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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 

1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 

4 17-Aug Robot Inverse Kinematics & Kinetics 

5 24-Aug Robot Dynamics (Jacobeans) 

6 31-Aug Robot Sensing: Perception & Linear Observers 

7 7-Sep 
Robot Sensing:  

Multiple View Geometry & Feature Detection 
8 14-Sep Probabilistic Robotics: Localization 

9 21-Sep Probabilistic Robotics: SLAM 

  28-Sep Study break 

10 5-Oct Motion Planning 

11 12-Oct State-Space Modelling 

12 19-Oct Shaping the Dynamic Response 

13 26-Oct LQR + Course Review 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Follow Along Reading: 

Robotics, Vision & Control  

by Peter Corke  

 

Also online:SpringerLink 

 

UQ Library eBook: 

364220144X   

  Sensing  and Vision 

• Multiple View Geometry 

– Chapter 14: Using Multiple Images 
§ 14.2 Geometry of Multiple Views 

• Multiple View Geometry 

– Hartley & Zisserman: 
Chapter 6: Camera Models 
Chapter 7: Camera Matrix 

• Localization 

– Chapter 6: Localization 

Today 

Reference Material 

UQ Library/ 

SpringerLink UQ Library 

(ePDF) 

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b3087948~S7
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Sensing: 

Image Formation /  
Single-View Geometry 

Image Formation: Simple Lens Optics ≅ Thin-Lens  

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 

 

http://szeliski.org/Book/
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Calibration matrix 

• Is this form of K good enough? 

• non-square pixels (digital video) 

• skew 

• radial distortion 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Calibration 

See:  Camera Calibration Toolbox for Matlab 
(http://www.vision.caltech.edu/bouguetj/calib_doc/) 

• Intrinsic: Internal Parameters 
– Focal length: The focal length in pixels. 

– Principal point: The principal point 

– Skew coefficient:  

 The skew coefficient defining the angle between the x and y pixel axes. 

– Distortions: The image distortion coefficients (radial and tangential distortions)  

(typically two quadratic functions) 

 

• Extrinsics: Where the Camera (image plane) is placed: 
– Rotations: A set of 3x3 rotation matrices for each image 

– Translations: A set of 3x1 translation vectors for each image 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
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Camera calibration 

• Determine camera parameters from known 3D points or 

calibration object(s) 

• internal or intrinsic parameters such as focal length, 

optical center, aspect ratio: 

what kind of camera? 

• external or extrinsic (pose) 

parameters: 

where is the camera? 

• How can we do this? 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

a university for the 
world real 

® 

© Peter Corke 

Complete camera model  

intrinsic 

parameters 

extrinsic parameters 

camera matrix 
 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
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Camera Image Formation “Aberrations”[I]: 

Lens Optics (Aperture / Depth of Field) 

http://en.wikipedia.org/wiki/File:Aperture_in_Canon_50mm_f1.8_II_lens.jpg 

 
 

Camera Image Formation “Aberrations”[II]: 

Lens Distortions 

Barrel Pincushion 

Fig. 2.1.3 from Szeliski, Computer Vision: Algorithms and Applications 

 

 
Fisheye 

 Explore these with visualize_distortions in the 

Camera Calibration Toolbox 

http://en.wikipedia.org/wiki/File:Aperture_in_Canon_50mm_f1.8_II_lens.jpg
http://szeliski.org/Book/
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
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Camera Image Formation “Aberrations” [II]: 

Lens Optics: Chromatic Aberration 

• Chromatic Aberration: 

 

 

 

 

– In a lens subject to chromatic aberration, light at different 

wavelengths (e.g., the red and blur arrows) is focused with a 

different focal length 𝑓’ and hence a different depth 𝑧𝑖, resulting 

in both a geometric (in-plane) displacement and a loss of focus 

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 

 

Camera Image Formation “Aberrations” [III]: 

Lens Optics: Vignetting 

• Vignetting: 

– The tendency for the brightness of the image to fall off towards 

the edge of the image 

 

 

 

 

 

– The amount of light hitting a pixel of surface area 𝛿𝑖 depends on 

the square of the ratio of the aperture diameter 𝑑 to the focal 

length 𝑓, as well as the fourth power of the off-axis angle 𝛼, 

cos4 𝛼  

 
Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
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Measurements on Planes 

(You can not just add a tape measure!) 
 

 

1 2 3 4 

1 

2 

3 

4 

Approach:  unwarp then measure 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Perception 

• Making Sense from Sensors 

http://www.michaelbach.de/ot/mot_rotsnake/index.html 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://www.michaelbach.de/ot/mot_rotsnake/index.html
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Perception 

• Perception is about understanding 

the image for informing latter  

robot / control action 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 

 

Perception 

• Perception is about understanding 

the image for informing latter  

robot / control action 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html 

 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
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Basic Features: 

Colour  

Edges & Lines 

 

Features -- Colour Features  ✯ 

• RGB is NOT an absolute (metric) colour space 

Also! 

• RGB (display or additive colour) does not map to  

CYMK (printing or subtractive colour) without calibration 

• Y-Cr-Cb or HSV does not solve this either 

Bayer Patterns 

Fig: Ch. 10, Robotics Vision and Control 
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Colour Spaces 

• HSV 

 

• YCrCb 

Gamma Corrected Luma (Y) +  

Chrominance  

BW  Colour TVs : Just add the 

Chrominance 

γ Correction: CRTs γ=2.2-2.5 

 

 

 

 

• L*ab 

Source: Wikipedia – HSV and YCrCb 

Subtractive (CMYK) & Uniform (L*ab) Color Spaces 

• 𝐶 = 𝑊 − 𝑅 

• 𝑀 = 𝑊 − 𝐺 

• 𝑌 = 𝑊 − 𝐵 

 

• 𝐾 = −𝑊  

• A Uniform color space is one in which 

the distance in coordinate space is a fair 

guide to the significance of the difference 

between the two colors 

 

• Start with RGB  CIE XYZ 

(Under Illuminant D65) 

 

 

 

https://en.wikipedia.org/wiki/Illuminant_D65
https://en.wikipedia.org/wiki/Illuminant_D65
https://en.wikipedia.org/wiki/Illuminant_D65
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Colour: Illumination Variant 

• Toy Image • Toy Image With Flash 

Source: %MATLABROOT%\toolbox\images\imdata\toysflash.png 

Colour Spaces: 
• Red | Green  | Blue : 

 

 

 
 

• Hue | Saturation | V (Brightness Value) : 

 

“False-colour”: Show HSV as “RGB” 
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Lines 

 

How to get the Features? Still MANY Ways 

• Canny edge detector: 

 



14 

Edge Detection 

• Laplacian of Gaussian 

– Gaussian (Low Pass filter) 

– Laplacian (Gradient) 

• Prewitt 

– Discrete differentiation 

– Convolution  

 

Edge Detection 

• Canny edge detector 

– Finds the peak gradient 
magnitude orthogonal to the 
edge direction 

1. Apply Gaussian filter to smooth the 
image in order to remove the noise  

2. Find the intensity gradients of the image 

3. Apply non-maximum suppression to get 
rid of spurious response to edge detection 

4. Apply double threshold to determine 
potential edges 

5. Track edge by hysteresis: Finalize the 
detection of edges by suppressing all the 
other edges that are weak and not 
connected to strong edges. 

– Two Thresholds:  
• Non-maximum suppression  

• Hysteresis 
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Edge Detection 

• Canny edge detector: 

– Pepsi Sequence: 

Image Data: http://www.cs.brown.edu/~black/mixtureOF.html and Szeliski, CS223B-L9 

See also: Use of Temporal information to aid segmentation:  

http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html 

 

 

Edge Detection 

• Many, many more  

 Structured Edge Detection Toolbox 

 

Dollár and Zitnick, Structured Forests for Fast Edge Detection, ICCV 13 

https://github.com/pdollar/edges  

http://www.cs.brown.edu/~black/mixtureOF.html
http://www.cs.brown.edu/~black/mixtureOF.html
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html
https://github.com/pdollar/edges
https://github.com/pdollar/edges
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Line Extraction and Segmentation 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 

 

Line Formula 

Adopted from  Williams, Fitch, and Singh, MTRX 4700 
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Line Estimation 

Least squares minimization of the line: 

 

• Line Equation: 

 

• Error in Fit: 

 

• Solution: 

 
Adopted from  Williams, Fitch, and Singh, MTRX 4700 

 

Line Splitting / Segmentation 

• What about corners? 

Split into multiple lines  (via expectation maximization) 

1. Expect (assume) a number of lines N  (say 3) 

2. Find “breakpoints” by finding nearest neighbours upto a 

threshold or simply at random (RANSAC) 

3. How to know N?  (Also RANSAC) 
Adopted from  Williams, Fitch, and Singh, MTRX 4700 
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⊥ of a Point from a Line Segment 

d

D

Adopted from  Williams, Fitch, and Singh, MTRX 4700 

Hough Transform 

• Uses a voting mechanism 

• Can be used for other lines and shapes  

(not just straight lines) 
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Hough Transform: Voting Space 

• Count the number of lines that can go through a point and 

move it from the “x-y” plane to the “a-b” plane 

• There is only a one-“infinite” number (a line!) of solutions 

(not a two-“infinite” set – a plane) 

 

Hough Transform: Voting Space 

• In practice, the polar form is often used 

 

• This avoids problems with lines that are nearly vertical  
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Hough Transform: Algorithm 

1. Quantize the parameter space appropriately.  

 

2. Assume that each cell in the parameter space is an 

accumulator. Initialize all cells to zero.  

 

3. For each point (x,y) in the (visual & range) image space, 

increment by 1 each of the accumulators that satisfy the 

equation.  

 

4. Maxima in the accumulator array correspond to the 

parameters of model instances.  

 

 

Line Detection – Hough Lines [1] 

• A line in an image can be expressed as two variables: 

– Cartesian coordinate system: m,b 

– Polar coordinate system: r, θ  

  avoids problems with vert. lines 

 

 y=mx+b   

 

 

• For each point (x1, y1) we can write: 

 

• Each pair (r,θ) represents a line that passes through  (x1, y1)  
 

See also OpenCV documentation (cv::HoughLines) 
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Line Detection – Hough Lines [2] 

• Thus a given point gives a sinusoid 

 

 

 

 

• Repeating for all points on the image 

 

 

 

 

 

See also OpenCV documentation (cv::HoughLines) 

 

Line Detection – Hough Lines [3] 

• Thus a given point  

gives a sinusoid 

 

 

• Repeating for all 

 points on the image 

 

• NOTE that an intersection of sinusoids represents (a point) 

represents a line in which pixel points lay. 

 Thus, a line can be detected  by finding the number of 

 Intersections between curves 

 

 

 

See also OpenCV documentation (cv::HoughLines) 
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“Cool Robotics Share” -- Hough Transform 

• http://www.activovision.com/octavi/doku.php?id=hough_transform 

  

RANdom SAmple Consensus 

1. Repeatedly select a small (minimal) subset of 

correspondences 

2. Estimate a solution (in this case a the line) 

3. Count the number of “inliers”, |e|<Θ 

(for LMS, estimate med(|e|) 

4. Pick the best subset of inliers 

5. Find a complete least-squares solution 
 

• Related to least median squares 

• See also:  

MAPSAC (Maximum A Posteriori SAmple Consensus) 

 

 

 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

http://www.activovision.com/octavi/doku.php?id=hough_transform
http://www.activovision.com/octavi/doku.php?id=hough_transform
file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/Hough Transform Demo.mp4
http://szeliski.org/Book/
http://szeliski.org/Book/
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Cool Robotics Share Time! 

D. Wedge, The RANSAC Song 

 

 

 

Multiple View 

Geometry 

 

file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/ransac.avi
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Image Formation – Single View Geometry [I] 

 

Image Formation – Single View Geometry [II] 

 Camera Projection Matrix 

• x = Image point 

• X = World point 

• K = Camera Calibration Matrix 

 

Perspective Camera as: 

 where: P is 3×4 and of rank 3 
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Transformations  ✯ 

• x’:  New Image   &    x :  Old Image 

• Euclidean: 

(Distances preserved) 

 

• Similarity (Scaled Rotation):   

(Angles preserved) 

 Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 

 

Transformations [2] 

• Affine : 

(|| lines remain ||) 

• Projective:   

(straight lines preserved) 

H: Homogenous 3x3 Matrix 

 

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications 
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2-D Transformations 

 x’ = point in the new (or 2nd) image 

 x = point in the old image 

 

• Translation  x’ = x + t 

• Rotation   x’ = R x + t 

• Similarity   x’ = sR x + t 

• Affine   x’ = A x 

• Projective   x’ = A x 

  here, x is an inhomogeneous pt (2-vector) 

   x’  is a homogeneous point 

 

2-D Transformations 
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3D Transformations 

 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Projection Models 

• Orthographic 

 

• Weak Perspective 

 

• Affine 

 

• Perspective 

 

• Projective 
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Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Properties of Projection 

• Preserves 

– Lines and conics 

– Incidence 

– Invariants (cross-ratio) 

 

• Does not preserve 

– Lengths 

– Angles 

– Parallelism 

 

Planar Projective Transformations 

• Perspective projection of a plane 

– lots of names for this: 

• homography, colineation, planar projective map 

– Easily modeled using homogeneous coordinates 
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H p p’   

To apply a homography H 
• compute p’ = Hp 

• p’’ = p’/s    normalize by dividing by third component 

(0,0,0) 
(sx,sy,s) 

image plane 

(x,y

,1) 

y 

x z 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Image Formation – Two-View Geometry [Stereopsis] 

 Fundamental Matrix 

Image Rectification 

 

 

To unwarp (rectify) an image 
• solve for H given p’’ and p 

• solve equations of the form:  sp’’ = Hp 

– linear in unknowns:  s and coefficients of H 

– need at least 4 points 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/


30 

3D Projective Geometry 

• These concepts generalize naturally to 3D 

– Homogeneous coordinates 

• Projective 3D points have four coords:  P = (X,Y,Z,W) 

– Duality 

• A plane L is also represented by a 4-vector 

• Points and planes are dual in 3D: L P=0 

– Projective transformations 

• Represented by 4x4 matrices T:  P’ = TP,    L’ = L T-1 

– Lines are a special case… 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

3D → 2D Perspective Projection 

(Image Formation Equations) 
 

 

u 

(Xc,Yc,Zc) 

uc f 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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3D → 2D Perspective Projection 

• Matrix Projection (camera matrix): 

ΠPp 
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Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

The Projective Plane 

• Why do we need homogeneous coordinates? 

– Represent points at infinity, homographies, perspective 

projection, multi-view relationships 

• What is the geometric intuition? 

– A point in the image is a ray in projective space 

(0,0,0) 

(sx,sy,s) 

image plane 

(x,y,1) 

y 

x z 

• Each point (x,y) on the plane is represented by a ray 

(sx,sy,s) 

– all points on the ray are equivalent:  (x, y, 1)  (sx, sy, s) 
Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Projective Lines 

• What is a line in projective space? 

• A line is a plane of rays through origin 

• all rays (x,y,z) satisfying:  ax + by + cz = 0 

 


















z

y

x

cba0       :notationvectorin

• A line is represented as a homogeneous 3-vector l 

lT p 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Ideal points and lines 

• Ideal point (“point at infinity”) 

– p  (x, y, 0) – parallel to image plane 

– It has infinite image coordinates 

(sx,sy,0) y 

x 

z image plane 

Line at infinity 
• l∞  (0, 0, 1) – parallel to image plane 

• Contains all ideal points 

(sx,sy,0) 

y 

x 

z image plane 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Point and Line Duality 

– A line l is a homogeneous 3-vector (a ray) 

– It is  to every point (ray) p on the line:  lT p=0 

 

• What is the intersection of two lines l1 and l2 ? 

• p is  to l1 and l2      p = l1  l2 

• Points and lines are dual in projective space 

• every property of points also applies to lines 

l 
p1 p2 

l1 

l2 

p 

• What is the line l spanned by rays p1 and p2 ? 

• l is  to p1 and p2      l = p1  p2  (l is the plane normal) 

 

Point and Line Duality [II]  ✯ 

Homogeneous ⇔ Cartesian 

• Point: 

      |  

 

 

•  Line: 

– Is such that  𝑙 𝑇𝑝 = 0     

– Point Eq of a line is: 𝑦 = 𝑚𝑥 + 𝑏 
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Point and Line Duality [III] 

• 2 Points Make a Line 

 

 

 

 

• 2 Lines Make  Point! 

 

Vanishing Points 

• Vanishing point 

– projection of a point at infinity 

– whiteboard 

capture, 

architecture,…  

image plane 

camera 
center 

ground plane 

vanishing point 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Fun With Vanishing Points 

 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Vanishing Points (2D) 

 

image plane 

camera 
center 

line on ground plane 

vanishing point 

 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Vanishing Points 

• Properties 

– Any two parallel lines have the same vanishing point 

– The ray from C through v point is parallel to the lines 

– An image may have more than one vanishing point 

image plane 

camera 
center 

C 

line on ground plane 

vanishing point V 

line on ground plane 

 

Vanishing Lines 

• Multiple Vanishing Points 

– Any set of parallel lines on the plane define a vanishing point 

– The union of all of these vanishing points is the horizon line 

v1 v2 
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Two-View Geometry: Epipolar Plane 

• Epipole: The point of intersection of the line joining the camera centres (the baseline) with the image plane. 
Equivalently, the epipole is the image in one view of the camera centre of the other view.  

 

• Epipolar plane is a plane containing the baseline.  
There is a one-parameter family (a pencil) of epipolar planes  

 

• Epipolar line is the intersection of an epipolar plane with the image plane. All epipolar lines intersect at the 
epipole. An epipolar plane intersects the left and right image planes in epipolar lines, and defines the 
correspondence between the lines.  

 

Two-frame methods 

• Two main variants: 

• Calibrated: “Essential matrix” E 

  use ray directions (xi, xi’ ) 

• Uncalibrated: “Fundamental matrix” F 

 

• [Hartley & Zisserman 2000] 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
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Fundamental matrix 

• Camera calibrations are unknown 

•  x’ F x = 0 with F  = [e] H = K’[t] R K-1 

• Solve for F using least squares (SVD) 

– re-scale (xi, xi’ ) so that |xi|≈1/2  [Hartley] 

• e (epipole) is still the least singular vector of F 

• H obtained from the other two s.v.s 

• “plane + parallax” (projective) reconstruction 

• use self-calibration to determine K [Pollefeys] 
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Essential matrix 

• Co-planarity constraint: 

•     x’ ≈  R x + t 

•  [t] x’ ≈ [t] R x 

•   x’ [t] x’ ≈ x’ [t] R x 

•       x’ E x = 0  with E =[t] R 

• Solve for E using least squares (SVD) 

• t is the least singular vector of E 

• R obtained from the other two s.v.s 

From  Szeliski, Computer Vision: Algorithms and Applications 
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Stereo: Epipolar geometry 

• Match features along epipolar lines 

viewing ray epipolar plane 

epipolar line 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

 

Stereo: epipolar geometry 

• for two images (or images with collinear camera centers), 

can find epipolar lines 

• epipolar lines are the projection of the pencil of planes 

passing through the centers 

 

• Rectification:  warping the input images (perspective 

transformation) so that epipolar lines are horizontal 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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Fundamental Matrix 

• The fundamental matrix is the algebraic representation of 

epipolar geometry. 

 

 

Fundamental Matrix Example 

• Suppose the camera matrices are those of a calibrated 

stereo rig with the world origin at the first camera 

 

• Then: 

 

 

• Epipoles are at: 

 

∴ 
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Summary of fundamental matrix properties 

 

 

Fundamental Matrix & Motion 

• Under a pure translational camera motion, 3D points appear to slide 

along parallel rails. The images of these parallel lines intersect in a 

vanishing point corresponding to the translation direction. The 

epipole e is the vanishing point. 
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Cool Robotics Share 

D. Wedge, The Fundamental Matrix Song 

 

Rectification 

• Project each image onto same plane, which is parallel to 

the epipole 

• Resample lines (and shear/stretch) to place lines in 

correspondence, and minimize distortion 

 

 

 

 

 

 

• [Zhang and Loop, MSR-TR-99-21] 
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How to get Matching Points? Features 

•  Colour   

• Corners 

• Edges 

• Lines 

• Statistics on Edges:  SIFT, SURF, ORB… 
In OpenCV: The following detector types are supported: 

–     "FAST" – FastFeatureDetector 

–     "STAR" – StarFeatureDetector 

–     "SIFT" – SIFT (nonfree module) 

–     "SURF" – SURF (nonfree module) 

–     "ORB" – ORB 

–     "BRISK" – BRISK 

–     "MSER" – MSER 

–     "GFTT" – GoodFeaturesToTrackDetector 

–     "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled 

–     "Dense" – DenseFeatureDetector 

–     "SimpleBlob" – SimpleBlobDetector 

 

Feature-based stereo 

• Match “corner” (interest) points 

 

 

 

 

 

 

 

• Interpolate complete solution 

Slide from Szeliski, Computer Vision: Algorithms and Applications 
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SFM: Structure from Motion  

(& Cool Robotics Share (this week)) 

 

Structure [from] Motion 

• Given a set of feature tracks, 

estimate the 3D structure and 3D (camera) motion. 

 

• Assumption: orthographic projection 

 

• Tracks:  (ufp,vfp), f: frame, p: point 

• Subtract out mean 2D position… 

   if: rotation,  sp: position 

   

From  Szeliski, Computer Vision: Algorithms and Applications 
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Structure from motion 

• How many points do we need to match? 

• 2 frames: 

– (R,t): 5 dof + 3n point locations  

– 4n point measurements   

– n  5 

• k frames: 

– 6(k–1)-1 + 3n  2kn 

• always want to use many more 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Measurement equations 

• Measurement equations 

 ufp = if
T sp   if: rotation,  sp: position 

 vfp = jf
T sp 

 

 

• Stack them up… 

 W = R S 

 R = (i1,…,iF, j1,…,jF)T 

 S = (s1,…,sP) 
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Factorization 

 W = R2F3 S3P 

SVD 

 W = U Λ V  Λ must be rank 3 

 W’ = (U Λ 1/2)(Λ1/2 V)  = U’ V’ 

Make R orthogonal 

 R = QU’ ,  S = Q-1V’ 

 if
TQTQif = 1 … 

From  Szeliski, Computer Vision: Algorithms and Applications 

 

Results  

• Look at paper figures… 
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Bundle Adjustment 

• What makes this non-linear minimization hard? 

– many more parameters: potentially slow 

– poorer conditioning (high correlation) 

– potentially lots of outliers 

– gauge (coordinate) freedom 

From  Szeliski, Computer Vision: Algorithms and Applications 
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