

Veek	Date	Lecture (W: 12:05-1:50, 50-N202)
1	27-Jul	Introduction
2	3-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)
3	10-Aug	Robot Kinematics Review (& Ekka Day)
4	17-Aug	Robot Inverse Kinematics & Kinetics
5	24-Aug	Robot Dynamics (Jacobeans)
6	31-Aug	Robot Sensing: Perception & Linear Observers
7	7-Sep	Robot Sensing: Multiple View Geometry & Feature Detection
8	14-Sep	Probabilistic Robotics: Localization
9	21-Sep	Probabilistic Robotics: SLAM
	28-Sep	Study break
10	5-Oct	Motion Planning
1	12-Oct	State-Space Modelling
12	19-Oct	Shaping the Dynamic Response

Calibration matrix

- Is this form of K good enough?
- non-square pixels (digital video)
- skew
- radial distortion

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = \mathbf{K} \mathbf{X}_c$$
$$\begin{bmatrix} fa & s & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{K}$$
From Szeliski, *Computer Vision: Algorithms and Applications*

Calibration

See: Camera Calibration Toolbox for Matlab (http://www.vision.caltech.edu/bouguetj/calib_doc/)

• Intrinsic: Internal Parameters

- **Focal length:** The focal length in pixels.
- Principal point: The principal point
- Skew coefficient:
 - The skew coefficient defining the angle between the x and y pixel axes.
- **Distortions:** The image distortion coefficients (radial and tangential distortions) (typically two quadratic functions)
- Extrinsics: Where the Camera (image plane) is placed:
 - Rotations: A set of 3x3 rotation matrices for each image
 - Translations: A set of 3x1 translation vectors for each image

METR 4202: Robotics

Camera calibration

- Determine camera parameters from known 3D points or calibration object(s)
- internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
- external or extrinsic (pose) parameters: where is the camera?

Subtractive (CMYK) & Uniform (L*ab) Color Spaces					
 C = W - R M = W - G Y = W - B 	• A Uniform color space is one in which the distance in coordinate space is a fair guide to the significance of the difference between the two colors				
• $K = -W \odot$	 Start with RGB → CIE XYZ (Under <u>Illuminant D65</u>) 				
	$L^{\star} = 116(Y/Y_n)^{(1/3)} - 16$ $a^{\star} = 500 \left[(X/X_n)^{(1/3)} - (Y/Y_n)^{(1/3)} \right]$ $b^{\star} = 200 \left[(Y/Y_n)^{(1/3)} - (Z/Z_n)^{(1/3)} \right]$				
METR 4202: Robotics	September 7, 2016-23				

Edge Detection

METR 4202: Robotics

- Laplacian of Gaussian
 - Gaussian (Low Pass filter)
 - Laplacian (Gradient)

- Prewitt
 - Discrete differentiation
 - Convolution

 $\mathbf{G}_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix} \ast \mathbf{A} \qquad \mathbf{G}_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix} \ast \mathbf{A}$

September 7, 2016-28

Hough Transform: Algorithm

1. Quantize the parameter space appropriately.

2. Assume that each cell in the parameter space is an accumulator. Initialize all cells to zero.

3. For each point (x,y) in the (visual & range) image space, increment by 1 each of the accumulators that satisfy the equation.

2 September 2015 - 40

4. Maxima in the accumulator array correspond to the parameters of model instances.

METR 4202: Robotics

Multiple View Geometry

Image Formation – Single View Geometry [II]→ Camera Projection Matrix
$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \\ \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \\ 2 \\ \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \\ \end{pmatrix}$$
• $x = Image point$ • $x = Image point$ • $X = World point$ • $K = Camera Calibration Matrix$ $K = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \\ \end{bmatrix}$ • Respective Camera as:
where: P is 3×4 and of rank 3 $P = K[R | t]$

2-D Transformations

 \Rightarrow x' = point in the **new** (or 2nd) image

 \rightarrow x = point in the old image

• '	Translation	x' =	= x + t
-----	-------------	------	---------

- Rotation x' = R x + t
- Similarity x' = sR x + t
- Affine x' = A x
- Projective x' = A x

here, x is an inhomogeneous pt (2-vector)

x' is a homogeneous point

METR 4202: Robotics

2-E	2-D Transformations					
	Name	Matrix	# D.O.F.	Preserves:	Icon	
	translation	$\left[egin{array}{c c} I & t \end{array} ight]_{2 imes 3}$	2	orientation $+\cdots$		
	rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond	
	similarity	$\left[\begin{array}{c c} sR & t \end{array} \right]_{2 \times 3}$	4	angles $+\cdots$	\diamond	
	affine	$\left[egin{array}{c} A \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	\square	
	projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines		
METR 4202: Robotics 2 September 2015-53						

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$\left[egin{array}{c c} I & t \end{array} ight]_{3 imes 4}$	3	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{3 imes 4}$	6	lengths $+\cdots$	\diamondsuit
similarity	$\left[\left. sR \left t \right. \right]_{3 imes 4} ight. ight.$	7	angles $+\cdots$	\diamondsuit
affine	$\begin{bmatrix} A \end{bmatrix}_{3 imes 4}$	12	parallelism $+\cdots$	\square
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{4 imes 4}$	15	straight lines	

Properties of Projection	
 Preserves Lines and conics Incidence Invariants (cross-ratio) 	
 Does not preserve Lengths Angles Parallelism 	
METR 4202: Robotics 2 Septemb	

Fundamental matrix

- Camera calibrations are unknown
- x' F x = 0 with F = $[e] \times H = K'[t] \times R K-1$
- Solve for F using least squares (SVD) - re-scale (xi, xi') so that |xi|≈1/2 [Hartley]
- e (epipole) is still the least singular vector of F
- H obtained from the other two s.v.s
- "plane + parallax" (projective) reconstruction
- use self-calibration to determine K [Pollefeys]

Stereo: epipolar geometry for two images (or images with collinear camera centers), can find epipolar lines epipolar lines are the projection of the pencil of planes passing through the centers Rectification: warping the input images (perspective transformation) so that epipolar lines are horizontal

• The fundamental matrix is the algebraic representation of epipolar geometry.

Η	low to get Matching Points? Features					
•	Colour					
•	• Corners					
•	• Edges					
•	Lines					
•	Statistics on Edges: SIFT, SURF, ORB					
	In OpenCV: The following detector types are supported:					
	 FAS1 - FastreatureDetector "STAR" - StarFeatureDetector 					
	 STAR - Star eathered etcol "SIFT" - SIFT (nonfree module) 					
	 "SURF" – SURF (nonfree module) 					
	– "ORB" – ORB					
	– "BRISK" – BRISK					
	– "MSER" – MSER					
	 "GFTT" – GoodFeaturesToTrackDetector 					
	 "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled 					
	 "Dense" – DenseFeatureDetector 					
	 "SimpleBlob" – SimpleBlobDetector 					
	METR 4202: Robotics	2 September 2015 -86				

Structure [from] Motion

- Given a set of feature tracks, estimate the 3D structure and 3D (camera) motion.
- Assumption: orthographic projection
- Tracks: (u_{fp}, v_{fp}) , f: frame, p: point
- Subtract out mean 2D position...

 \mathbf{i}_{f} : rotation, \mathbf{s}_{p} : position

$$u_{fp} = i_f^T s_p, v_{fp} = j_f^T s_p$$

From Szeliski, <u>Computer Vision: Algorithms and Applications</u> METR 4202: Robotics

Measurement equations • Measurement equations $u_{fp} = i_f^T s_p$ i_f : rotation, s_p : position $v_{fp} = j_f^T s_p$ • Stack them up... W = R S $R = (i_1, ..., i_F, j_1, ..., j_F)^T$ $S = (s_1, ..., s_P)$ From Szeliski, Computer Vision: Algorithms and Applications $W \equiv R 2$ $K \equiv (x_1, ..., x_P)$

- many more parameters: potentially slow
- poorer conditioning (high correlation)
- potentially lots of outliers
- gauge (coordinate) freedom

$$\hat{u}_{ij} = f(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

$$\hat{v}_{ij} = g(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

2 September 2015 - 94

From Szeliski, <u>Computer Vision: Algorithms and Applications</u> METR 4202: Robotics

