

Week	Date	Lecture (W: 12:05-1:50, 50-N202)	
1	27-Jul	Introduction	
2	3-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)	
2	10 400	Iransiormation Deview (& Ehler Deview)	
3	10-Aug	Robot Dynamics	
5	24 Aug	Pobot Sensing: Percention	
6	31-Aug	Robot Sensing: Multiple View Geometry	
7	7-Sen	Robot Sensing: Feature Detection (as Linear Observers)	
8	14-Sep	Probabilistic Robotics: Localization	
9	21-Sep	Probabilistic Robotics: SLAM	
	28-Sep	Study break	
10	5-Oct	Motion Planning	
11	12-Oct	State-Space Modelling	
12	19-Oct	Shaping the Dynamic Response	
13	26-Oct	LQR + Course Review	

Kinematics

- Kinematic modelling is one of the most important analytical tools of robotics.
- Used for modelling mechanisms, actuators and sensors
- Used for on-line control and off-line programming and simulation
- In mobile robots kinematic models are used for:
 - steering (control, simulation)
 - perception (image formation)
 - sensor head and communication antenna pointing
 - world modelling (maps, object models)
 - terrain following (control feedforward)
 - gait control of legged vehicles

METR 4202: Robotics

Frames of Reference

- A frame of reference defines a coordinate system relative to some point in space
- It can be specified by a position and orientation relative to other frames
- The *inertial frame* is taken to be a point that is assumed to be fixed in space
- Two types of motion:
 - Translation
 - Rotation

METR 4202: Robotics

Translation

Position and Orientation [8] • Rotation Formula about the 3 Principal Axes by θ X: $\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$ Y: $\mathbf{R}_{y} = \begin{bmatrix} \cos(\theta) & 0 \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 \cos(\theta) \end{bmatrix}$ Z: $\mathbf{R}_{z} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Euler Angles

- Minimal representation of orientation (α, β, γ)
- Represent a rotation about an axis of a <u>moving</u> coordinate frame
 - $\rightarrow {}^{A}_{B}\mathbf{R}$: Moving frame **<u>B</u>** w/r/t fixed A
- The location of the axis of each successive rotation depends on the previous one! ...
- So, Order Matters (12 combinations, why?)
- Often Z-Y-X:
 - $-\alpha$: rotation about the **z** axis
 - $-\beta$: rotation about the rotated **y** axis
 - $-\gamma$: rotation about the twice rotated **x** axis
- Has singularities! ... (e.g., $\beta=\pm90^{\circ}$)

METR 4202: Robotics

Fixed Angles

- Represent a rotation about an axis of a **<u>fixed</u>** coordinate frame.
- Again 12 different orders
- Interestingly:

3 rotations about 3 axes of a **fixed** frame define the same orientation as the same 3 rotations taken in the **opposite order** of the **moving** frame

- For X-Y-Z:
 - ψ : rotation about \mathbf{x}_A (sometimes called "yaw")
 - $\theta:$ rotation about \boldsymbol{y}_A (sometimes called "pitch")
 - φ : rotation about \mathbf{z}_A (sometimes called "roll")

METR 4202: Robotics

Euler Angles [1]: X-Y-Z Fixed Angles (Roll-Pitch-Yaw) • One method of describing the orientation of a Frame {B} is: • Start with the frame coincident with a known reference {A}. Rotate {B} first about X_A by an angle γ , then about Y_A by an angle β and finally about Z_A by an angle α . $AR_{BXYZ}(\gamma, \beta, \alpha) = R_Z(\alpha)R_Y(\beta)R_X(\gamma)$ $= \begin{bmatrix} c_{\alpha} - s_{\alpha} & 0 \\ s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\beta} & 0 & s_{\beta} \\ 0 & 1 & 0 \\ -s_{\beta} & 0 & c_{\beta} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\gamma} & -s_{\gamma} \\ 0 & s_{\gamma} & c_{\gamma} \end{bmatrix}$ $= \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$

Unit Quaternion ($\epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3$) [1] • Does not suffer from singularities $\epsilon \equiv \epsilon_0 + \left(\epsilon_1 \hat{\mathbf{i}} + \epsilon_2 \hat{\mathbf{j}} + \epsilon_3 \hat{\mathbf{k}}\right)$ • Uses a "4-number" to represent orientation ii = jj = kk = -1ij = k, jk = i, ki = j, ji = -k, kj = -1, ik = -j• Product: $ab = (a_0b_0 - a_1b_1 - a_2b_2 + a_3b_3)$ $+(a_0b_1+a_1b_0+a_2b_3-a_3b_2)\hat{i}$ $+(a_0b_2+a_2b_0+a_3b_1+a_1b_3)\hat{j}$ $+(a_0b_3+a_3b_0+a_1b_2-a_2b_1)\hat{k}$ Conjugate: $\tilde{\epsilon} \equiv \epsilon_0 - \epsilon_1 \hat{\mathbf{i}} - \epsilon_2 \hat{\mathbf{j}} - \epsilon_3 \hat{\mathbf{k}}$ $\epsilon \tilde{\epsilon} = \tilde{\epsilon} \epsilon = \epsilon_0^2 + \epsilon_1^2 + \epsilon_2^2 + \epsilon_2^2$ METR 4202 Robotics August 3, 2016-29

Unit Quaternion [2]: Describing Orientation • Set $\epsilon_0 = 0$ Then $\mathbf{p} = (\mathbf{p}_x, \mathbf{p}_y, \mathbf{p}_z) \rightarrow \mathbf{p} = p_x \hat{\mathbf{i}} + p_y \hat{\mathbf{j}} + p_z \hat{\mathbf{k}}$ • Then given ϵ the operation $\epsilon \mathbf{p} \tilde{\epsilon}$: rotates \mathbf{p} about $(\epsilon_1, \epsilon_2, \epsilon_3)$ • Unit Quaternion \rightarrow Rotation Matrix $\mathbf{R} = \begin{pmatrix} 1 - 2(\epsilon_2^2 + \epsilon_3^2) & 2(\epsilon_1\epsilon_2 - \epsilon_0\epsilon_3) & 2(\epsilon_1\epsilon_3 - \epsilon_0\epsilon_2) \\ 2(\epsilon_1\epsilon_2 - \epsilon_0\epsilon_3) & 1 - 2(\epsilon_1^2 + \epsilon_3^2) & 2(\epsilon_2\epsilon_3 - \epsilon_0\epsilon_1) \\ 2(\epsilon_1\epsilon_3 - \epsilon_0\epsilon_2) & 2(\epsilon_2\epsilon_3 - \epsilon_0\epsilon_1) & 1 - 2(\epsilon_1^2 + \epsilon_2^2) \end{pmatrix}$

Direction Cosine

• It forms

• Uses the Direction Cosines (read dot products) of the Coordinate Axes of the moving frame with respect to the fixed frame $A\mathbf{u} = u_x\mathbf{i} + u_y\mathbf{j} + u_z\mathbf{k}$ $A\mathbf{v} = v_x\mathbf{i} + v_y\mathbf{i} + v_z\mathbf{k}$

$${}^{A}\mathbf{w} = w_{x}\mathbf{i} + w_{y}\mathbf{j} + w_{z}\mathbf{k}$$

a rotation matrix!

 $\begin{array}{c} \stackrel{A}{B}R \\ (a_x)\,\hat{i}_A \\ (a_y)\,\hat{j}_A \\ (a_z)\,\hat{k}_A \end{array} \left[\begin{array}{ccc} \hat{i}_B\cdot\hat{i}_A & \hat{j}_B\cdot\hat{i}_A & \hat{k}_B\cdot\hat{i}_A \\ \hat{i}_B\cdot\hat{j}_A & \hat{j}_B\cdot\hat{j}_A & \hat{k}_B\cdot\hat{j}_A \\ \hat{i}_B\cdot\hat{k}_A & \hat{j}_B\cdot\hat{k}_A & \hat{k}_B\cdot\hat{k}_A \end{array} \right] \\ \end{array} \right]$

Generalizing

Special Orthogonal & Special Euclidean Lie Algebras

• SO(n): Rotations

 $SO(n) = \{R \in \mathbb{R}^{n \times n} : RR^T = I, \det R = +1\}.$ $\exp(\widehat{\omega}\theta) = e^{\widehat{\omega}\theta} = I + \theta\widehat{\omega} + \frac{\theta^2}{2!}\widehat{\omega}^2 + \frac{\theta^3}{3!}\widehat{\omega}^3 + \dots$

• SE(n): Transformations of EUCLIDEAN space

 $SE(n) := \mathbb{R}^n \times SO(n).$

 $S\!E\!(3)=\{(p,R): p\in \mathbb{R}^3, R\in SO(3)\}=\mathbb{R}^3\times SO(3).$

METR 4202: Robotics

Group Projective 8 dof	Matrix		Invariant properties	
	$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$		Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).	
Affine 6 dof	$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .	
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I , J (see section 2.7.3).	
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Length, area	

Inverse Kinematics

- Inverse Kinematics is the problem of finding the joint parameters given only the values of the homogeneous transforms which model the mechanism (i.e., the pose of the end effector)
- Solves the problem of where to drive the joints in order to get the hand of an arm or the foot of a leg in the right place
- In general, this involves the solution of a set of simultaneous, non-linear equations
- Hard for serial mechanisms, easy for parallel

METR 4202: Robotics

Example: 3R Planar Arm [4]
• Introduce
$$\mathbf{p} = [p_x \quad p_y]$$
 before "wrist"
 $p_x = a_1 C \theta_1 + a_2 C \theta_{12}, p_y = a_1 S \theta_1 + a_2 S \theta_{12}$
 $\Rightarrow p_x^2 + p_y^2 = a_1^2 + a_2^2 + 2a_1 a_2 C \theta_2$
• Solve for θ_2 :
 $\theta_2 = \cos^{-1} \kappa, \kappa = \frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1 a_2}$ (2 \mathbb{R} roots if $|\kappa| < 1$)
• Solve for θ_1 :
 $C \theta_1 = \frac{p_x(a_1 + a_2 C \theta_2) + p_y a_2 S \theta_2}{a_1^2 + a_2^2 + 2a_1 a_2 C \theta_2}, S \theta_1 = \frac{-p_x a_2 S \theta_2 + p_y(a_1 + a_2 C \theta_2)}{a_1^2 + a_2^2 + 2a_1 a_2 C \theta_2}$
 $\theta_1 = atan 2(S \theta_1, C \theta_1)$

Denavit Hartenberg [DH] Notation

• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous transforms for articulated mechanisms

(But B. Roth, introduced it to robotics)

- A kinematics "short-cut" that reduced the number of parameters by adding a structure to frame selection
- For two frames positioned in space, the first can be moved into coincidence with the second by a sequence of 4 operations:
 - rotate around the $x_{i\text{-}1}$ axis by an angle α_i
 - translate along the x_{i-1} axis by a distance a_i
 - translate along the new z axis by a distance d_i
 - rotate around the new z axis by an angle θ_i

METR 4202: Robotics

Mobile Platforms

- The preceding kinematic relationships are also important in mobile applications
- When we have sensors mounted on a platform, we need the ability to translate from the sensor frame into some world frame in which the vehicle is operating
- Should we just treat this as a P(*) mechanism?

Summary

- Many ways to view a rotation
 - Rotation matrix
 - Euler angles
 - Quaternions
 - Direction Cosines
 - Screw Vectors
- Homogenous transformations
 - Based on homogeneous coordinates

METR 4202: Robotics

