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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 

1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 

4 17-Aug Robot Inverse Kinematics & Kinetics 

5 24-Aug Robot Dynamics (Jacobeans) 

6 31-Aug Robot Sensing: Perception & Linear Observers 

7 7-Sep Robot Sensing: Single View Geometry & Lines 

8 14-Sep Robot Sensing: Feature Detection 

9 21-Sep Robot Sensing: Multiple View Geometry 

  28-Sep Study break 

10 5-Oct Motion Planning 

11 12-Oct Probabilistic Robotics: Localization & SLAM 

12 19-Oct 
Probabilistic Robotics: Planning & Control  

(State-Space/Shaping the Dynamic Response/LQR)  

13 26-Oct 
The Future of Robotics/Automation + Challenges   

&  Course Review 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Follow Along Reading: 

Robotics, Vision & Control  

by Peter Corke  

 

Also online:SpringerLink 

 

UQ Library eBook: 

364220144X   

• Vision-Based Control  

– §15.1-15.3 (pp. 456-473) 

  Review 

• SLAM 

– pp. 123-4 

(§6.4-6.5) 

• Everything?  

– Many references… 

Today 

Reference Material 

On class webpage 

Password: metr4202 

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
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Reference Material 

UQ Library/ 

SpringerLink UQ Library 

(ePDF) 

Reference Material 

UQ Library / Online (PDF) 

UQ Library 

(TJ211.4 .L38 1991) 

https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b2506028~S7
https://library.uq.edu.au/record=b3087948~S7
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA51161329990003131
planning.cs.uiuc.edu
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA2185663660003131
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Cool Robotics Share 

HRI: Semi-Autonomous Robots Learning 

Interaction for Collaborative Tasks 

 

 

 

 

 

 

 
 

 

 

 

 

Maeda, G., et al. "Learning interaction for collaborative tasks with 
probabilistic movement primitives." 2014 IEEE-RAS International 

Conference on Humanoid Robotics. IEEE, 2014. 

https://youtu.be/2Ok6KQQQDNQ 

• Interactive Mobile Robots 

 

 
 

• New transmissions 

 

 

Source: (top) https://youtu.be/hX6pFcfr29c |  
 (bottom) http://spectrum.ieee.org/automaton/robotics/robotics-
hardware/sri-demonstrates-abacus-rotary-transmission 

Final Exam! 

• 4 Questions |  60 Minutes  

• Open Book 

• Similar in nature to the 2015 Quiz 

 

Topics: 

• Position, orientation and location 
in space 

• Robot analysis  
(forward/Inverse kinematics, 
recursive Newton-Euler 
formulations, etc.) 

• Sensing geometry (including 
camera calibration) 

• Multiple-view geometry 

• Motion planning and control 

https://youtu.be/2Ok6KQQQDNQ
https://youtu.be/2Ok6KQQQDNQ
https://youtu.be/hX6pFcfr29c
https://youtu.be/hX6pFcfr29c
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/sri-demonstrates-abacus-rotary-transmission
http://robotics.itee.uq.edu.au/~metr4202/2015/tpl/METR4202-IndividualQuizA.pdf
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Grades! 

• Lab 1 

 

 

 

 

 

 

 
 

• MEAN: 82 | STD: 10 

• MIN: 52 | MAX: 95 

• MEDIAN: 83.5 

 

• Lab 2 

Coming Soon! 
 

PS: For those who have not 

LAB 2 “PAF-ed” please do 

so by tonight!  

Some 2017 Robotics Thesis Topics  

Projects (2017 | RDL | S. Singh) 

ID Title 

 1  Light Fields in Motion  

 2  Image Sensing and Control 

 3  One Sweet Robot 

 4  Remote Access CT imaging Laboratory for clinical skills education and training 

 5  Semi-Automatic Tracking of Athletes Diving using Pre-selected Keypoints 

 7  (RDL*) Dermatology Outback 

 8  Interactive Ball / Beeper Ball - Smart Tones 

 9  Affine Breathing: Tracking 

 10  Underactuated Robotics: Katita Walks The Line 

 11  Assistive Ultrasound Support 

 13  SuperResolve 3D [NEW] 

 14  Privacy Preserving Roadmap Planning [NEW] 

 15  Color My World (Art Meets Robotics) [NEW] 

 16  Robots: In Play (Probabilistically) [NEW] 

 17  Project with Sound and Hearing and Mechatronics [NEW] 

 18  Biomedical Engineering Meets Robotics [NEW] [ARC DP co-funding] 

 19  (Virtual) Robotics and Experimental Platform [NEW] 

 20  BYO Robot Project [NEW] 
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Learning Objectives 

 

Robotics:  

Facets of overarching 

principles 

 

• Scene Geometry  

• Structure | Unstructured 

• Adaptive models for control 

• Interactions: 

Deterministic | Probabilistic  

 

Estimation 
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Along multiple dimensions 

 

 

State Space 

• We collect our set of uncertain variables into a vector … 

    x = [x1, x2,…, xN]T 

 

• The set of values that x might take on is termed the state 

space 

 

• There is a single true value for x,  

but it is unknown  
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State Space Dynamics 

 

 

Measured versus True 

• Measurement errors are inevitable 

 

• So, add Noise to State... 

– State Dynamics becomes: 

 

 

• Can represent this as a “Normal” Distribution 
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Recovering The Truth 

• Numerous methods 

• Termed “Estimation”  because we are trying to estimate 

the truth from the signal 

• A strategy discovered by Gauss 

• Least Squares in Matrix Representation 

 

 

 

 

 

 

Recovering the Truth: Terminology 
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General Problem… 

 

 

Duals and Dual Terminology 
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Estimation Process in Pictures 

 

 

Kalman Filter Process 
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KF Process in Equations 

 

 

KF Considerations 
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Ex: Kinematic KF: Tracking 

• Consider a System with Constant Acceleration 

 

 

 

 

 

In Summary 

• KF: 

– The true state (x) is separate from the measured (z) 

– Lets you combine prior controls knowledge with 

measurements to filter signals and find the truth 

– It regulates the covariance (P) 

• As P is the scatter between z and x 

• So, if P  0, then z  x  (measurements  truth) 

• EKF:   

– Takes a Taylor series approximation to get a local “F” (and 

“G” and “H”) 
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Future of Robotics 
(Self-Driving Vehicles) 

(Notes from Prof. John Leonard, MIT) 

Robotic Tesla… 

https://www.csail.mit.edu/user/817
https://www.csail.mit.edu/user/817
https://www.csail.mit.edu/user/817
https://www.csail.mit.edu/user/817
file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/How the Tesla Model S is Made -- Behind The Scenes -- The Window - Wired.mp4
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Other Robotic Tesla… 

Cars: Software/Robots With 4 Wheels 
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Robotics & Automation Has Limits Too 

 

More to Dynamic “Obstacles” than one’s own Control… 

Ethics in Engineering 
 

 



17 

Q: Why has Google has chosen to exclusively 

pursue level 4? 

 A: They don’t trust people to pay attention  

 Astro Teller, Head of GoogleX, March 2015 

t=41.56: "people do really stupid stuff when they are 

driving...it isn't pretty. The assumption that humans 

can be a reliable backup for the system was a total 

fallacy.   Once people trust the system, they trust it" 

 

Chris Urmson Keynote Address at the  Intelligent Transportation 

Systems 25th Annual Meeting & Expo, Pittsburgh, May 2015 

“Vehicle Avoids Accidents” vs.                              

“Vehicles Applies Breaks Unnecessarily” 
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September 13, 2015 

 

 

 

 by Clive Thompson, New York Times, September 11, 2015 

“When the company wanted a team of roboticists, it 
raided a University Lab to get them.  Can high-tech 
academia survive today's Silicon Valley talent binge?” 
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MIT DARPA Urban Challenge Team (2006-2007) 

 

Leonard et al., JFR 2008 ; Karaman and Frazzoli, IJRR 2011; Huang et al., AR 2009  

2007 DARPA Urban Challenge – Collision 

between MIT and Cornell 
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2007 DARPA Urban Challenge 

– Collision between MIT and Cornell 

 

 L. Fletcher, S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How, J. Leonard, I. Miller, M. 

Campbell, D. Huttenlocher, and others, "The MIT–Cornell collision and why it 

happened." In Journal of Field Robotics, 25(10), pages 775-807. 2008.  

 

From Prof. Ed Olson (Umich):  The logic of whether to represent an "obstacle" as a 

track (i.e., something with velocity) or as a blob, was this  (relevant part is 

highlighted):  

int use_track = 0, use_rects = 1; 

//        if (t->vmag > 4) 

//            use_rects = 0; 

  

 if (t->vmag > 3.0 && t->maturity > 8) 

            use_track = 1; 

 double MAX_DIM = 10; 

 if (t->box.size[0] > MAX_DIM || t->box.size[1] > MAX_DIM) 

            use_track = 0; 
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Lane Estimation (PhD Thesis of Albert Huang, 

supervised by Prof. Seth Teller) 
 

Road paint 

detectors 

Curb 

Detectors 

Lane centerline  

estimator 

Lane tracker  

RNDF 

 

• The Google Car is an amazing research project that 
might one day transform mobility 

• The technology of the Google Car, however, has been 
over-hyped and is poorly misunderstood  

• This has led many people to say that self-driving is a 
“solved” problem 

• “Just because it works for Google”, doesn’t mean it will 
work for everyone else 

2015: Self-Driving Vehicles Have a Perception Problem 
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How Does Google’s Self Driving Car Work? 

http://www.youtube.com/watch?v=KA_C6OpL_Ao 

 

Source: Dave Ferguson “Solve for X” talk, July 2013 

 

Google: Lidar Localization with an a priori map 

https://plus.google.com/+GoogleSelfDrivingCars/videos 

 
 

http://www.youtube.com/watch?v=KA_C6OpL_Ao
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SDVs: The Big Questions Going Forward 

• Technical Challenges: 

• Maintaining Maps 

• Adverse Weather 

• Interacting with People 

• Robust Computer Vision (towards PD=1.0, PFA = 0.0)? 

 

 

SDVs: The Big Questions Going Forward 

• Technical Challenges: 

• Maintaining Maps 

• Adverse Weather 

• Interacting with People 

• Robust Computer Vision (towards PD=1.0, PFA = 0.0)? 

• The big question for Level 3 approaches? (i.e., Musk) 

• Can humans be trusted to take control when necessary?  
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SDVs: The Big Questions Going Forward 

• Technical Challenges: 

• Maintaining Maps 

• Adverse Weather 

• Interacting with People 

• Robust Computer Vision (towards PD=1.0, PFA = 0.0)? 

• The big question for Level 3 approaches? (i.e., Musk) 

• Can humans be trusted to take control when necessary?  

• The big question for Level 4 approaches? (i.e., Urmson) 

• Can near-perfect ROC curves be obtained in a wide 

variety of demanding settings? 

 

 

SDVs: The Big Questions Going Forward 

• Technical Challenges: 

• Maintaining Maps 

• Adverse Weather 

• Interacting with People 

• Robust Computer Vision (towards PD=1.0, PFA = 0.0)? 

• The big question for Level 3 approaches? (i.e., Musk) 

• Can humans be trusted to take control when necessary?  

• The big question for Level 4 approaches? (i.e., Urmson) 

• Can near-perfect ROC curves be obtained in a wide 
variety of demanding settings? 

• Level 2.99 – Hidden Autonomy (Human must pay 
attention, but autonomy will jump in to prevent accidents) 

 
 



25 

Summary – Self-Driving Vehicles 

• Transformative technology that can/will change the world, but 
many open questions 

• Hope for reducing accidents and saving lives 

• Admiration for Google’s audacious vision and amazing 
progress 

• Impressed by recent efforts by auto manufacturers 

• Pride for the robotics community’s contributions 

• Fear that the technology is being over-hyped 

• Uncertainty about open technological challenges, such as:  
– left-turn across high-speed traffic onto busy roads 

– Interpretation of gestures by traffic cops, crossing guards etc 

– Effect of changes in road surface appearance on map-based 
localization 

– Capability to “predict what will happen next” in demanding situations 

– Operations in adverse weather 

 
 

 

Future of Robotics 
 

Move Heaven & Earth 



26 

“Field Arm” Motion Generation  

Terrain is Not “Structured,” But It’s Not Random… 
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top soil  

(soft, loose, dry) 

cohesive soil  

(clay, compact, wet) 

(from 20 cm 

digging resistance 

Compactation during dragging 

dragging 
lifting 

N
a
tu

ra
l 
c
o
m

p
a
c
ta

ti
o
n
 

sharp cutting tool 

(flat blade theory) 

cutting tool? 

Excavation as Terrain Manipulation 

Nonlinear 

Plant 

+ 

_ 

Xref X 

feedforward command 

(open-loop policy) 

compensated dynamics 

terrain+ τfriction+ τ

Operation Space (Computed Torque)  

(2 DOF Example) 

Model 

Based 

Model 

“Free” 
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Nonlinear 

Plant 

+ 

_ 

Xref X 

feedforward command 

(open-loop policy) 

compensated dynamics 

terrain  + τ friction  + τ 

terrain+ τfriction+ τ

Operation Space (Computed Torque)  

(2 DOF Example) 

→ → → →

Model 

Based 

Model 

“Free” 

Reminder: Compensated Manipulation 

→ → → →
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Nonlinear 

Plant 

+ 

_ 

Xref X 

ff(t) 

digging resistance 

ff(t3) 
ff(t2) 

ff(t1) 

ff(t4) 

ff(t5) 

Thus for Excavation … 

Manipulation under Large Disturbances 



30 

Inverse dynamics helps, but performance  is dependent on model structure and parameter identification 

 z = [...  

        d11*q1dot - u1 - q3dot*(L2*L3c*m3*q3dot*sin(q3 + qcm3) + L1*L3c*m3*q3dot*sin(q2 + q3 + qcm3)) - q1dot*(2*L1*L2c*m2*q2dot*sin(q2 + qcm2) + 2*L2*L3c*m3*q3dot*sin(q3 + qcm3) + 2*L1*L2*m3*q2dot*sin(q2) + 

2*L1*L3c*m3*q2dot*sin(q2 + q3 + qcm3) + 2*L1*L3c*m3*q3dot*sin(q2 + q3 + qcm3)) - q2dot*(L1*L2c*m2*q2dot*sin(q2 + qcm2) + 2*L2*L3c*m3*q3dot*sin(q3 + qcm3) + L1*L2*m3*q2dot*sin(q2) + L1*L3c*m3*q2dot*sin(q2 + q3 + 

qcm3) + 2*L1*L3c*m3*q3dot*sin(q2 + q3 + qcm3)) - ((q1dot - q1dot_k)*(m1*L1c^2 + Izz1 + Izz2 + Izz3 + m2*(L1^2 + 2*cos(q2 + qcm2)*L1*L2c + L2c^2) + m3*(L1^2 + 2*cos(q2)*L1*L2 + 2*cos(q2 + q3 + qcm3)*L1*L3c + L2^2 + 

2*cos(q3 + qcm3)*L2*L3c + L3c^2)))/dt - ((Izz3 + L3c*m3*(L3c + L2*cos(q3 + qcm3) + L1*cos(q2 + q3 + qcm3)))*(q3dot - q3dot_k))/dt + g*m3*(L3c*cos(q1 + q2 + q3 + qcm3) + L2*cos(q1 + q2) + L1*cos(q1)) - ((q2dot - q2dot_k)*(Izz2 + 

Izz3 + m3*(L2^2 + 2*cos(q3 + qcm3)*L2*L3c + L1*cos(q2)*L2 + L3c^2 + L1*cos(q2 + q3 + qcm3)*L3c) + L2c*m2*(L2c + L1*cos(q2 + qcm2))))/dt + g*m2*(L1*cos(q1) + L2c*cos(q1 + q2 + qcm2)) + L1c*g*m1*cos(q1 + qcm1) 

        d22*q2dot - u2 + q1dot*(L1*L2c*m2*q1dot*sin(q2 + qcm2) - 2*L2*L3c*m3*q3dot*sin(q3 + qcm3) + L1*L2*m3*q1dot*sin(q2) + L1*L3c*m3*q1dot*sin(q2 + q3 + qcm3)) + g*m3*(L3c*cos(q1 + q2 + q3 + qcm3) + L2*cos(q1 + q2)) - 

((q2dot - q2dot_k)*(m2*L2c^2 + Izz2 + Izz3 + m3*(L2^2 + 2*cos(q3 + qcm3)*L2*L3c + L3c^2)))/dt - ((q3dot - q3dot_k)*(Izz3 + L3c*m3*(L3c + L2*cos(q3 + qcm3))))/dt - ((q1dot - q1dot_k)*(Izz2 + Izz3 + m3*(L2^2 + 2*cos(q3 + 

qcm3)*L2*L3c + L1*cos(q2)*L2 + L3c^2 + L1*cos(q2 + q3 + qcm3)*L3c) + L2c*m2*(L2c + L1*cos(q2 + qcm2))))/dt + L2c*g*m2*cos(q1 + q2 + qcm2) - L2*L3c*m3*q3dot^2*sin(q3 + qcm3) - 2*L2*L3c*m3*q2dot*q3dot*sin(q3 + qcm3) 

        q1dot*(L2*L3c*m3*q1dot*cos(q3)*sin(qcm3) + L2*L3c*m3*q1dot*cos(qcm3)*sin(q3) + 2*L2*L3c*m3*q2dot*cos(q3)*sin(qcm3) + 2*L2*L3c*m3*q2dot*cos(qcm3)*sin(q3) + L1*L3c*m3*q1dot*cos(q2)*cos(q3)*sin(qcm3) + 

L1*L3c*m3*q1dot*cos(q2)*cos(qcm3)*sin(q3) + L1*L3c*m3*q1dot*cos(q3)*cos(qcm3)*sin(q2) - L1*L3c*m3*q1dot*sin(q2)*sin(q3)*sin(qcm3)) - u3 + d33*q3dot + q2dot*(L2*L3c*m3*q2dot*cos(q3)*sin(qcm3) + 

L2*L3c*m3*q2dot*cos(qcm3)*sin(q3)) - ((Izz3 + L3c*m3*(L3c + L2*cos(q3 + qcm3) + L1*cos(q2 + q3 + qcm3)))*(q1dot - q1dot_k))/dt - ((q2dot - q2dot_k)*(Izz3 + L3c*m3*(L3c + L2*cos(q3 + qcm3))))/dt - ((m3*L3c^2 + Izz3)*(q3dot - 

q3dot_k))/dt + L3c*g*m3*cos(q1 + q2 + q3 + qcm3) 

        ]; 

terrain
- τ

friction
-τ

model error
- τ

Nonlinear 

Plant 

+ 

_ 

Xref X 

inverse dynamics 

Inverse Dynamics is Not Trivial 

x      x 

PD ∑ 

v  + g 

J 
T M x ∑ FK 

fric τ 
Model needed 

 + terrain reactions 
u(x) 

X 
ref 
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Least-square: 1 trajectory 

Local Compensation 

• Modelling globally is hard 

• Local models are easy, but can destabalize 
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X 

X 
. 

true : 1 

mod : 1 

model: 1.1 

model: 0.9 

true : 0.9 

mod : 1 
X 

X 
ref 

Local model + Disturbance = Wrong Compensation 

• Unless tracking is perfect, a state that is far from xref will 

require a different model 

 

 

• Where does it fit in the CDM topics (adaptation, collaboration, 

structure)? 

 

 

• Are parts of the method worth pursuing, and in what area do you 

think they would be useful? 

 

• Are there other areas where similar methods would be 

applicable (particularly with respect to this group)? 

local policy (k) 

Bellman’s 

equation 

dynamics 

trajectory (k) 

dynamics 
local policy (k+1) 

trajectory (k+1) 

xref 

xref 

DDP 

local policy (k)

Bellman’s 

equation

dynamics

trajectory (k)

dynamics
local policy (k+1)

trajectory (k+1)

xref

xref

DDP

dynamics controller 
+ 

_ 

feedback improves the next policy during execution of 

the current policy 

xref 

ILC 

+ 

+ 

local policy (k) 

Model Updating & Iterative Tracking… 
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Broken red bricks 

Clay friction 

Clay friction 

1.4 meter 

Pay Dirt! 

Pay Dirt: 

Looking at Trajectories 

0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

y
 (

m
)

x (m)

workspace motion
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terrain  + τ friction  + τ 
Nonlinear 

Plant 

+ 

_ 

Xref X 

Pay Dirt: 

Looking at Trajectories 

However… Dirt is not all that it appears! 
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Future of Robotics 
 

Medical Robotics 

Conclusion and Future Research Challenges 

“Soft” robots yield “hard” problems 
Goals: 

• My dream is to achieve dynamic motion, 
 particularly of compliant systems under feedback.  

• To adapt & learn in highly dynamic environments 

• Can we robustly integrate continuous planning/control with continuum mechanics 
to extend our reach 

 

Open Questions: 

• Robustness – we would love to have guarantees of performance, but we do not 
have them for most approaches  

• Representation – how can we integrate many different types? 

• We need dynamic understanding and robust control  
(recent work in computer vision/machine learning is exciting,  
but current precision-recall curves indicate we have a long way to go) 

 

Clinically-motivated applications: 

• Surgical robotics and guided therapeutic techniques 
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Deep Brian Stimulation is Deeply Challenging 
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Accuracy is sine qua non 

• STN • PAG 

Source: Nauta, Feirtag, and Donner, Fundamental Neuroanatomy, Freeman, 1986 

Accuracy is sine qua non 

• Accuracy of Frame Based Stereotactic Placement  

via CT/MRI Comparison 

Source: Holloway, Docef, Neurosurgery 72[ONS Suppl 1]:ons47–ons57, 2013 
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DBS Targeting is Hard 

 

It has consequences… 
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Computer Aided Surgery: Lots of Potential 

• Unstructured environment (patient tissue) makes this harder 

 

Neurosurgical Robotics 
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• Biomechanics approach: 

Predict expected tissue trajectories 

 

 

 

 

 

 

 

 

Neurosurgical Robotics: 

 

ARC DP160100714 

“Soft” is “Hard” (but not impossible) 

 Many Issues: Including Craniotomy Induced Brain Shift 

S. List, UWA 
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Soft Tissue Mechanics: Brain Shift/Brain Sag 

Ex: Image-guided neurosurgery 

 

Courtesy: SPL, Harvard 

 

Brain Shift Identified in Neurosurgery Community 
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A Robotic “Plan”: Handling Brian Shift 

 

 

Treating Brain Shift Mechanically 

• Post this as a  

Biomechanics Problem 

• Non-linear Continuum 

Mechanics Problem 

 ij
V

 ijdV  fi
B

V

 uidV  fi
S

S

 uidS
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Red contours –  

Intra-operative 

 

 

Blue contours –  

Warped pre-operative  

 

 

Green contours –  

Overlap 

Biomechanics BSpline 

Mostayed et al. (2013) Annals of Biomed. Eng. 41(11), 2409-2425 

Qualitative Evaluation – Canny Edges 
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BIOMECH

RIGID

Large deformation case (10 mm) Small deformation case (3 mm) 

Garlapati et al. (2014) J Neurosurg. 120(6): 1477–1483.  

Comparison:Hausdorff Distance Metric 

• Comparison of Biomechanics-based & rigid registrations 
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Mostayed et al. (2013) Biomechanical Model as a Registration Tool for Image-Guided Neurosurgery:  

Evaluation Against BSpline Registration. Annals of Biomedical Engineering. 41(11), 2409-2425 

Qualitative Evaluation: Deformation Field 

 

 

Accuracy for Mesh-free Models 

Left: Finite Element Models 

 

 

 

Middle: Fuzzy Mesh-free Model 

 

 

 

Right : Difference of the  

simulation results  

Zhang et al. (2013) IJNMBE 29(2): 293–308 
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Targeting:  

We Already Do Careful Preoperative Planning 

The Best Laid Plans … 

Source: Burchiel, McCartney, et al., J Neurosurg 119:301–306, 2013 

Axial plane 
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Does This Suggest Steering/Path Correction? 

• Plan: • Result: 

• Stereotactic (Leksell) frames alone are not enough… 

• Brain Shift, Compliance, Drift, etc. 

In-Vivo Feedback: Incorporating MER 

Incorporating tissue signal signatures 
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What’s Next? Incorporating Stiffness: 

Visual Deformable Object Analysis  

Dansereau, Singh, Leitner, ICRA 2016 

 

What’s Next: Open Access Robotics Infrastructure for 

High-Fidelity Telesurgical Research 

ARC LE170100030 (Proposed) 
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SECaT Time! … Brought To You By the Number 5 

“4” Is Average 

• What is a 3? 
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• I shall only use my own slides 

 

• Less is more! 

– Smaller assignments 

– More time for Examples 

 

• Better organization 

– Better tutorials 

– More examples!!   

– I get that.  But, we’ve come a long way 

 

 To make this happen I need your support! 

 

 

SECaTs: Some Lessons in the Works for Next 

Year 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now Finally Some Philosophy (I am a Dr of it!!!) 

Systems: Signals, Controls…A Fundamental Yearn! 

© National Geographic. Mount Everest at night  
(the lights along the apex are the headlamps of other mountaineers) 

We keep moving forward, opening new doors, 
and doing new things because we're curious and 
curiosity keeps leading us down new paths. 
 
-Walt Disney 
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UQ Robotics: Dynamic Systems in Motion 

Planning 
Mechanics 

        of motion 

Aerial Systems 

      Bio-inspired  

                Systems 

Hanna Kurniwati  

(NUS/MIT) 

Paul Pounds 

(ANU/Yale) 

Surya Singh 

(Stanford/Syd) 

Diverse international 

research group 


