumination Variant

• Toy Image • Toy Image With Flash

Source: %MATLABROOT%\toolbox\images\imdata\toysflash.png

Colour Spaces:
• Red | Green | Blue :

• Hue | Saturation | V (Brightness Value) :

“False-colour”: Show HSV as “RGB”

13

Lines

How to get the Features? Still MANY Ways

• Canny edge detector:

14

Edge Detection

• Laplacian of Gaussian

– Gaussian (Low Pass filter)

– Laplacian (Gradient)

• Prewitt

– Discrete differentiation

– Convolution

Edge Detection

• Canny edge detector

– Finds the peak gradient
magnitude orthogonal to the
edge direction

1. Apply Gaussian filter to smooth the
image in order to remove the noise

2. Find the intensity gradients of the image

3. Apply non-maximum suppression to get
rid of spurious response to edge detection

4. Apply double threshold to determine
potential edges

5. Track edge by hysteresis: Finalize the
detection of edges by suppressing all the
other edges that are weak and not
connected to strong edges.

– Two Thresholds:
• Non-maximum suppression

• Hysteresis

15

Edge Detection

• Canny edge detector:

– Pepsi Sequence:

Image Data: http://www.cs.brown.edu/~black/mixtureOF.html and Szeliski, CS223B-L9

See also: Use of Temporal information to aid segmentation:

http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html

Edge Detection

• Many, many more

 Structured Edge Detection Toolbox

Dollár and Zitnick, Structured Forests for Fast Edge Detection, ICCV 13

https://github.com/pdollar/edges

http://www.cs.brown.edu/~black/mixtureOF.html
http://www.cs.brown.edu/~black/mixtureOF.html
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html
https://github.com/pdollar/edges
https://github.com/pdollar/edges

16

Line Extraction and Segmentation

Adopted from Williams, Fitch, and Singh, MTRX 4700

Line Formula

Adopted from Williams, Fitch, and Singh, MTRX 4700

17

Line Estimation

Least squares minimization of the line:

• Line Equation:

• Error in Fit:

• Solution:

Adopted from Williams, Fitch, and Singh, MTRX 4700

Line Splitting / Segmentation

• What about corners?

Split into multiple lines (via expectation maximization)

1. Expect (assume) a number of lines N (say 3)

2. Find “breakpoints” by finding nearest neighbours upto a

threshold or simply at random (RANSAC)

3. How to know N? (Also RANSAC)
Adopted from Williams, Fitch, and Singh, MTRX 4700

18

⊥ of a Point from a Line Segment

d

D

Adopted from Williams, Fitch, and Singh, MTRX 4700

Hough Transform

• Uses a voting mechanism

• Can be used for other lines and shapes

(not just straight lines)

19

Hough Transform: Voting Space

• Count the number of lines that can go through a point and

move it from the “x-y” plane to the “a-b” plane

• There is only a one-“infinite” number (a line!) of solutions

(not a two-“infinite” set – a plane)

Hough Transform: Voting Space

• In practice, the polar form is often used

• This avoids problems with lines that are nearly vertical

20

Hough Transform: Algorithm

1. Quantize the parameter space appropriately.

2. Assume that each cell in the parameter space is an

accumulator. Initialize all cells to zero.

3. For each point (x,y) in the (visual & range) image space,

increment by 1 each of the accumulators that satisfy the

equation.

4. Maxima in the accumulator array correspond to the

parameters of model instances.

Line Detection – Hough Lines [1]

• A line in an image can be expressed as two variables:

– Cartesian coordinate system: m,b

– Polar coordinate system: r, θ

  avoids problems with vert. lines

 y=mx+b 

• For each point (x1, y1) we can write:

• Each pair (r,θ) represents a line that passes through (x1, y1)

See also OpenCV documentation (cv::HoughLines)

21

Line Detection – Hough Lines [2]

• Thus a given point gives a sinusoid

• Repeating for all points on the image

See also OpenCV documentation (cv::HoughLines)

Line Detection – Hough Lines [3]

• Thus a given point

gives a sinusoid

• Repeating for all

 points on the image

• NOTE that an intersection of sinusoids represents (a point)

represents a line in which pixel points lay.

 Thus, a line can be detected by finding the number of

 Intersections between curves

See also OpenCV documentation (cv::HoughLines)

22

“Cool Robotics Share” -- Hough Transform

• http://www.activovision.com/octavi/doku.php?id=hough_transform

RANdom SAmple Consensus

1. Repeatedly select a small (minimal) subset of

correspondences

2. Estimate a solution (in this case a the line)

3. Count the number of “inliers”, |e|<Θ

(for LMS, estimate med(|e|)

4. Pick the best subset of inliers

5. Find a complete least-squares solution

• Related to least median squares

• See also:

MAPSAC (Maximum A Posteriori SAmple Consensus)

From Szeliski, Computer Vision: Algorithms and Applications

http://www.activovision.com/octavi/doku.php?id=hough_transform
http://www.activovision.com/octavi/doku.php?id=hough_transform
file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/Hough Transform Demo.mp4
http://szeliski.org/Book/
http://szeliski.org/Book/

23

Cool Robotics Share Time!

D. Wedge, The RANSAC Song

Multiple View

Geometry

file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/ransac.avi

24

Image Formation – Single View Geometry [I]

Image Formation – Single View Geometry [II]

 Camera Projection Matrix

• x = Image point

• X = World point

• K = Camera Calibration Matrix

Perspective Camera as:

 where: P is 3×4 and of rank 3

25

Transformations ✯

• x’: New Image & x : Old Image

• Euclidean:

(Distances preserved)

• Similarity (Scaled Rotation):

(Angles preserved)

 Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

Transformations [2]

• Affine :

(|| lines remain ||)

• Projective:

(straight lines preserved)

H: Homogenous 3x3 Matrix

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

26

2-D Transformations

 x’ = point in the new (or 2nd) image

 x = point in the old image

• Translation x’ = x + t

• Rotation x’ = R x + t

• Similarity x’ = sR x + t

• Affine x’ = A x

• Projective x’ = A x

 here, x is an inhomogeneous pt (2-vector)

 x’ is a homogeneous point

2-D Transformations

27

3D Transformations

Slide from Szeliski, Computer Vision: Algorithms and Applications

Projection Models

• Orthographic

• Weak Perspective

• Affine

• Perspective

• Projective



















1000

Π



















1000

yzyx

xzyx

tjjj

tiii

Π

 tRΠ 



















Π



















1000

yzyx

xzyx

tjjj

tiii

fΠ

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

28

Properties of Projection

• Preserves

– Lines and conics

– Incidence

– Invariants (cross-ratio)

• Does not preserve

– Lengths

– Angles

– Parallelism

Planar Projective Transformations

• Perspective projection of a plane

– lots of names for this:

• homography, colineation, planar projective map

– Easily modeled using homogeneous coordinates



















































1***

'

'

y

x

s

sy

sx

H p p’

To apply a homography H
• compute p’ = Hp

• p’’ = p’/s normalize by dividing by third component

(0,0,0)
(sx,sy,s)

image plane

(x,y

,1)

y

x z

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

29

Image Formation – Two-View Geometry [Stereopsis]

 Fundamental Matrix

Image Rectification

To unwarp (rectify) an image
• solve for H given p’’ and p

• solve equations of the form: sp’’ = Hp

– linear in unknowns: s and coefficients of H

– need at least 4 points

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

30

3D Projective Geometry

• These concepts generalize naturally to 3D

– Homogeneous coordinates

• Projective 3D points have four coords: P = (X,Y,Z,W)

– Duality

• A plane L is also represented by a 4-vector

• Points and planes are dual in 3D: L P=0

– Projective transformations

• Represented by 4x4 matrices T: P’ = TP, L’ = L T-1

– Lines are a special case…

Slide from Szeliski, Computer Vision: Algorithms and Applications

3D → 2D Perspective Projection

(Image Formation Equations)

u

(Xc,Yc,Zc)

uc f

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

31

3D → 2D Perspective Projection

• Matrix Projection (camera matrix):

ΠPp 























































1

Z

Y

X

s

sy

sx

It’s useful to decompose  into T  R  project  A






























































11

0100

0010

0001

100

0

0

31

1333

31

1333

x

xx

x

xx
yy

xx

f

ts

ts

00

0 TIRΠ

projection intrinsics orientation position

Slide from Szeliski, Computer Vision: Algorithms and Applications

The Projective Plane

• Why do we need homogeneous coordinates?

– Represent points at infinity, homographies, perspective

projection, multi-view relationships

• What is the geometric intuition?

– A point in the image is a ray in projective space

(0,0,0)

(sx,sy,s)

image plane

(x,y,1)

y

x z

• Each point (x,y) on the plane is represented by a ray

(sx,sy,s)

– all points on the ray are equivalent: (x, y, 1)  (sx, sy, s)
Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

32

Projective Lines

• What is a line in projective space?

• A line is a plane of rays through origin

• all rays (x,y,z) satisfying: ax + by + cz = 0

 


















z

y

x

cba0 :notationvectorin

• A line is represented as a homogeneous 3-vector l

lT p

Slide from Szeliski, Computer Vision: Algorithms and Applications

Ideal points and lines

• Ideal point (“point at infinity”)

– p  (x, y, 0) – parallel to image plane

– It has infinite image coordinates

(sx,sy,0) y

x

z image plane

Line at infinity
• l∞  (0, 0, 1) – parallel to image plane

• Contains all ideal points

(sx,sy,0)

y

x

z image plane

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

33

Point and Line Duality

– A line l is a homogeneous 3-vector (a ray)

– It is  to every point (ray) p on the line: lT p=0

• What is the intersection of two lines l1 and l2 ?

• p is  to l1 and l2  p = l1  l2

• Points and lines are dual in projective space

• every property of points also applies to lines

l
p1 p2

l1

l2

p

• What is the line l spanned by rays p1 and p2 ?

• l is  to p1 and p2  l = p1  p2 (l is the plane normal)

Point and Line Duality [II] ✯

Homogeneous ⇔ Cartesian

• Point:

 |

• Line:

– Is such that 𝑙 𝑇𝑝 = 0

– Point Eq of a line is: 𝑦 = 𝑚𝑥 + 𝑏

34

Point and Line Duality [III]

• 2 Points Make a Line

• 2 Lines Make Point!

Vanishing Points

• Vanishing point

– projection of a point at infinity

– whiteboard

capture,

architecture,…

image plane

camera
center

ground plane

vanishing point

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

35

Fun With Vanishing Points

Slide from Szeliski, Computer Vision: Algorithms and Applications

Vanishing Points (2D)

image plane

camera
center

line on ground plane

vanishing point

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

36

Vanishing Points

• Properties

– Any two parallel lines have the same vanishing point

– The ray from C through v point is parallel to the lines

– An image may have more than one vanishing point

image plane

camera
center

C

line on ground plane

vanishing point V

line on ground plane

Vanishing Lines

• Multiple Vanishing Points

– Any set of parallel lines on the plane define a vanishing point

– The union of all of these vanishing points is the horizon line

v1 v2

37

Two-View Geometry: Epipolar Plane

• Epipole: The point of intersection of the line joining the camera centres (the baseline) with the image plane.
Equivalently, the epipole is the image in one view of the camera centre of the other view.

• Epipolar plane is a plane containing the baseline.
There is a one-parameter family (a pencil) of epipolar planes

• Epipolar line is the intersection of an epipolar plane with the image plane. All epipolar lines intersect at the
epipole. An epipolar plane intersects the left and right image planes in epipolar lines, and defines the
correspondence between the lines.

Two-frame methods

• Two main variants:

• Calibrated: “Essential matrix” E

 use ray directions (xi, xi’)

• Uncalibrated: “Fundamental matrix” F

• [Hartley & Zisserman 2000]

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/

38

Fundamental matrix

• Camera calibrations are unknown

• x’ F x = 0 with F = [e] H = K’[t] R K-1

• Solve for F using least squares (SVD)

– re-scale (xi, xi’) so that |xi|≈1/2 [Hartley]

• e (epipole) is still the least singular vector of F

• H obtained from the other two s.v.s

• “plane + parallax” (projective) reconstruction

• use self-calibration to determine K [Pollefeys]

From Szeliski, Computer Vision: Algorithms and Applications

Essential matrix

• Co-planarity constraint:

• x’ ≈ R x + t

• [t] x’ ≈ [t] R x

• x’ [t] x’ ≈ x’ [t] R x

• x’ E x = 0 with E =[t] R

• Solve for E using least squares (SVD)

• t is the least singular vector of E

• R obtained from the other two s.v.s

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/

39

Stereo: Epipolar geometry

• Match features along epipolar lines

viewing ray epipolar plane

epipolar line

Slide from Szeliski, Computer Vision: Algorithms and Applications

Stereo: epipolar geometry

• for two images (or images with collinear camera centers),

can find epipolar lines

• epipolar lines are the projection of the pencil of planes

passing through the centers

• Rectification: warping the input images (perspective

transformation) so that epipolar lines are horizontal

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

40

Fundamental Matrix

• The fundamental matrix is the algebraic representation of

epipolar geometry.

Fundamental Matrix Example

• Suppose the camera matrices are those of a calibrated

stereo rig with the world origin at the first camera

• Then:

• Epipoles are at:

∴

41

Summary of fundamental matrix properties

Fundamental Matrix & Motion

• Under a pure translational camera motion, 3D points appear to slide

along parallel rails. The images of these parallel lines intersect in a

vanishing point corresponding to the translation direction. The

epipole e is the vanishing point.

42

Cool Robotics Share

D. Wedge, The Fundamental Matrix Song

Rectification

• Project each image onto same plane, which is parallel to

the epipole

• Resample lines (and shear/stretch) to place lines in

correspondence, and minimize distortion

• [Zhang and Loop, MSR-TR-99-21]

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://www.research.microsoft.com/~zhang/publications.htm
http://www.research.microsoft.com/~zhang/publications.htm
http://www.research.microsoft.com/~zhang/publications.htm
http://www.research.microsoft.com/~zhang/publications.htm
http://www.research.microsoft.com/~zhang/publications.htm
http://www.research.microsoft.com/~zhang/publications.htm
http://www.research.microsoft.com/~zhang/publications.htm
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

43

How to get Matching Points? Features

• Colour

• Corners

• Edges

• Lines

• Statistics on Edges: SIFT, SURF, ORB…
In OpenCV: The following detector types are supported:

– "FAST" – FastFeatureDetector

– "STAR" – StarFeatureDetector

– "SIFT" – SIFT (nonfree module)

– "SURF" – SURF (nonfree module)

– "ORB" – ORB

– "BRISK" – BRISK

– "MSER" – MSER

– "GFTT" – GoodFeaturesToTrackDetector

– "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled

– "Dense" – DenseFeatureDetector

– "SimpleBlob" – SimpleBlobDetector

Feature-based stereo

• Match “corner” (interest) points

• Interpolate complete solution

Slide from Szeliski, Computer Vision: Algorithms and Applications

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/

44

SFM: Structure from Motion

(& Cool Robotics Share (this week))

Structure [from] Motion

• Given a set of feature tracks,

estimate the 3D structure and 3D (camera) motion.

• Assumption: orthographic projection

• Tracks: (ufp,vfp), f: frame, p: point

• Subtract out mean 2D position…

 if: rotation, sp: position

From Szeliski, Computer Vision: Algorithms and Applications

../../Videos/PhotoTourismFull.wmv
http://szeliski.org/Book/
http://szeliski.org/Book/

45

Structure from motion

• How many points do we need to match?

• 2 frames:

– (R,t): 5 dof + 3n point locations 

– 4n point measurements 

– n  5

• k frames:

– 6(k–1)-1 + 3n  2kn

• always want to use many more

From Szeliski, Computer Vision: Algorithms and Applications

Measurement equations

• Measurement equations

 ufp = if
T sp if: rotation, sp: position

 vfp = jf
T sp

• Stack them up…

 W = R S

 R = (i1,…,iF, j1,…,jF)T

 S = (s1,…,sP)

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/

46

Factorization

 W = R2F3 S3P

SVD

 W = U Λ V Λ must be rank 3

 W’ = (U Λ 1/2)(Λ1/2 V) = U’ V’

Make R orthogonal

 R = QU’ , S = Q-1V’

 if
TQTQif = 1 …

From Szeliski, Computer Vision: Algorithms and Applications

Results

• Look at paper figures…

From Szeliski, Computer Vision: Algorithms and Applications

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/

47

Bundle Adjustment

• What makes this non-linear minimization hard?

– many more parameters: potentially slow

– poorer conditioning (high correlation)

– potentially lots of outliers

– gauge (coordinate) freedom

From Szeliski, Computer Vision: Algorithms and Applications

More Cool Robotics Share!

http://szeliski.org/Book/
http://szeliski.org/Book/
file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/PhotoTourismFull.wmv

