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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 

1 27-Jul Introduction 

2 3-Aug 

Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine 

Transformations) 
3 10-Aug Robot Kinematics Review (& Ekka Day) 

4 17-Aug Robot Dynamics 

5 24-Aug Robot Sensing: Perception  

6 31-Aug Robot Sensing: Multiple View Geometry 

7 7-Sep Robot Sensing: Feature Detection (as Linear Observers) 

8 14-Sep Probabilistic Robotics: Localization 

9 21-Sep Probabilistic Robotics: SLAM 

  28-Sep Study break 

10 5-Oct Motion Planning 

11 12-Oct State-Space Modelling 

12 19-Oct Shaping the Dynamic Response 

13 26-Oct LQR + Course Review 

 

Course Organization 

 
Computational Geometry 

Stochastic  
Processes 

(State Space) 
Control 

Systems 

Kinematics 

Vision 

Motion 
Planning 

Machine 
Learning 

Estimation 
(EKF)  

Design 
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Follow Along Reading: 

Robotics, Vision & Control  

by Peter Corke  

 

Also online:SpringerLink 

 

UQ Library eBook: 

364220144X   

  Representing Position 

• RVC 

– Ch. 2: Representing Position  

& Orientation  

 

• Kinematics 

– RVC 

– Chapter 7: Robot Arm Kinematics 

Today 

Today’s Lecture is about: 

Frames & Their Mathematics 

y
pitch

roll

yaw

z

x

• Make one (online): 

– SpnS Template 

 

 

 

 

 

– Peter Corke’s template 

 ¸ !’  ±!’ !’

Z

X

Y

http :/ / www.p$t$rcork$.com/ ax$s.pdf

Roboti cs Toolbox for Matl ab

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
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Don’t Confuse a Frame with a Point 

• Points 

– Position Only –  

Doesn’t Encode Orientation 

 

 

 

• Frame 

– Encodes both position  

and orientation 

– Has a “handedness” 

 

Kinematics Definition 

• Kinematics: The study of motion in space  

(without regard to the forces which cause it) 

 

• Assume:  

– Points with right-hand Frames 

– Rigid-bodies  in  3D-space  (6-dof) 

– 1-dof joints: Rotary  (R) or Prismatic (P) (5 constraints) 

 

 

 

The ground is also a link 

N links 

M joints 

DOF = 6N-5M  

 If N=M, then DOF=N.   

A 

B 

 



5 

Kinematics 

• Kinematic modelling is one of the most important analytical tools of 

robotics. 

• Used for modelling mechanisms, actuators and sensors 

• Used for on-line control and off-line programming and simulation 

• In mobile robots kinematic models are used for: 

– steering (control, simulation) 

– perception (image formation) 

– sensor head and communication antenna pointing 

– world modelling (maps, object models) 

– terrain following (control feedforward) 

– gait control of legged vehicles 

 

Basic Terminology 

point 

Frame 

Coordinate 

System 

y 

x 

origin 

axis 
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Coordinate System 

• The position and orientation as specified only make sense with respect to 

some coordinate system 

AP 

{A} 

XA 

YA 

ZA 

iB jB 

kB 

 

Frames of Reference 

• A frame of reference defines a coordinate system relative 

to some point in space 

• It can be specified by a position and orientation relative to 

other frames 

• The inertial frame is taken to be a point that is assumed to 

be fixed in space 

 

• Two types of motion: 

– Translation 

– Rotation 
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Translation 

• A motion in which a straight line with in the body keeps 

the same direction during the 

– Rectilinear Translation:  Along straight lines 

– Curvilinear Translation: Along curved lines 

A 

B 

A 

B 

1 

2 

 

Rotation  

• The particles forming the rigid body move in parallel 

planes along circles centered around the same fixed axis 

(called the axis of rotation).   

• Points on the axis of rotation have zero velocity and 

acceleration 

 

A
 B

 

A 

B 

A 

B 

A
 B
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Rotation: Representations 

• Orientation are not “Cartesian” 

– Non-commutative 

– Multiple representations 

 

• Some representations: 

– Rotation Matrices: Homegenous Coordinates 

– Euler Angles: 3-sets of rotations in sequence 

– Quaternions: a 4-paramameter representation  

that exploits ½ angle properties 

– Screw-vectors  (from Charles Theorem) : a canonical 

representation, its reciprocal is a “wrench” (forces) 

 

Position and Orientation [1] 

• A position vectors specifies the  

location of a point in 3D (Cartesian) space 

 

 

 

 

 

 

 

 

 

• BUT we also concerned with its orientation in 3D space. 

 This is specified as a matrix based on each frame’s unit vectors 

A 

B 

O 
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Position and Orientation [2] 
• Orientation in 3D space: 

 This is specified as a matrix based on each frame’s unit vectors 

 

 

 

 

 

 

 

• Describes {B} relative to {A} 

  The orientation of frame {B} relative to coordinate frame {A} 

• Written “from {A} to {B}” or “given {A} getting to {B}” 

 

 

 

• Columns are {B} written in {A} 

A 

B 

O 

 

Position and Orientation [3] ✯ 

• The rotations can be analysed based on the unit components … 

• That is: the components of the orientation matrix are the unit vectors 

projected onto the unit directions of the reference frame 

 



10 

Position and Orientation [4] 

• Rotation is orthonormal 

 

 

 

• The of a rotation matrix inverse  = the transpose 

 

 

 thus, the rows are {A} written in {B}  

 

Position and Orientation [5]: A note on orientations 

 

• Orientations, as defined earlier, are represented by three 

orthonormal vectors 

 

• Only three of these values are unique and we often wish to 

define a particular rotation using three values (it’s easier 

than specifying 9 orthonormal values) 

 

• There isn’t a unique method of specifying the angles that 

define these transformations 
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Position and Orientation [7] 

• Shortcut Notation: 

 

Position and Orientation [8] 

• Rotation Formula about the 3 Principal Axes by θ 

 

X: 

 
 

 

Y: 

 

 

Z: 
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Euler Angles 

• Minimal representation of orientation (α,β,γ) 

• Represent a rotation about an axis of a moving coordinate 
frame 
        : Moving frame B w/r/t fixed A 

• The location of the axis of each successive rotation 
depends on the previous one! … 

• So, Order Matters  (12 combinations, why?) 

• Often Z-Y-X: 

– α: rotation about the z axis 

– β: rotation about the rotated y axis 

– γ: rotation about the twice rotated x axis 

• Has singularities!  … (e.g., β=±90°) 

 

Fixed Angles 

• Represent a rotation about an axis of a fixed coordinate frame. 

 

• Again 12 different orders 

 

• Interestingly: 

3 rotations about 3 axes of a fixed frame define the same orientation as the 

same 3 rotations taken in the opposite order of the moving frame 

 

• For X-Y-Z: 

– ψ: rotation about xA   (sometimes called “yaw”) 

– θ: rotation about yA   (sometimes called “pitch”) 

– φ: rotation about zA  (sometimes called “roll”) 
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Roll – Pitch – Yaw 

• In many Kinematics  

References: 

 

 

• In many Engineering 

Applications: 

 Be careful:   

This name is given to other conventions too! 

y

roll

yaw

pitch

z

x

y
pitch

roll

yaw

z

x

 

Euler Angles [1]: X-Y-Z Fixed Angles 

(Roll-Pitch-Yaw) 
• One method of describing the orientation of a Frame {B} is: 

– Start with the frame coincident with a known reference {A}.  Rotate 

{B} first about XA by an angle g, then about YA by an angle b and 

finally about ZA by an angle a. 

 



14 

Euler Angles [2]:  

Z-Y-X Euler Angles 
• Another method of describing the orientation of {B} is: 

– Start with the frame coincident with a known reference {A}.  Rotate 

{B} first about ZB by an angle a, then about YB by an angle b and 

finally about XB by an angle g. 

 

Position and Orientation [6]: 

 “Proof” of Principal Rotation Matrix Terms 
• Geometric: 

x 

y 

a 
c 

θ 

b 

d 

x 

y 

θ 
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Unit Quaternion (ϵ0, ϵ1, ϵ2, ϵ3) [1] 

• Does not suffer from singularities  

 

• Uses a “4-number” to represent orientation 

 

 

• Product: 

 

 

 

• Conjugate: 

 

 

Unit Quaternion [2]: Describing Orientation 

• Set ϵ0 = 0 

Then p=(px,py,pz)    

 

• Then given ϵ 

the operation          : rotates p about (ϵ1, ϵ2, ϵ3) 

 

• Unit Quaternion  Rotation Matrix 
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Direction Cosine 

• Uses the Direction Cosines (read dot products) of the 

Coordinate Axes of the moving frame with respect to the 

fixed frame 

 

 

 

• It forms a rotation matrix! 

 

 

Screw Displacements  

• Comes from the notion that all motion 

can be viewed as a rotation 

(Rodrigues formula) 

 

• Define a vector along the axis of motion 

(screw vector) 

– Rotation (screw angle) 

– Translation (pitch) 

– Summations  via the screw triangle! 
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Generalizing 

Special Orthogonal & Special Euclidean Lie Algebras 

• SO(n):  Rotations 

 

 

 

• SE(n): Transformations of EUCLIDEAN space 

 

 

 

Projective Transformations … 

p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 
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Homogenous Coordinates 

• ρ is a scaling value 

 

Homogenous Transformation ✯ 

  

 

•  γ is a projective transformation 

• The Homogenous Transformation is a linear operation  

(even if projection is not) 
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Projective Transformations &  

Other Transformations of 3D Space 

p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision 

Coordinate Transformations [1] 

• Translation Again: 

 If {B} is translated with respect to {A} without rotation, then it is a 

vector sum 

{A} 

XA 

YA 

ZA 

{B} 

XB 

YB 

ZB 

AP 

APB 

BP 
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Coordinate Transformations [2] 

• Rotation Again: 

 {B} is rotated with respect to {A}  then  

use rotation matrix to determine new components 

 

 

• NOTE: 

– The Rotation matrix’s subscript 

matches the position vector’s 

superscript 

 

 

 

– This gives Point Positions of {B} ORIENTED in {A} 

{A} 

XA 

YA 

ZA 

BP 

 

Coordinate Transformations [3] 

• Composite transformation: 

 {B} is moved with respect to {A}: 

{A} 

XA 

YA 

ZA 
AP 

APB 

BP 
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General Coordinate Transformations [1] 

• A compact representation of the translation and rotation is known as the 
Homogeneous Transformation 

 

 

 

 

 

• This allows us to cast the rotation and translation of the general transform 
in a single matrix form 

 

General Coordinate Transformations [2] 
• Similarly, fundamental orthonormal transformations can be represented in 

this form too: 
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General Coordinate Transformations [3] ✯ 

• Multiple transformations compounded as a chain 

{A} 

XA 

YA 

ZA 
AP 

APB 

CP 

BPC 

 

Inverse of a Homogeneous Transformation Matrix 

• The inverse of the transform is not equal to its transpose 

because this 4×4 matrix is not orthonormal (𝑇−1 ≠ 𝑇𝑇) 

•  Invert by parts to give: 
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Tutorial Problem ✍ 

The origin of frame {B}  is translated  

to a position [0 3 1]  

with respect to frame {A}.  

 

We would like to find: 

1. The homogeneous transformation between the two 

frames in the figure. 

2. For a point P defined as as [0 1 1] in frame {B}, we 

would like to find the vector describing this point with 

respect to frame {A}. 

 

Tutorial Solution ✔ 

• The matrix 𝑇𝐵
𝐴 is formed as defined earlier: 

 

 

 

• Since P in the frame is:  

 

• We find vector p in frame {A} using the relationship 

 

 

 
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Cool Robotics Share 

 

 

 

1. Forward Kinematics  (θ  x) 

2. Inverse Kinematics ( x  θ) 

3. Denavit Hartenberg [DH] Notation 

4. Affine Transformations &  

5. Theoretical (General) Kinematics 
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Forward Kinematics [1] 

• Forward kinematics is the process of chaining 
homogeneous transforms together.  For example to: 

– Find the articulations of a mechanism, or 

– the fixed transformation between two frames which is known in 
terms of linear and rotary parameters. 

• Calculates the final position from  
the machine (joint variables) 

  

 

• Unique for an open kinematic chain (serial arm) 

• “Complicated” (multiple solutions, etc.) for a closed 
kinematic chain (parallel arm) 

 

Forward Kinematics [2] 

• Can think of this as “spaces”: 

– Workspace (x,y,z,α,β,γ):  

 The robot’s position & orientation 

 

– Joint  space (θ1 … θn): 

 A state-space vector of joint variables  

 

Joint Limits 

Workspace 

qf 

Forward Kinematics 
xf 

xfi 
qi 

q’i 

Inverse Kinematics 
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Forward Kinematics [3] 

• Consider a planar RRR manipular 

• Given the joint angles and link lengths, we can determine the end effector 

pose: 

 

 

 

 

 

 

 

 

• This isn’t too difficult to determine  

for a simple, planar manipulator.  BUT … 

 

Forward Kinematics [4]: The PUMA 560! 

• What about a more complicated mechanism? 
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Inverse Kinematics  

• Forward: angles  position 

 x = f (θ) 

• Inverse: position  angles 

 θ = f-1(x) 

• Analytic Approach 

 

• Numerical Approaches: 

– Jacobian:  

– JT Approximation:  

• Slotine & Sheridan method 

– Cyclical Coordinate Descent 

 

Inverse Kinematics 

• Inverse Kinematics is the problem of finding the joint 
parameters given only the values of the homogeneous 
transforms which model the mechanism  
(i.e., the pose of the end effector) 

 

• Solves the problem of where to drive the joints in order to 
get the hand of an arm or the foot of a leg in the right 
place 

 

• In general, this involves the solution of a set of 
simultaneous, non-linear equations 

 

• Hard for serial mechanisms, easy for parallel 
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Solution Methods 

• Unlike with systems of linear equations, there are no 

general algorithms that may be employed to solve a set of 

nonlinear equation 

 

• Closed-form and numerical methods exist 

 

• Many exist: Most general solution to a 6R mechanism is 

Raghavan and Roth (1990) 

 

• Three methods of obtaining a solution are popular:  

(1) geometric   |    (2)  algebraic   |   (3) DH 

 

Inverse Kinematics: Geometrical Approach 

• We can also consider the geometric  

relationships defined by the arm 

 

θ1 

θ2 

θ3 

{0} 

ψ β 

(x2, y2) 
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Inverse Kinematics: Geometrical Approach [2] 

• We can also consider the geometric  

relationships defined by the arm  

 

• Start with what is fixed, explore all 

geometric possibilities from there 

 

 

Inverse Kinematics: Algebraic Approach 

• We have a series of equations which define this system 

• Recall, from Forward Kinematics: 

 

 

 

 

 

• The end-effector pose is given by 

 

 

 

 

 

• Equating terms gives us a set of algebraic relationships 

φ,x,y 
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No Solution - Singularity 

• Singular positions: 

 

• An understanding of the workspace of the manipulator is important 

• There will be poses that are not achievable 

• There will be poses where there is a loss of control 

 

• Singularities also occur when the  

manipulator loses a DOF 

– This typically happens  

 when joints are aligned 

– det[Jacobian]=0 

 

Multiple Solutions 

• There will often be multiple solutions 

for a particular inverse kinematic 

analysis 

 

• Consider the three link manipulator 

shown.  Given a particular end effector 

pose, two solutions are possible 

 

• The choice of solution is a function of 

proximity to the current pose, limits on 

the joint angles and possible 

obstructions in the workspace 

 

1 

2 
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Inverse Kinematics [More Generally] 
• Freudenstein (1973) referred to the inverse kinematics problem of the most 

general 6R manipulator as the “Mount Everest” of kinematic problems. 

 

• Tsai and Morgan (1985) and Primrose (1986) proved that this has at most 16 real 
solutions. 

  

• Duffy and Crane (1980) derived a closed-form solution for the general 7R single-
loop spatial mechanism.  

– The solution was obtained in the form of a 16 x 16 delerminant in which every element is a 
second-degree polynomial in one joint variable. The determinant, when expended, should 
yield a 32nd-degree polynomial equation and hence confirms the upper limit predicted by 
Roth et al. (1973). 

  

• Tsai and Morgan (1985) used the homotopy continuation method to solve the 
inverse kinematics of the general 6R manipulator and found only 16 solutions 

 

• Raghavan and Roth (1989, 1990) used the dyalitic elimination method to derive a 
16th-degree polynomial for the general 6R inverse kinematics problem.  

 

Example: FK/IK of a 3R Planar Arm 

• Derived from Tsai (p. 63) 
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Example: 3R Planar Arm [2] 

Position Analysis: 3·Planar 1-R Arm rotating about Z  [Ⓩ] 
0

𝐴3 =
0

𝐴1 ∙1 𝐴2 ∙2 𝐴3 

 

Substituting gives: 

 

 

Example: 3R Planar Arm [2] 

Forward Kinematics  

(solve for x given θ  x = f (θ)) 

 

Fairly straight forward: 
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Example: 3R Planar Arm [3] 

Inverse Kinematics  

(solve for θ given x  x = f (θ)) 

 

• Start with orientation φ: 

𝐶𝜃123 = 𝐶𝜙,  𝑆𝜃123 = 𝑆𝜙 

⇒ 𝜃123 =  𝜃1 + 𝜃2 + 𝜃3 = 𝜙 

 

• Get overall position 𝒒 = [𝑞𝑥 𝑞𝑦]: 

𝑞𝑥 − 𝑎3𝐶𝜙 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12  

𝑞𝑦 − 𝑎3𝑆𝜙 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12 … 

 

 

 

 

Example: 3R Planar Arm [4] 

• Introduce 𝒑 = 𝑝𝑥 𝑝𝑦  before “wrist” 

𝑝𝑥 = 𝑎1𝐶𝜃1 + 𝑎2𝐶𝜃12, 𝑝𝑦 = 𝑎1𝑆𝜃1 + 𝑎2𝑆𝜃12  

⇒ 𝑝𝑥
2 + 𝑝𝑦

2 = 𝑎1
2 + 𝑎2

2 + 2𝑎1𝑎2𝐶𝜃2 

• Solve for θ2: 

𝜃2 = cos−1 𝜅, 𝜅 =
𝑝𝑥

2+𝑝𝑦
2−𝑎1

2−𝑎2
2

2𝑎1𝑎2
  (2 ℝ roots if |κ|<1) 

• Solve for θ1: 

𝐶𝜃1 =
𝑝𝑥 𝑎1+𝑎2𝐶𝜃2 +𝑝𝑦𝑎2𝑆𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
, 𝑆𝜃1 =

−𝑝𝑥𝑎2𝑆𝜃2+𝑝𝑦 𝑎1+𝑎2𝐶𝜃2

𝑎1
2+𝑎2

2+2𝑎1𝑎2𝐶𝜃2
 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑆𝜃1, 𝐶𝜃1) 
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Advanced Concept: Tendon-Driven Manipulators 

• Tendons may be modelled as a 

transmission line  

• in which the links are labeled 

sequentially from 0 to n and the 

pulleys are labeled from j to j + n -1 

• Let θji denote the angular 

displacement of link j with respect 

to link i.  

• We can write a circuit equation  

once for each pulley pair as follows: 

 

  

Inverse Kinematics 

• What about a more complicated mechanism? 

 
» A sufficient condition for a serial manipulator to 

yield a closed-form inverse kinematics solution is to 

have any three consecutive joint axes intersecting at 

a common point or any three consecutive joint axes 

parallel to each other. (Pieper and Roth (1969) via 

4×4 matrix method) 

 

» Raghavan and Roth 1990  

“Kinematic Analysis of the 6R Manipulator of 

General Geometry”  

 

» Tsai and Morgan 1985, “Solving the Kinematics of 

the Most General Six  and Five-Dcgree-of-Freedom 

Manipulators by Continuation Methods”   

(posted online) 
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Inverse Kinematics 

• What about a more complicated mechanism? 

 

• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous 

transforms for articulated mechanisms 

 (But B. Roth, introduced it to robotics) 

 

• A kinematics “short-cut” that reduced the number of parameters by adding 

a structure to frame selection 

 

• For two frames positioned in space, the first can be moved into 

coincidence with the second by a sequence of 4 operations: 

– rotate around the xi-1 axis by an angle ai 

– translate along the xi-1 axis by a distance ai 

– translate along the new z axis by a distance di 

– rotate around the new z axis by an angle qi 
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Denavit-Hartenberg Convention 

• link length ai the offset distance between the zi-1 and zi axes along the xi 
axis; 

• link twist ai the angle from the zi-1 axis to the zi axis about the xi axis; 

 

 

• link offset di the distance 
from the origin of frame i-1 
to the xi axis along the zi-1 
axis; 

• joint angle qi the angle 
between the xi-1 and xi axes 
about the zi-1 axis. 

 

Art  c/o P. Corke 

 

DH: Where to place frame? 

1. Align an axis along principal motion 

1. Rotary (R): align rotation axis along the z axis 

2. Prismatic (P): align slider travel along x axis 

 

2. Orient  so as to position x axis towards next frame 

 

3. θ (rot z)  d (trans z)  a (trans x)  α (rot x) 
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Denavit-Hartenberg  Rotation Matrix 

• Each transformation is a product of 4 “basic”  

transformations (instead of 6) 

 

DH Example [1]: RRR Link Manipulator 

1. Assign the frames at the joints … 

2. Fill DH Table … 

θ1 

θ2 

θ3 

{0} 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 2 3

1 2 30 1 2

1 2 3

0 0 0

0 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c c s L c

s c L s s c L s s c L s
A A A

q q q q q q q q q

q q q q q q q q q

       
     
       
     
     
     

123 123 1 12 123

123 123 1 12 123

0 0 1 2

3 1 2 3

1 2 3

1 2 3

0

0

0 0 1 0

0 0 0 1

T A A A

c s L c L c L c

s c L s L s L s

q q q q q

q q q q q



   
 

 
 
 
 
 
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DH Example [2]: RRP Link Manipulator 

1. Assign the frames at the joints … 

2. Fill DH Table … 

1 1 1 2 2 2

1 1 1 2 2 2

1 2 3

1 20 1 2

1 2 3

0 0 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c L

s c L s s c L s
A A A

q q q q q q

q q q q q q

      
     
       
     
     
     

θ1 

θ2 {0} 

 

 
12 12 1 12

12 12 1 12

0 0 1 2

3 1 2 3

1 2 3

1 2 3

0

0

0 0 1 0

0 0 0 1

T A A A

c s L c L L c

s c L s L L s

q q q q

q q q q



    
 

  
 
 
  

DH Example [3]: Puma 560 

• “Simple” 6R robot exercise for the reader … 

Image: J. Craig, Introduction to Robotics 

3rd Ed., 2005 
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DH Example [3]: Puma 560 [2] 

Modified DH 

• Made “popular” by Craig’s Intro. to Robotics book 

• Link coordinates attached to the near by joint 

 

 

 

 

 

 

 

• a (trans x-1)  α (rot x-1)  θ (rot z)  d (trans z)  

 

Art  c/o P. Corke 
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Modified DH [2] 

• Gives a similar result 

(but it’s not commutative) 

 

 

 

 

• Refactoring Standard  to Modified 

 

 

• The “central” Kinematic 

structure is made up of 

closed-loop chain(s) 

 

• Compared to Serial 

Mechanisms: 

+ Higher Stiffness 

+ Higher Payload 

+ Less Inertia 

– Smaller Workspace 

– Coordinated Drive System 

– More Complex & $$$ 

 

Sources: Wikipedia, “Delta Robot”, ParallelMic.Org, “Delta Parallel Robot”, and  

US Patent 4,976,582 

https://www.google.com/patents/US4976582
https://www.google.com/patents/US4976582


41 

Symmetrical Parallel Manipulator 

A sub-class of Parallel Manipulator: 
o # Limbs (m) = # DOF (F) 

o The joints are arranged in an identical pattern 

o The # and location of actuated joints are the same  

 

Thus: 
o Number of Loops (L): One less than # of limbs 

 

 

o Connectivity (Ck) 

 

 

 
Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 

 

 

 
 

 

Mobile Platforms 

• The preceding kinematic relationships are also important 

in mobile applications 

 

• When we have sensors mounted on a platform, we need 

the ability to translate from the sensor frame into some 

world frame in which the vehicle is operating 

 

• Should we just treat this as a P(*) mechanism? 
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Mobile Platforms [2] 

• We typically assign a frame to 

the base of the vehicle 

• Additional frames are assigned 

to the sensors 

• We will develop these 

techniques in coming lectures 

Summary 

• Many ways to view a rotation 

– Rotation matrix 

– Euler angles 

– Quaternions 

– Direction Cosines 

– Screw Vectors 

 

• Homogenous transformations  

– Based on homogeneous coordinates 
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Cool Robotics Share 

 

 

file:///D:/Temp/Cool Robotics Share/Inside Bot and Dolly-276830823-720p.mp4

