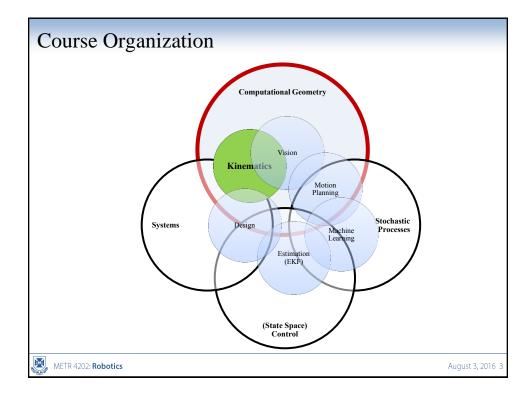
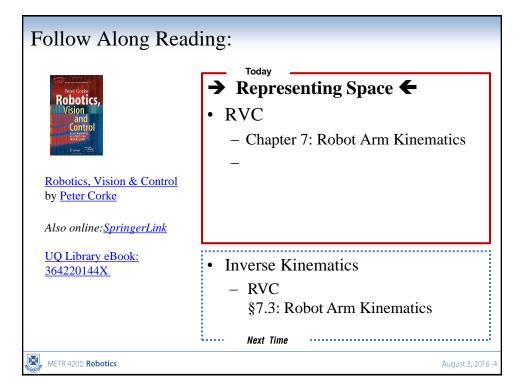


Week	Date	Lecture (W: 12:05-1:50, 50-N202)			
1		Introduction			
2	3-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)			
3	10-Aug	Robot Kinematics Review (& Ekka Day)			
4	17-Aug	Robot Dynamics			
5	24-Aug	Robot Sensing: Perception			
6	31-Aug	Robot Sensing: Multiple View Geometry			
7		Robot Sensing: Feature Detection (as Linear Observers)			
8		Probabilistic Robotics: Localization			
9	21-Sep	Probabilistic Robotics: SLAM			
	28-Sep				
10	5-Oct	Motion Planning			
11	12-Oct	State-Space Modelling			
12	19-Oct	Shaping the Dynamic Response			
13	26-Oct	LQR + Course Review			



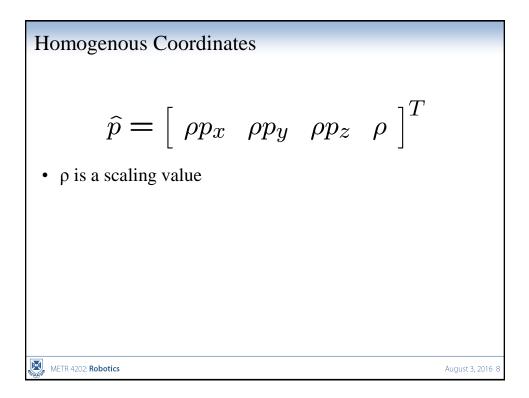


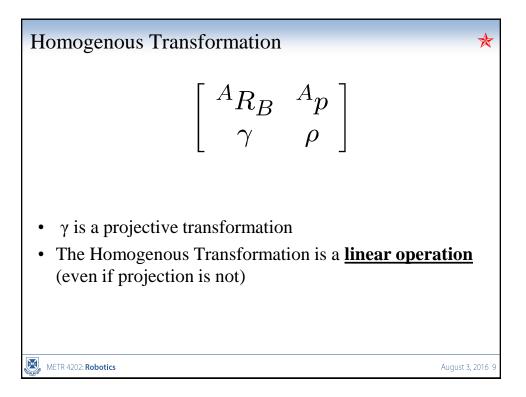


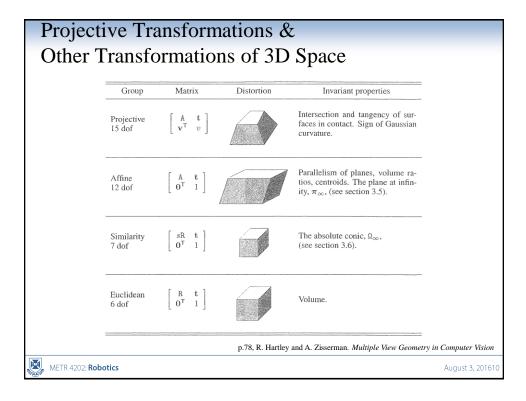
Generalizing Special Orthogonal & Special Euclidean Lie Algebras • SO(n): Rotations $SO(n) = \{R \in \mathbb{R}^{n \times n} : RR^{T} = I, \det R = +1\}.$ $exp(\widehat{\omega}\theta) = e^{\widehat{\omega}\theta} = I + \theta \widehat{\omega} + \frac{\theta^{2}}{2!} \widehat{\omega}^{2} + \frac{\theta^{3}}{3!} \widehat{\omega}^{3} + \dots$ • SE(n): Transformations of EUCLIDEAN space $SE(n) := \mathbb{R}^{n} \times SO(n).$ $SE(3) = \{(p, R) : p \in \mathbb{R}^{3}, R \in SO(3)\} = \mathbb{R}^{3} \times SO(3).$

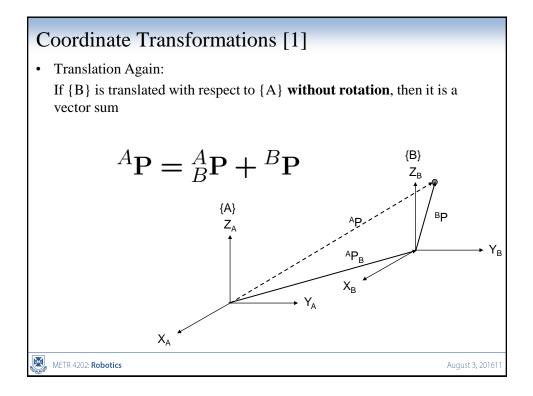
Projective Transformations ...

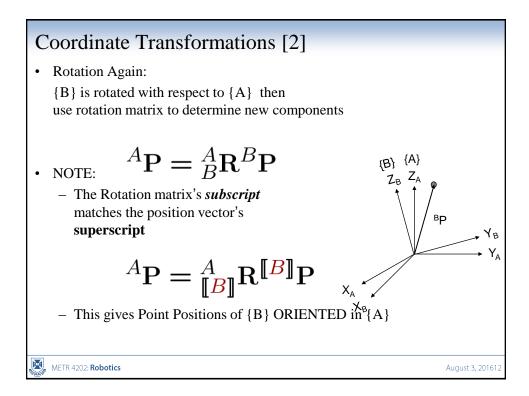
Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$		Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{rrrr} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I , J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area
		p.44, R	. Hartley and A. Zisserman. Multiple View Geometry in Computer Vi
METR 4202: Rob	ootics		August 3, 2

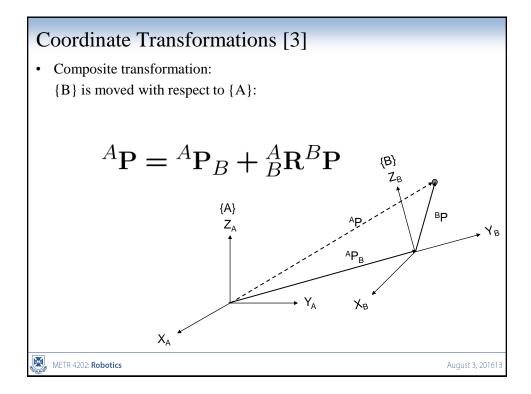












General Coordinate Transformations [1]A compact representation of the translation and rotation is known as the

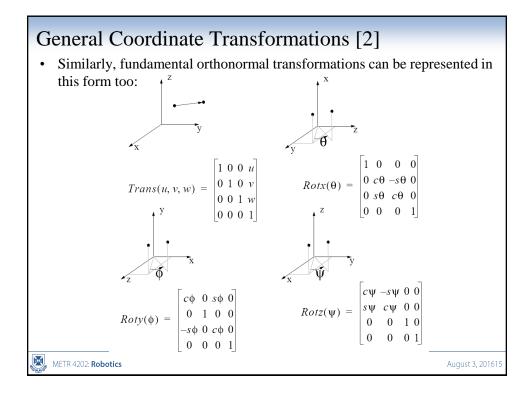
Homogeneous Transformation

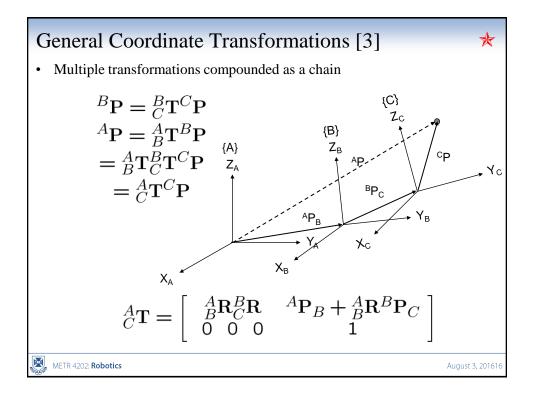
$${}^{A}_{B}\mathbf{T} = \left[\begin{array}{cc} {}^{A}_{B}\mathbf{R} & {}^{A}\mathbf{P}_{B} \\ {}^{O}_{0}\mathbf{0}\mathbf{0}\mathbf{0}\mathbf{0}\mathbf{1} \end{array} \right]$$

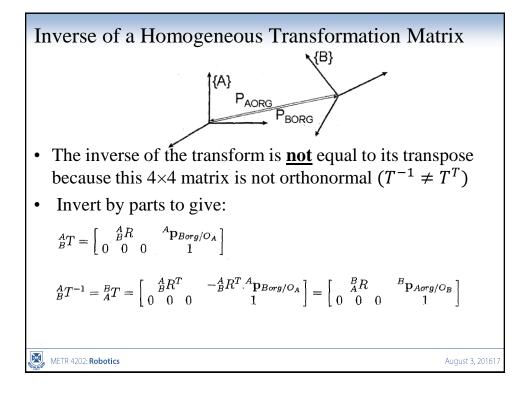
• This allows us to cast the rotation and translation of the general transform in a single matrix form

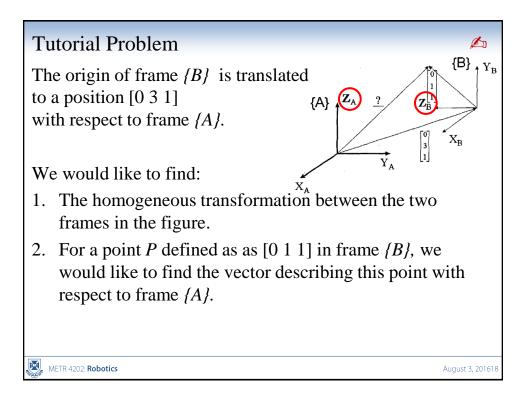
$$\begin{bmatrix} A\mathbf{P} \\ 1 \end{bmatrix} = \begin{bmatrix} A \\ B \end{bmatrix} \begin{bmatrix} B\mathbf{P} \\ 1 \end{bmatrix}$$

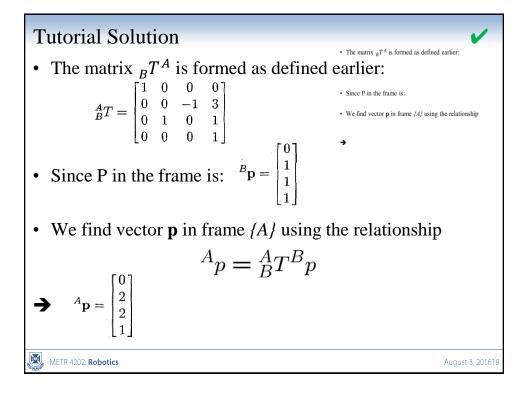
METR 4202: Robotics

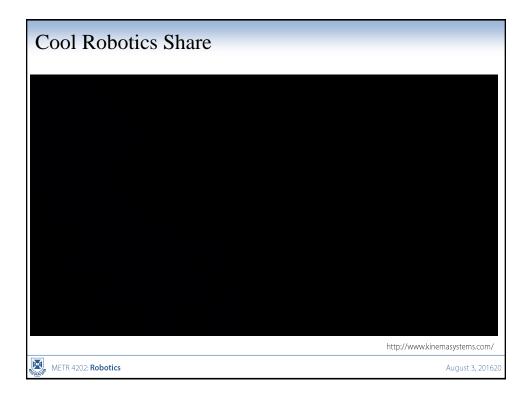












Looking in Detail: Forward & Inverse Kinematics

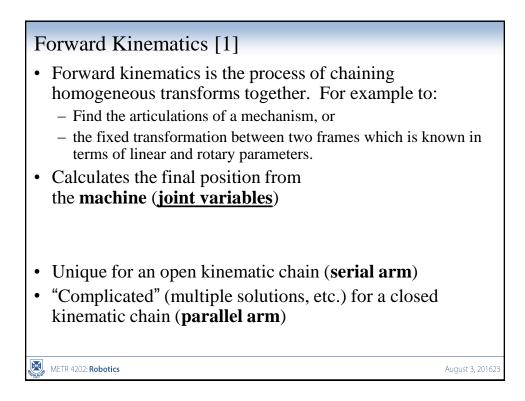
- 1. Forward Kinematics $(\theta \rightarrow x)$
- 2. Inverse Kinematics ($x \rightarrow \theta$)
- 3. Denavit Hartenberg [DH] Notation
- 4. Affine Transformations &
- 5. Theoretical (General) Kinematics

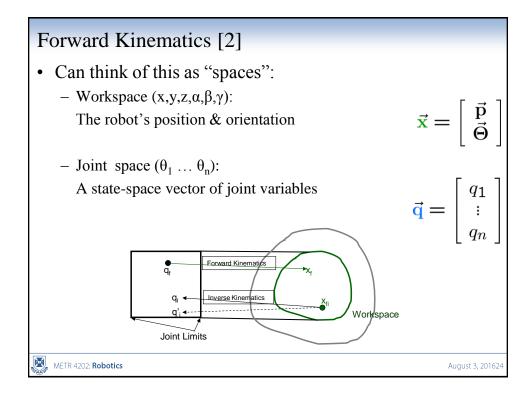
METR 4202: Robotics

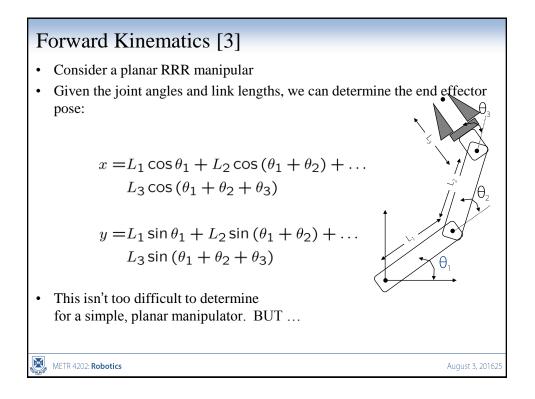
Forward Kinematics

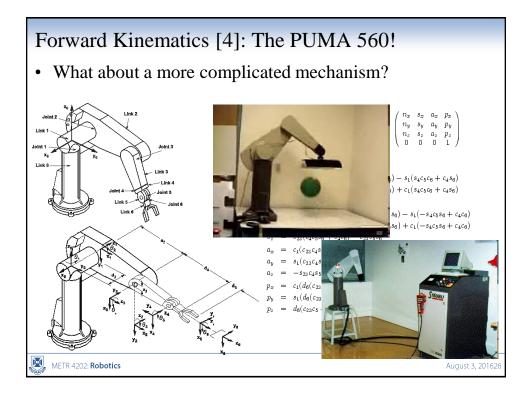
METR 4202: Robotics

August 3, 201622









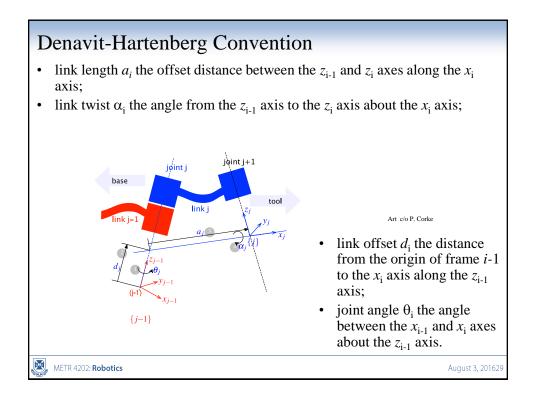
Denavit Hartenberg [DH] Notation

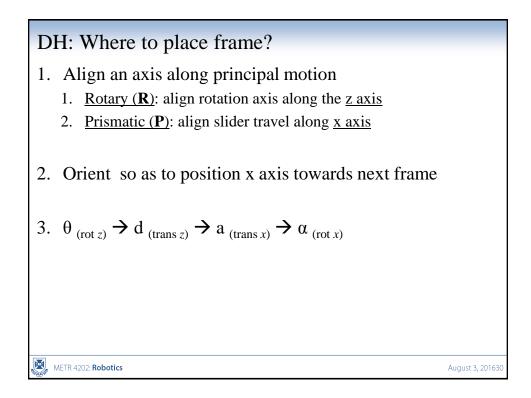
• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous transforms for articulated mechanisms

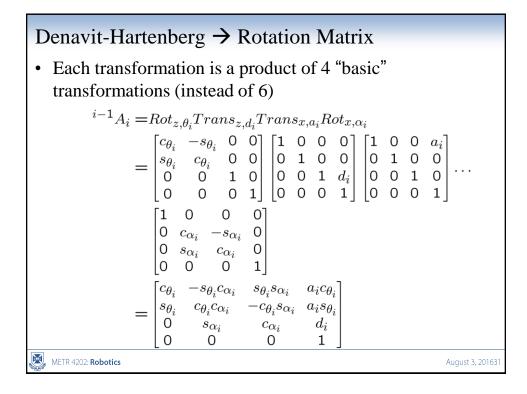
(But B. Roth, introduced it to robotics)

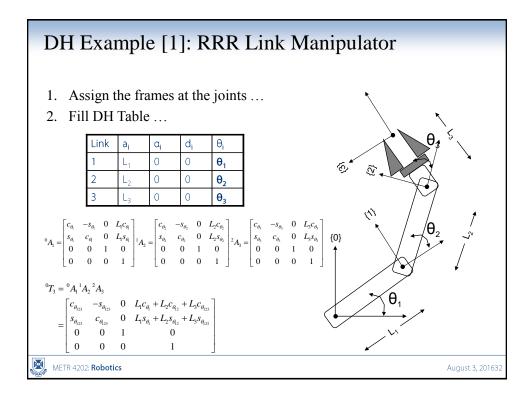
- A kinematics "short-cut" that reduced the number of parameters by adding a structure to frame selection
- For two frames positioned in space, the first can be moved into coincidence with the second by a sequence of 4 operations:
 - rotate around the x_{i-1} axis by an angle α_i
 - $\;$ translate along the $x_{i\text{-}1}$ axis by a distance a_i
 - translate along the new z axis by a distance d_i
 - rotate around the new z axis by an angle θ_i

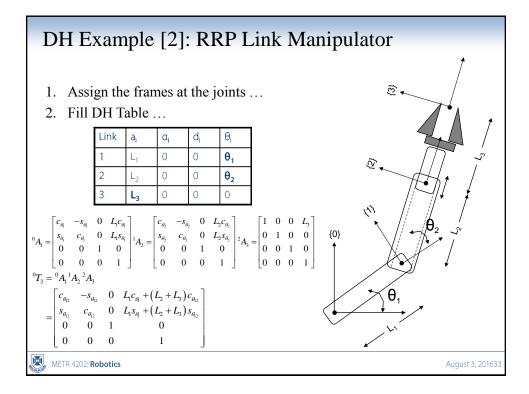
METR 4202: Robotics

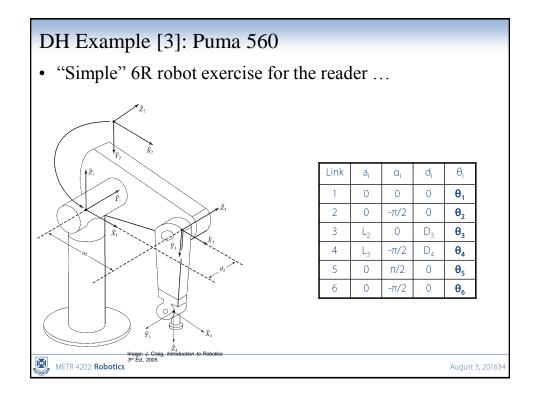


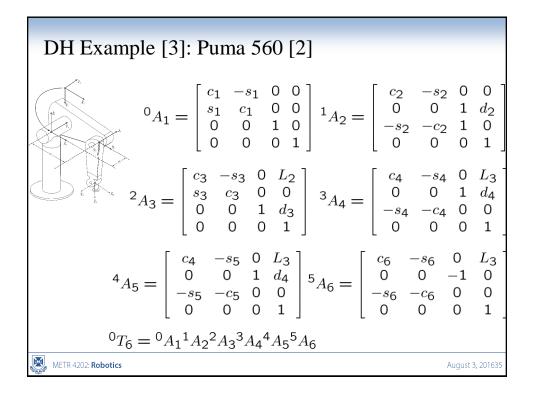


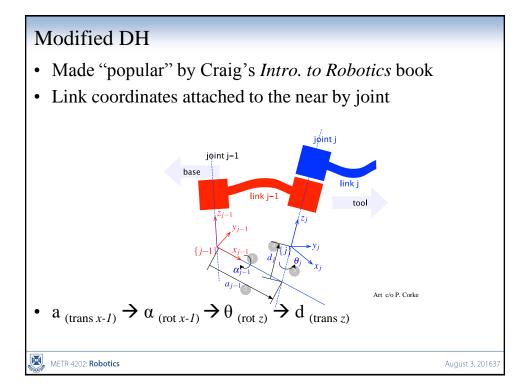


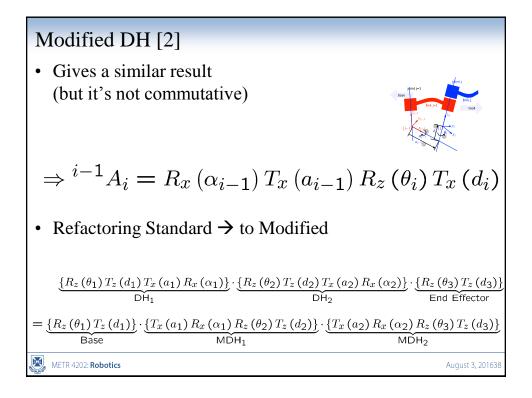


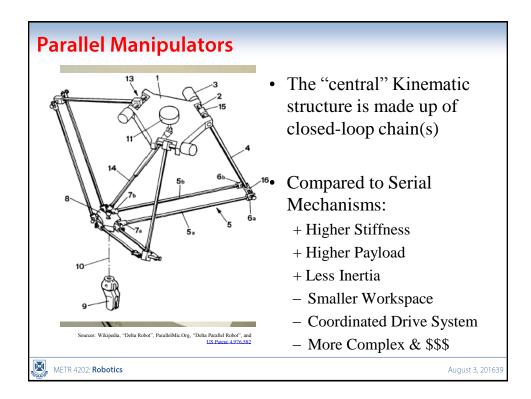


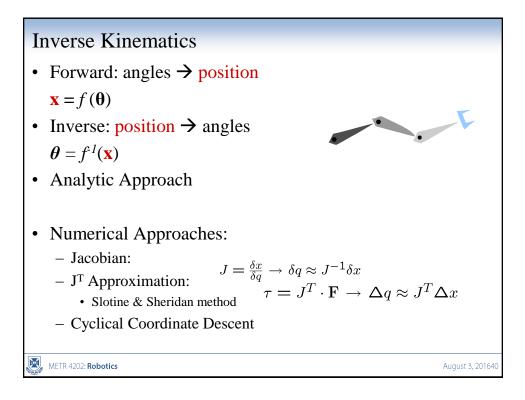








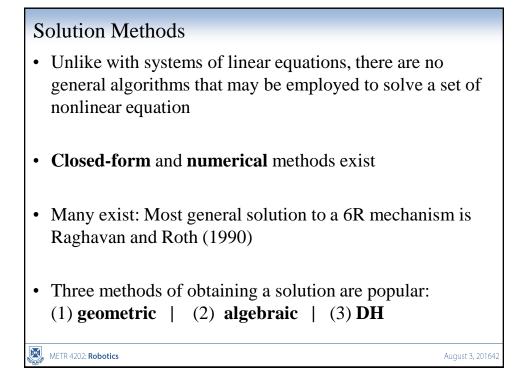


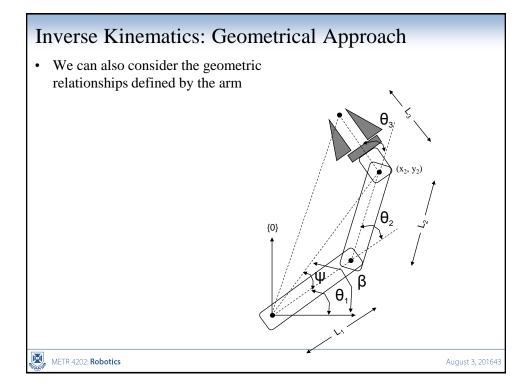


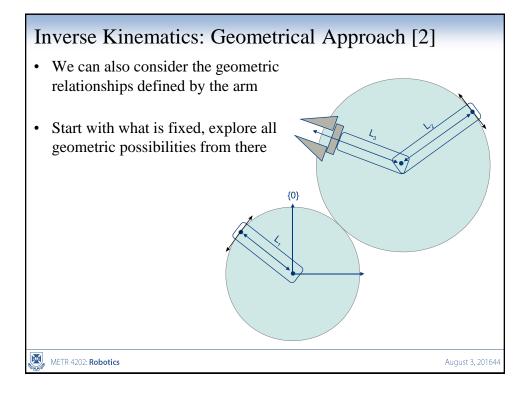
Inverse Kinematics

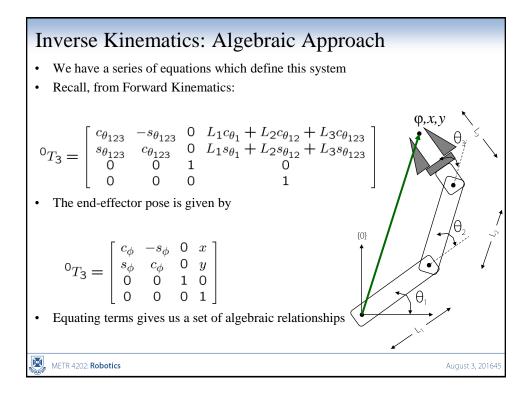
- Inverse Kinematics is the problem of finding the joint parameters given only the values of the homogeneous transforms which model the mechanism (i.e., the pose of the end effector)
- Solves the problem of where to drive the joints in order to get the hand of an arm or the foot of a leg in the right place
- In general, this involves the solution of a set of simultaneous, non-linear equations
- Hard for serial mechanisms, easy for parallel

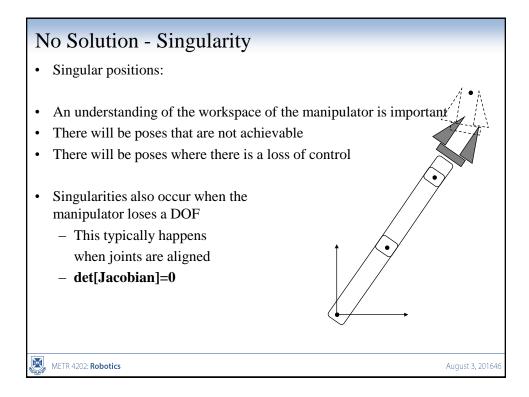
METR 4202: Robotics

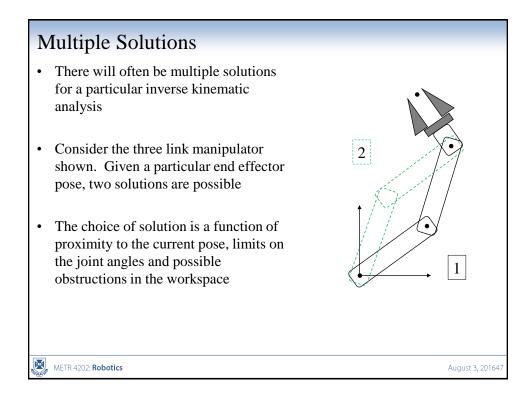


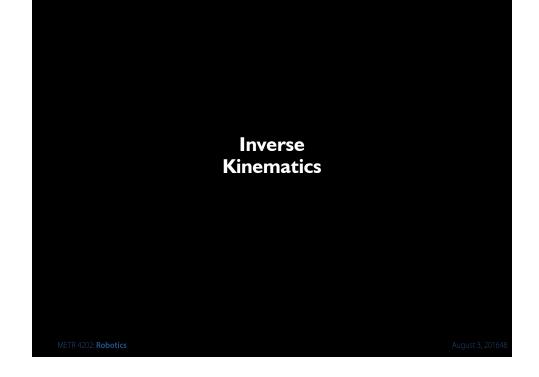


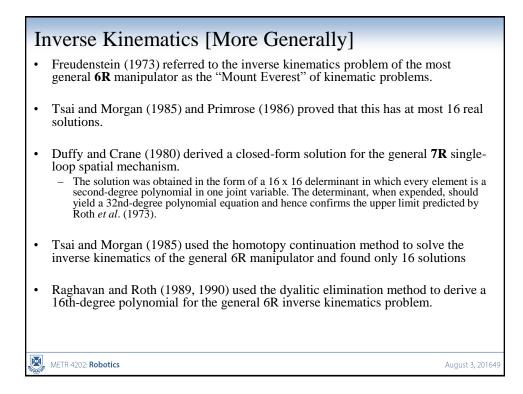


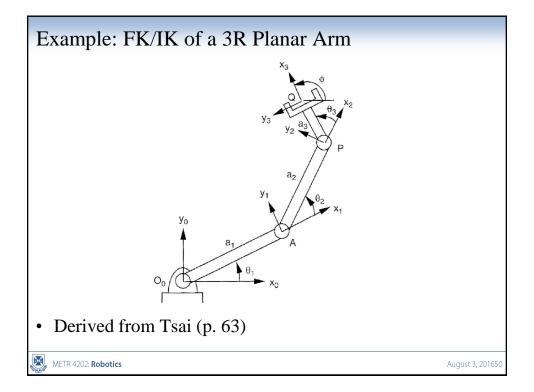




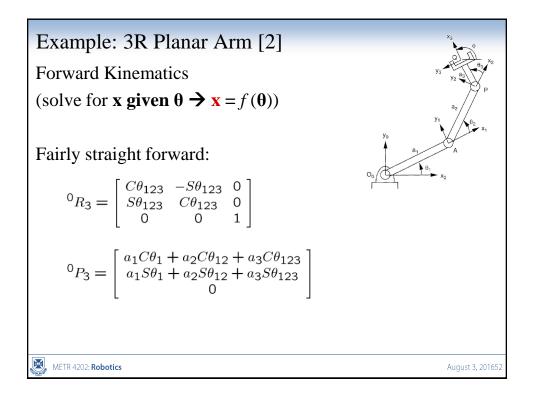


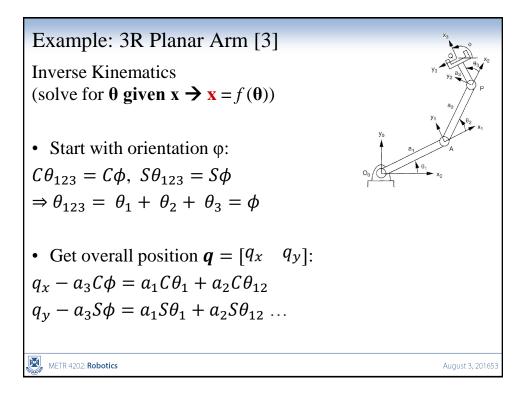


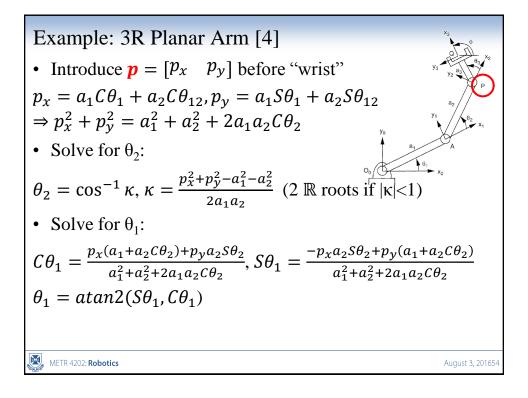


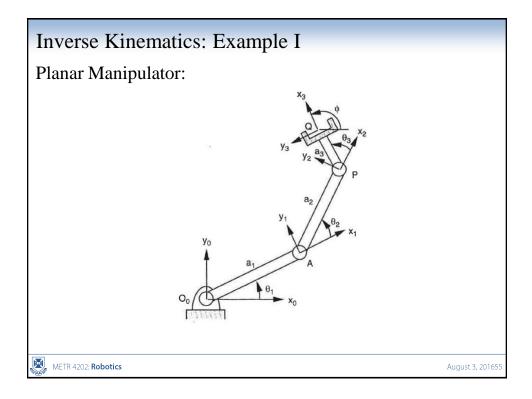


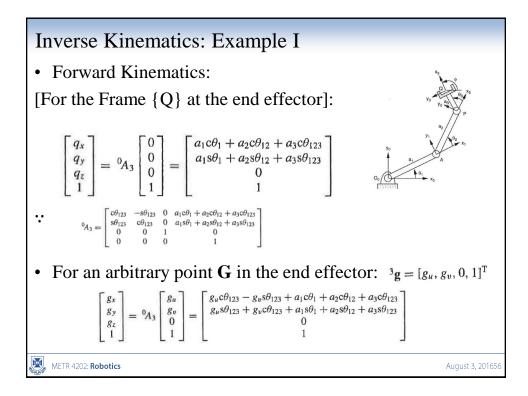
Example: 3R Planar Arm [2] Position Analysis: 3·Planar 1-R Arm rotating about Z [2] ${}^{0}A_{3} = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3}$ Substituting gives: ${}^{0}A_{3} = \begin{bmatrix} C\theta_{123} & -S\theta_{123} & 0 & a_{1}C\theta_{1} + a_{2}C\theta_{12} + a_{3}C\theta_{123} \\ S\theta_{123} & C\theta_{123} & 0 & a_{1}S\theta_{1} + a_{2}S\theta_{12} + a_{3}S\theta_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

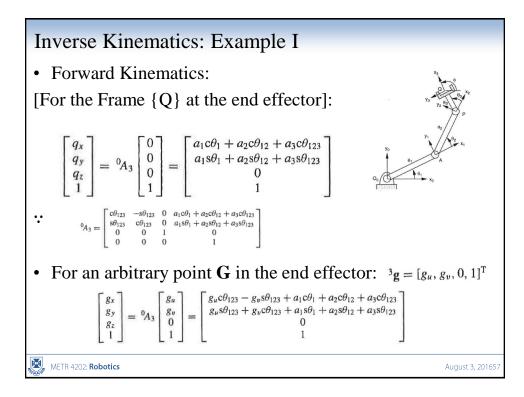


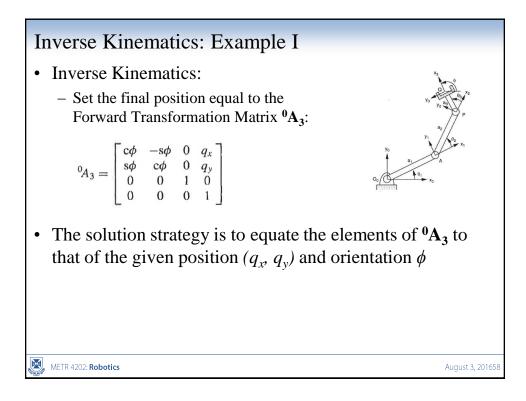


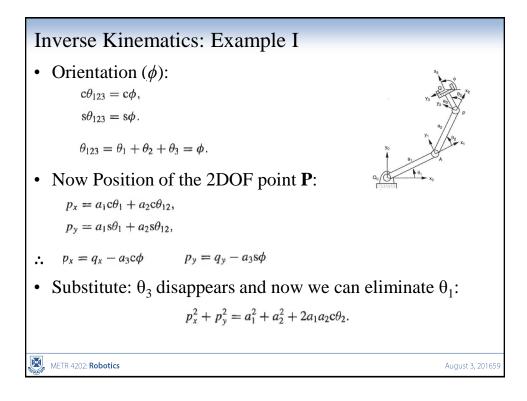


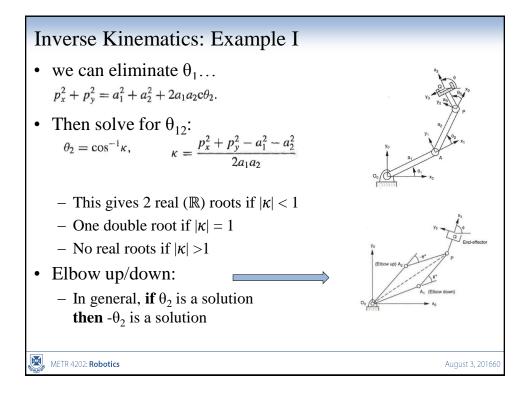


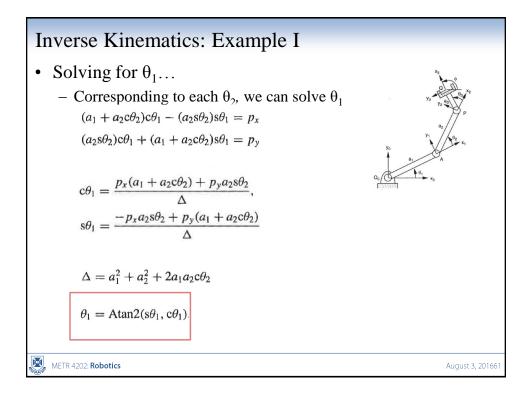


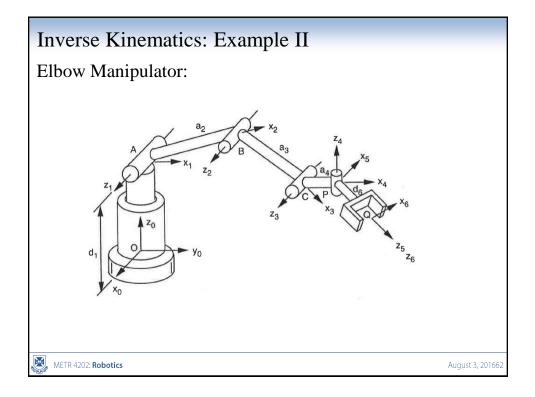


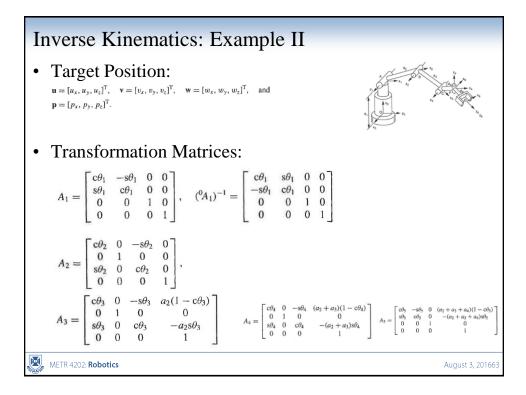


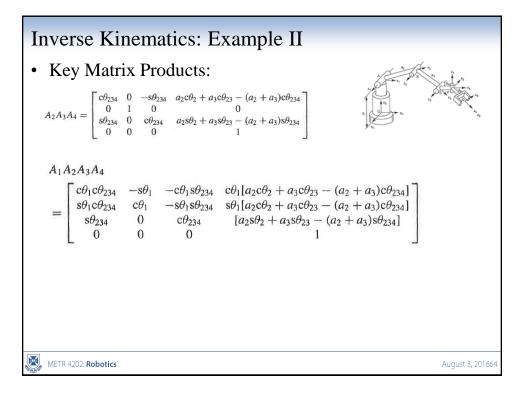


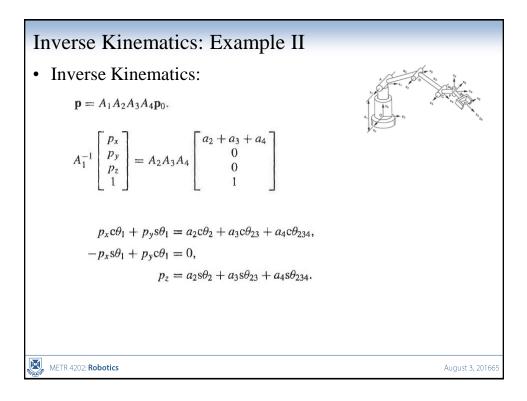


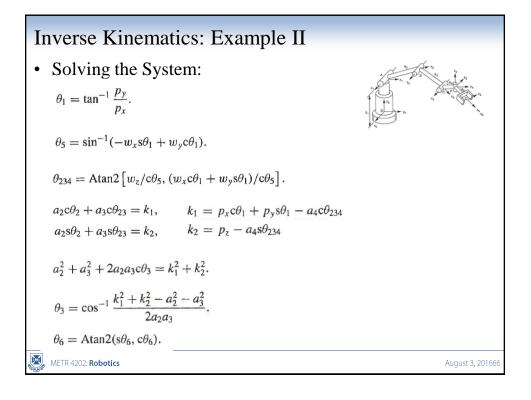


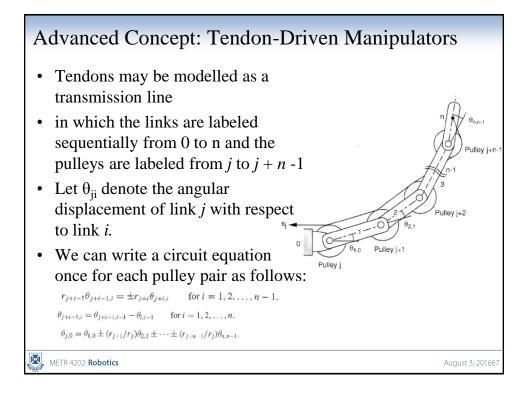




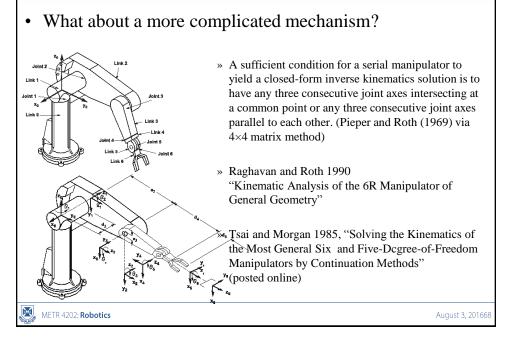


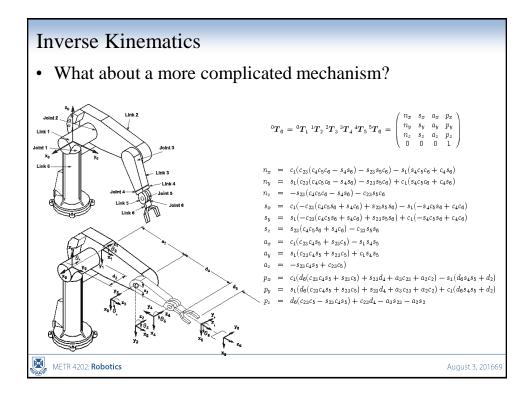


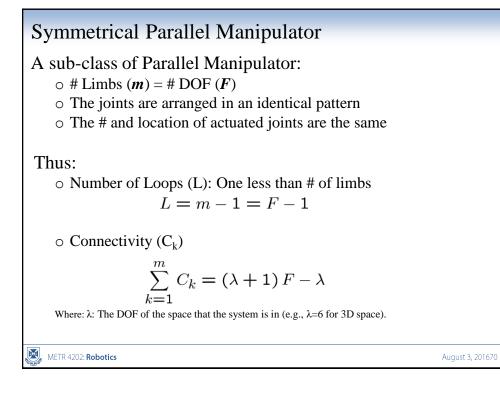




Inverse Kinematics

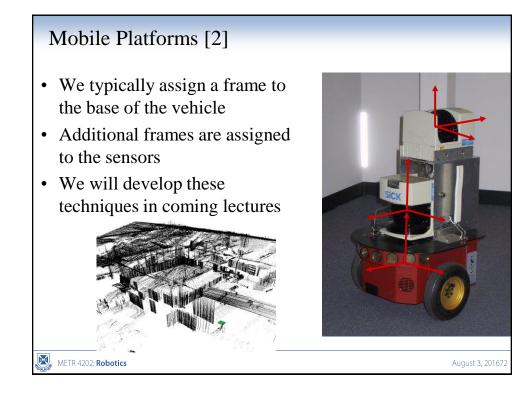






Mobile Platforms

- The preceding kinematic relationships are also important in mobile applications
- When we have sensors mounted on a platform, we need the ability to translate from the sensor frame into some world frame in which the vehicle is operating
- Should we just treat this as a P(*) mechanism?



METR 4202: Robotics August 3, 2016

Summary

- Many ways to view a rotation
 - Rotation matrix
 - Euler angles
 - Quaternions
 - Direction Cosines
 - Screw Vectors

• Homogenous transformations

- Based on homogeneous coordinates

METR 4202: Robotics

