

Week	Date	Lecture (W: 12:05-1:50, 50-N202)			
1	27-Jul	Introduction			
2	3-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)			
3	10-Aug	Robot Kinematics Review (& Ekka Day)			
4	17-Aug	Robot Inverse Kinematics & Kinetics			
5	24-Aug	Robot Dynamics (Jacobeans)			
6	31-Aug	Robot Sensing: Perception & Linear Observers			
7	7-Sep	Robot Sensing: Multiple View Geometry & Feature Detection			
8	14-Sep	Probabilistic Robotics: Localization			
9	21-Sep	Probabilistic Robotics: SLAM			
	28-Sep	Study break			
10	5-Oct	Motion Planning			
11	12-Oct	State-Space Modelling			
12	19-Oct	Shaping the Dynamic Response			
10	26 Oct	I OR + Course Review			

Example: 3R Planar Arm [4]
• Introduce
$$p = [p_x \quad p_y]$$
 before "wrist"
 $p_x = a_1 C \theta_1 + a_2 C \theta_{12}, p_y = a_1 S \theta_1 + a_2 S \theta_{12}$
 $\Rightarrow p_x^2 + p_y^2 = a_1^2 + a_2^2 + 2a_1 a_2 C \theta_2$
• Solve for θ_2 :
 $\theta_2 = \cos^{-1} \kappa, \kappa = \frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1 a_2}$ (2 \mathbb{R} roots if $|\kappa| < 1$)
• Solve for θ_1 :
 $C \theta_1 = \frac{p_x(a_1 + a_2 C \theta_2) + p_y a_2 S \theta_2}{a_1^2 + a_2^2 + 2a_1 a_2 C \theta_2}, S \theta_1 = \frac{-p_x a_2 S \theta_2 + p_y(a_1 + a_2 C \theta_2)}{a_1^2 + a_2^2 + 2a_1 a_2 C \theta_2}$
 $\theta_1 = atan 2(S \theta_1, C \theta_1)$

Symmetrical Parallel Manipulator
A sub-class of Parallel Manipulator:

Limbs (m) = # DOF (F)
The joints are arranged in an identical pattern
The # and location of actuated joints are the same

Thus:

Number of Loops (L): One less than # of limbs
L = m - 1 = F - 1

Connectivity (C_k)

m C_k = (λ + 1) F - λ
k=1

Mobile Platforms

X

METR 4202: Robotics

- The preceding kinematic relationships are also important in mobile applications
- When we have sensors mounted on a platform, we need the ability to translate from the sensor frame into some world frame in which the vehicle is operating

August 17, 2016-29

• Should we just treat this as a P(*) mechanism?

- Many ways to view a rotation
 - Rotation matrix
 - Euler angles
 - Quaternions
 - Direction Cosines
 - Screw Vectors

Homogenous transformations

- Based on homogeneous coordinates

METR 4202: Robotics

Generalizing Special Orthogonal & Special Euclidean Lie Algebras • SO(n): Rotations $SO(n) = \{R \in \mathbb{R}^{n \times n} : RR^{T} = I, \det R = +1\}.$ $exp(\widehat{\omega}\theta) = e^{\widehat{\omega}\theta} = I + \theta \widehat{\omega} + \frac{\theta^{2}}{2!} \widehat{\omega}^{2} + \frac{\theta^{3}}{3!} \widehat{\omega}^{3} + ...$ • SE(n): Transformations of EUCLIDEAN space $SE(n) := \mathbb{R}^{n} \times SO(n).$ $SE(3) = \{(p, R) : p \in \mathbb{R}^{3}, R \in SO(3)\} = \mathbb{R}^{3} \times SO(3).$

August 17, 2016-31

Projective Transformations ...

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$		Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{rrrr} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area
		p.44, R	. Hartley and A. Zisserman. Multiple View Geometry in Computer
METR 4202: Rok	potics		August 17, .

Velocity

• Recall that we can specify a point in one frame relative to another as

$${}^{A}\mathbf{P} = {}^{A}\mathbf{P}_{B} + {}^{A}_{B}\mathbf{R}^{B}\mathbf{P}$$

• Differentiating w/r/t to **t** we find

$${}^{A}\mathbf{V}_{P} = \frac{d}{dt}{}^{A}\mathbf{P} = \lim_{\Delta t \to 0} \frac{{}^{A}\mathbf{P}(t + \Delta t) - {}^{A}\mathbf{P}(t)}{\Delta t}$$
$$= {}^{A}\dot{\mathbf{P}}_{B} + {}^{A}_{B}\mathbf{R}^{B}\dot{\mathbf{P}} + {}^{A}_{B}\dot{\mathbf{R}}^{B}\mathbf{P}$$

• This can be rewritten as

$${}^{A}\mathbf{V}_{P} = {}^{A}\mathbf{V}_{BORG} + {}^{A}\mathbf{R}_{B}{}^{B}\mathbf{V}_{P} + {}^{A}\boldsymbol{\Omega}_{B} \times {}^{A}\mathbf{R}_{B}{}^{B}\mathbf{P}$$

METR 4202: Robotics

August 17, 2016-51

Velocity Representations							
• Euler Angles – For Z-Y-X (α,β,γ) :							
$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{pmatrix} = \begin{pmatrix} -S\beta & 0 & 1 \\ C\beta S\gamma & C\gamma & 0 \\ C\beta C\gamma & -S\beta & 0 \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$							
• Quaternions							
$\begin{pmatrix} \dot{\varepsilon}_{0} \\ \dot{\varepsilon}_{1} \\ \dot{\varepsilon}_{2} \\ \dot{\varepsilon}_{3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \varepsilon_{1} & -\varepsilon_{2} & -\varepsilon_{3} \\ \varepsilon_{0} & \varepsilon_{3} & -\varepsilon_{2} \\ -\varepsilon_{3} & \varepsilon_{0} & \varepsilon_{1} \\ \varepsilon_{2} & -\varepsilon_{1} & \varepsilon_{0} \end{pmatrix} \begin{pmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{pmatrix}$							
METR 4202: Robotics	August 17, 2016-53						

Moving On...Differential Motion • Transformations also encode differential relationships • Consider a manipulator (say 2DOF, RR) $x(\theta_1, \theta_2) = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)$ $y(\theta_1, \theta_2) = l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)$ • Differentiating with respect to the **angles** gives: $dx = \frac{\partial x(\theta_1, \theta_2)}{\partial \theta_1} d\theta_1 + \frac{\partial x(\theta_1, \theta_2)}{\partial \theta_2} d\theta_2$ $dy = \frac{\partial y(\theta_1, \theta_2)}{\partial \theta_1} d\theta_1 + \frac{\partial y(\theta_1, \theta_2)}{\partial \theta_2} d\theta_2$ $dy = \frac{\partial y(\theta_1, \theta_2)}{\partial \theta_1} d\theta_1 + \frac{\partial y(\theta_1, \theta_2)}{\partial \theta_2} d\theta_2$

Differential Motion [2] • Viewing this as a matrix \Rightarrow Jacobian $d\mathbf{x} = Jd\theta$ $J = \begin{bmatrix} -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$ $J = \begin{bmatrix} [J_1] & [J_2] \end{bmatrix}$ $v = J_1\dot{\theta}_1 + J_2\dot{\theta}_2$

Infinitesimal Rotations

Summary Many ways to handle motion Direct Kinematics Dynamics Homogenous transformations Based on homogeneous coordinates