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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 
1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 
(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 

4 17-Aug Robot Inverse Kinematics & Kinetics 
5 24-Aug Robot Dynamics (Jacobeans) 
6 31-Aug Robot Sensing: Perception & Linear Observers 
7 7-Sep Robot Sensing: Multiple View Geometry & Feature Detection 
8 14-Sep Probabilistic Robotics: Localization 
9 21-Sep Probabilistic Robotics: SLAM 
  28-Sep Study break 

10 5-Oct Motion Planning 
11 12-Oct State-Space Modelling 
12 19-Oct Shaping the Dynamic Response 
13 26-Oct LQR + Course Review 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Course Organization 
 

Computational Geometry 

Stochastic  
Processes 

(State Space) 
Control 

Systems 

Kinematics 

Vision 

Motion 
Planning 

Machine 
Learning 

Estimation 
(EKF)  

Design 

 

Follow Along Reading: 

Robotics, Vision & Control  
by Peter Corke  
 
Also online:SpringerLink 
 
UQ Library eBook: 
364220144X   

  Representing Space  
• RVC 

– Chapter 7: Robot Arm Kinematics 
–  

 

• Inverse Kinematics 
– RVC 

§7.3: Robot Arm Kinematics 

Today 

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
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Reference Material 

Online: 

http://ruina.tam.cornell.edu/Book/

RuinaPratap1-15-13.pdf  

 

Inverse  
Kinematics 

 
 

 

http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
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Inverse Kinematics [More Generally] 
• Freudenstein (1973) referred to the inverse kinematics problem of the most 

general 6R manipulator as the “Mount Everest” of kinematic problems. 
 

• Tsai and Morgan (1985) and Primrose (1986) proved that this has at most 16 real 
solutions. 

  
• Duffy and Crane (1980) derived a closed-form solution for the general 7R single-

loop spatial mechanism.  
– The solution was obtained in the form of a 16 x 16 delerminant in which every element is a 

second-degree polynomial in one joint variable. The determinant, when expended, should 
yield a 32nd-degree polynomial equation and hence confirms the upper limit predicted by 
Roth et al. (1973). 

  
• Tsai and Morgan (1985) used the homotopy continuation method to solve the 

inverse kinematics of the general 6R manipulator and found only 16 solutions 
 
• Raghavan and Roth (1989, 1990) used the dyalitic elimination method to derive a 

16th-degree polynomial for the general 6R inverse kinematics problem.  

 

Example: FK/IK of a 3R Planar Arm 

• Derived from Tsai (p. 63) 
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Example: 3R Planar Arm [2] 
Position Analysis: 3·Planar 1-R Arm rotating about Z  [Ⓩ] 

0
𝐴3 =

0
𝐴1 ∙1 𝐴2 ∙2 𝐴3 

 
Substituting gives: 
 

 

Example: 3R Planar Arm [2] 
Forward Kinematics  
(solve for x given θ  x = f (θ)) 
 
Fairly straight forward: 
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Example: 3R Planar Arm [3] 
Inverse Kinematics  
(solve for θ given x  x = f (θ)) 
 
• Start with orientation φ: 
𝐶𝜃123 = 𝐶𝜙,  𝑆𝜃123 = 𝑆𝜙 
⇒ 𝜃123 =  𝜃1 + 𝜃2 + 𝜃3 = 𝜙 
 
• Get overall position 𝒒 = [𝑞𝑥 𝑞𝑦]: 
𝑞𝑥 − 𝑎3𝐶𝜙 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12  
𝑞𝑦 − 𝑎3𝑆𝜙 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12 … 
 
 
 

 

Example: 3R Planar Arm [4] 
• Introduce 𝒑 = 𝑝𝑥 𝑝𝑦  before “wrist” 
𝑝𝑥 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12, 𝑝𝑦 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12  
⇒ 𝑝𝑥

2 + 𝑝𝑦
2 = 𝑎1

2 + 𝑎2
2 + 2𝑎1𝑎2𝐶𝜃2 

• Solve for θ2: 

𝜃2 = cos−1 𝜅, 𝜅 =
𝑝𝑥

2+𝑝𝑦
2−𝑎1

2−𝑎2
2

2𝑎1𝑎2
  (2 ℝ roots if |κ|<1) 

• Solve for θ1: 

𝐶𝜃1 =
𝑝𝑥 𝑎1+𝑎2𝐶𝜃2 +𝑝𝑦𝑎2𝑆𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
, 𝑆𝜃1 =

−𝑝𝑥𝑎2𝑆𝜃2+𝑝𝑦 𝑎1+𝑎2𝐶𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑆𝜃1, 𝐶𝜃1) 
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Inverse Kinematics: Example I 
Planar Manipulator: 

 

Inverse Kinematics: Example I 
• Forward Kinematics: 
[For the Frame {Q} at the end effector]: 

 
 

 
∵ 
 
• For an arbitrary point G in the end effector: 
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Inverse Kinematics: Example I 
• Forward Kinematics: 
[For the Frame {Q} at the end effector]: 

 
 

 
∵ 
 
• For an arbitrary point G in the end effector: 
 

 

 

Inverse Kinematics: Example I 
• Inverse Kinematics: 

– Set the final position equal to the  
Forward Transformation Matrix 0A3: 
 
 
 
 

• The solution strategy is to equate the elements of 0A3 to 
that of the given position (qx, qy) and orientation ϕ  
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Inverse Kinematics: Example I 
• Orientation (ϕ): 

 
 
 

• Now Position of the 2DOF point P: 
 
 

∴ 
• Substitute: θ3 disappears and now we can eliminate θ1: 

 

 

Inverse Kinematics: Example I 
• we can eliminate θ1… 

 
• Then solve for θ12:  

 
 
– This gives 2 real (ℝ) roots if |𝜅| < 1 
– One double root if |𝜅| = 1 
– No real roots if |𝜅| >1 

• Elbow up/down: 
– In general, if θ2 is a solution  

then -θ2 is a solution 
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Inverse Kinematics: Example I 
• Solving for θ1… 

– Corresponding to each θ2, we can solve θ1 
 
 
 
 
 

 

Inverse Kinematics: Example II 
Elbow Manipulator: 
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Inverse Kinematics: Example II 
• Target Position: 

 
 

• Transformation Matrices: 
 

 

Inverse Kinematics: Example II 
• Key Matrix Products: 
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Inverse Kinematics: Example II 
• Inverse Kinematics: 
 

 

Inverse Kinematics: Example II 
• Solving the System: 
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Advanced Concept: Tendon-Driven Manipulators 

• Tendons may be modelled as a 
transmission line  

• in which the links are labeled 
sequentially from 0 to n and the 
pulleys are labeled from j to j + n -1 

• Let θji denote the angular 
displacement of link j with respect 
to link i.  

• We can write a circuit equation  
once for each pulley pair as follows: 

 
  

Inverse Kinematics 
• What about a more complicated mechanism? 

 
» A sufficient condition for a serial manipulator to 

yield a closed-form inverse kinematics solution is to 
have any three consecutive joint axes intersecting at 
a common point or any three consecutive joint axes 
parallel to each other. (Pieper and Roth (1969) via 
4×4 matrix method) 
 

» Raghavan and Roth 1990  
“Kinematic Analysis of the 6R Manipulator of 
General Geometry”  
 

» Tsai and Morgan 1985, “Solving the Kinematics of 
the Most General Six  and Five-Dcgree-of-Freedom 
Manipulators by Continuation Methods”   
(posted online) 
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Inverse Kinematics 
• What about a more complicated mechanism? 

 

Symmetrical Parallel Manipulator 
A sub-class of Parallel Manipulator: 

o # Limbs (m) = # DOF (F) 
o The joints are arranged in an identical pattern 
o The # and location of actuated joints are the same  

 
Thus: 

o Number of Loops (L): One less than # of limbs 
 
 

o Connectivity (Ck) 
 
 
 

Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 
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Mobile Platforms 
• The preceding kinematic relationships are also important 

in mobile applications 
 

• When we have sensors mounted on a platform, we need 
the ability to translate from the sensor frame into some 
world frame in which the vehicle is operating 
 

• Should we just treat this as a P(*) mechanism? 
 

 

Mobile Platforms [2] 

• We typically assign a frame to 
the base of the vehicle 

• Additional frames are assigned 
to the sensors 

• We will develop these 
techniques in coming lectures 
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Summary 
• Many ways to view a rotation 

– Rotation matrix 
– Euler angles 
– Quaternions 
– Direction Cosines 
– Screw Vectors 

 
• Homogenous transformations  

– Based on homogeneous coordinates 
 

 

Generalizing 
Special Orthogonal & Special Euclidean Lie Algebras 
• SO(n):  Rotations 

 
 
 

• SE(n): Transformations of EUCLIDEAN space 
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Projective Transformations … 

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 

Homogenous Coordinates 

• ρ is a scaling value 
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Homogenous Transformation ✯ 

  
 
•  γ is a projective transformation 
• The Homogenous Transformation is a linear operation  

(even if projection is not) 

 

Projective Transformations &  
Other Transformations of 3D Space 

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 
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Coordinate Transformations [1] 
• Translation Again: 
 If {B} is translated with respect to {A} without rotation, then it is a 

vector sum 

{A} 

XA 

YA 

ZA 

{B} 

XB 

YB 

ZB 

AP 

APB 

BP 

 

Coordinate Transformations [2] 
• Rotation Again: 
 {B} is rotated with respect to {A}  then  

use rotation matrix to determine new components 
 
 
• NOTE: 

– The Rotation matrix’s subscript 
matches the position vector’s 
superscript 
 
 
 

– This gives Point Positions of {B} ORIENTED in {A} 

{A} 

XA 

YA 

ZA 

BP 
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Coordinate Transformations [3] 
• Composite transformation: 
 {B} is moved with respect to {A}: 

{A} 

XA 

YA 

ZA 
AP 

APB 

BP 

 

General Coordinate Transformations [1] 
• A compact representation of the translation and rotation is known as the 

Homogeneous Transformation 
 
 
 
 
 

• This allows us to cast the rotation and translation of the general transform 
in a single matrix form 
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General Coordinate Transformations [2] 
• Similarly, fundamental orthonormal transformations can be represented in 

this form too: 

 

General Coordinate Transformations [3] ✯ 
• Multiple transformations compounded as a chain 

{A} 

XA 

YA 

ZA 
AP 

APB 

CP 

BPC 
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Inverse of a Homogeneous Transformation Matrix 

• The inverse of the transform is not equal to its transpose 
because this 4×4 matrix is not orthonormal (𝑇−1 ≠ 𝑇𝑇) 

•  Invert by parts to give: 
 

 

Tutorial Problem ✍ 
The origin of frame {B}  is translated  
to a position [0 3 1]  
with respect to frame {A}.  
 
We would like to find: 
1. The homogeneous transformation between the two 

frames in the figure. 
2. For a point P defined as as [0 1 1] in frame {B}, we 

would like to find the vector describing this point with 
respect to frame {A}. 
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Tutorial Solution ✔ 
• The matrix 𝑇𝐵

𝐴 is formed as defined earlier: 
 
 
 

• Since P in the frame is:  
 
• We find vector p in frame {A} using the relationship 

 
 

 

 

Cool Robotics Share 
 

 

file:///D:/Temp/Cool Robotics Share/Inside Bot and Dolly-276830823-720p.mp4
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Robot Dynamics 
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Angular Velocity 
• If we look at a small timeslice as a frame rotates with a moving point, we 

find 
AΩB 

ΔP ΩΔt 

{B} 

P(t) 
P(t+Δt) 

θ 

|P|sinq 

 

Velocity 
• Recall that we can specify a point in one frame relative to 

another as 
 

• Differentiating w/r/t to t we find 
 
 
 

• This can be rewritten as  
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Skew – Symmetric Matrix 
 

 

Velocity Representations 
• Euler Angles 

– For Z-Y-X  (α,β,γ): 
 
 

 
 

•  Quaternions 
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Manipulator Velocities 

• Consider again the schematic of the planar 
manipulator shown.  We found that the end 
effector position is given by 
 
 
 

• Differentiating w/r/t to t  
 
 
 
 
 

• This gives the end effector velocity  
as a function of pose and joint velocities 

θ1 

θ2 

θ3 

v 

Manipulator Velocities [2]  ✯ 

• Rearranging, we can recast this relation in 
matrix form 
 
 
 

• Or 
 
 
 
 

• The resulting matrix is called the Jacobian 
and provides us with a mapping from 
Joint Space to Cartesian Space.   

θ1 

θ2 

θ3 

v 
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Moving On…Differential Motion 
• Transformations also encode differential relationships 
• Consider a manipulator (say 2DOF, RR) 
  
  
• Differentiating with respect to the angles gives: 
 

 
 

 

Differential Motion [2] 
• Viewing this as a matrix  Jacobian  

1 1 2 2v J J  
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Infinitesimal Rotations 
•   

 
 
 
 
 
 
 

•  Note that: 
 
 
 Therefore … they commute 

 
 

       x y y xR d R d R d R d   

 

Summary 
• Many ways to handle motion 

– Direct Kinematics 
– Dynamics 

 
 

• Homogenous transformations  
– Based on homogeneous coordinates 

 

 


