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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 

1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 

4 17-Aug Robot Inverse Kinematics & Kinetics 

5 24-Aug Robot Dynamics (Jacobeans) 

6 31-Aug Robot Sensing: Perception & Linear Observers 

7 7-Sep Robot Sensing: Single View Geometry & Lines 

8 14-Sep Robot Sensing: Feature Detection 

9 21-Sep Robot Sensing: Multiple View Geometry 

  28-Sep Study break 

10 5-Oct Motion Planning 

11 12-Oct Probabilistic Robotics: Localization & SLAM 

12 19-Oct 
Probabilistic Robotics: Planning & Control  

(State-Space/Shaping the Dynamic Response/LQR)  

13 26-Oct The Future of Robotics/Automation + Challenges + Course Review 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Final Exam! 

• 4 Questions |  60 Minutes  

• Open Book 

• Similar in nature to the 2015 Quiz 

 

Topics: 

• Position, orientation and location 
in space 

• Robot analysis  
(forward/Inverse kinematics, 
recursive Newton-Euler 
formulations, etc.) 

• Sensing geometry (including 
camera calibration) 

• Multiple-view geometry 

• Motion planning and control 

Lab 3: Robotics of a Domino Sort 

I. Playing Dominoes of a Sort • Option 2: Play Dominos 

Source https://en.wikipedia.org/wiki/Muggins#/media/File:Muggins.jpg 

http://robotics.itee.uq.edu.au/~metr4202/2015/tpl/METR4202-IndividualQuizA.pdf
http://robotics.itee.uq.edu.au/~metr4202/2015/tpl/METR4202-IndividualQuizA.pdf
https://en.wikipedia.org/wiki/Muggins/media/File:Muggins.jpg
https://en.wikipedia.org/wiki/Muggins/media/File:Muggins.jpg
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Cool Robotics Share 

White House AI Symposium 

• Report on the opportunities, 

considerations, challenges of AI 

 

 

 

 

 

 

• Related Event (similar thread):  

ETHZ Cybathlon 

 

 

 

 

 

 

Planning & Control Robotics 

• Obstacles + Dynamics 

 

 

 

 

• Partial collisions allowed! 

 

 

 

 
Source: (top) https://youtu.be/voN9CCmzxYk |  

 (bottom) https://youtu.be/LS8sa42xevA   

Source: https://www.whitehouse.gov/blog/2016/10/12/administrations-
report-future-artificial-intelligence | http://www.nbcnews.com/health/ 
health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881 

(Oct 12, 2016) 

(Oct 14, 2016) 

Integrated Planning and Control Methods… 

• A motivating problem (for agility) 

– Cart and pole in a cluttered workspace … 

 

 

https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.youtube.com/channel/UCqGx-eUykZLDKjjrwRhfilQ
https://www.youtube.com/channel/UCqGx-eUykZLDKjjrwRhfilQ
https://youtu.be/voN9CCmzxYk
https://youtu.be/voN9CCmzxYk
https://youtu.be/voN9CCmzxYk
https://youtu.be/LS8sa42xevA
https://youtu.be/LS8sa42xevA
https://youtu.be/LS8sa42xevA
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
https://www.whitehouse.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
http://www.nbcnews.com/health/health-news/brain-chip-helps-paralyzed-man-feel-his-fingers-n665881
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Outline 

1. Guest Presentation:  

Josh Song, CHARM Planning  

 

2. Probabilistic Robotics 

 

3. Sample-Based Planning 

 

4. Control (State-Space | Shaping Response | LQR) 

 

5. Integrated Planning & Control 

 

  

Control 
 

 

(Feedback is our friend!) 
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Control Theory 

• The use of feedback to regulate a signal 

 

 
Controller 

Plant 

Desired 

signal xd 

Signal x Control input u 

Error e  = x-xd 

(By convention, xd = 0) x’ = f(x,u) 

 

Model-free vs model-based 

• Two general philosophies: 

– Model-free: do not require a dynamics model to be provided  

– Model-based: do use a dynamics model during computation 

• Model-free methods:  

– Simpler (eg. PID) 

– Tend to require much more manual tuning to perform well 

• Model-based methods: 

– Can achieve good performance (optimal w.r.t. some cost function) 

– Are more complicated to implement 

– Require reasonably good models (system-specific knowledge) 

– Calibration: build a model using measurements before behaving  

– Adaptive control: “learn” parameters of the model online from sensors 
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PID control 

• Proportional-Integral-Derivative controller 

– A workhorse of 1D control systems 

– Model-free 

• Proportional Case: 

 

– 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡) 

– Negative sign assumes control acts in the same direction as x 

 

 

x 
t 

Gain 

 

PID control: Integral term 

 

• 𝑢 𝑡 =  −𝐾𝑝 𝑥 𝑡 −  𝐾𝑖 𝐼 𝑡  

• 𝐼(𝑡)  =   𝑥 𝑡 𝑑𝑡
𝑡

0
    (accumulation of errors) 

 

x 
t 

Residual steady-state errors 

driven asymptotically to 0 

Integral gain 
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PID control: Integral term: Instability 

• I adds a pole 

• If not tuned correctly  this adds instability 

• Ex: For a 2nd order system (momentum), P control 

x 
t 

Divergence 

 

PID control: Derivative term 

 

• 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡) –  𝐾𝑑 𝑥’(𝑡) 

x 

Derivative gain 
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PID control: Together 

• P+I+D: 

– 𝑢(𝑡)  =  −𝐾𝑝 𝑥(𝑡)  −  𝐾𝑖 𝐼(𝑡)  −  𝐾𝑑 𝑥’(𝑡) 

– 𝐼(𝑡)  =   𝑥 𝑡 𝑑𝑡
𝑡

0
 

 

Stability and Convergence 

• System is stable if errors stay bounded 

 

 

 

 

• System is convergent if errors -> 0 
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Example: Trajectory following 

• Say a trajectory xdes(t) has been designed 

– E.g., a rocket’s ascent, a steering path for a car, a plane’s landing 

• Apply PID control 

– u(t) = Kp (xdes(t)- x(t)) - Ki I(t) + Kd (x’des(t)-x’(t)) 

– I(t) =  𝑥𝑑𝑒𝑠 𝑡 − 𝑥 𝑡 𝑑𝑡
𝑡

0
 

• The designer of xdes needs to be knowledgeable about the 

controller’s behavior! 

xdes(t) 
x(t) 

x(t) 

 

Controller Tuning Workflow 

• Hypothesize a control policy 

• Analysis: 

– Assume a model 

– Assume disturbances to be handled 

– Test performance either through mathematical analysis, or 

through simulation 

• Go back and redesign control policy 

– Mathematical techniques give you more insight to improve 

redesign, but require more work 
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Multivariate Systems 

What about more than more interacting aspect? 

 
𝑥’ =  𝑓(𝑥, 𝑢) 
𝑥𝐗ℝ𝑛  
𝑢𝐔ℝ𝑚 

 

• Note: 𝑚  𝑛 and variables are coupled 

 This is not as easy as setting 𝑛 PID controllers  

 

 Derive a “space” of controllers?? 

 

State-Space Modelling 

(ELEC3004 Super-Summary!) 
(“Hear Ye!  It be stated”) 
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Affairs of state 

• Introductory brain-teaser: 

– If you have a dynamic system model with history (ie. 

integration) how do you represent the instantaneous state of the 

plant? 

 

Eg. how would you setup a simulation of a step response, mid-step? 

t = 0 
t 

start 

 

Introduction to state-space 

• We can identify the nodes in the system 

– These nodes contain the integrated time-history values of the 

system response 

– We call them “states” 
 

S   
1
𝑠
   

1
𝑠
 S 

−7 

1 

−12 

2 

S 

u y 
x1 x2 
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Linear system equations 

• We can represent the dynamic relationship between the 

states with a linear system: 
 

 𝑥1  = −7𝑥1 − 12𝑥2  +   𝑢 

 𝑥2  =      𝑥1 +   0𝑥2 + 0𝑢 
 

  𝑦  =      𝑥1 +   2𝑥2 + 0𝑢 

 

 

State variable transformation 

• Important note! 

– The states of a control canonical form system are not the same as 

the modal states 

– They represent the same dynamics, and give the same output, but 

the vector values are different! 

 

• However we can convert between them: 

– Consider state representations, x and q where 

 

x = Tq 

 

T is a “transformation matrix” 
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State variable transformation 

• Two homologous representations: 

and 
 

 

We can write: 

𝒙 = 𝐓𝒒 = 𝐀𝐓𝒛 + 𝐁𝑢 

𝒒 = 𝐓−𝟏𝐀𝐓𝒛 + 𝐓−𝟏𝐁𝑢 

 

Therefore, 𝐅 = 𝐓−𝟏𝐀𝐓 and 𝐆 = 𝐓−𝟏𝐁 

 

Similarly, 𝐂 = 𝐇𝐓 and 𝐷 = 𝐽  

𝒙 = 𝐀𝒙 + 𝐁𝑢 

𝑦 = 𝐂𝒙 + 𝐷𝑢 

𝒒 = 𝐅𝒒 + 𝐆𝑢 

𝑦 = 𝐇𝒒 + 𝐽𝑢 

 

Example: 

(Back To) Robot Arms 

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control” 
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Remembering the Motion Models: 

• Recall from Dynamics, the Required Joint Torque is: 

Dynamical 

Manipulator 

Inertial Tensor – 

a function of 

position and 

acceleration 

Coupled joint 

effects 

(centrifugal and 

coriolis) issues 

due to multiple 

moving joints 

Gravitational 

Effects 

Frictional Effect 

due to Joint/Link 

movement 

 

Lets simplify the model 

• This torque model is a 2nd order one (in position) lets look 

at it as a velocity model rather than positional one then it 

becomes a system of highly coupled 1st order differential 

equations 

 

 

• We will then isolate Acceleration terms (acceleration is 

the 1st derivative of velocity) 
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The State-Space Control Model: 

D-1(q) 1/s 1/s
Output

Positions 

Kinematics

b

C

h

+

+

+

Torque accel Vel pos

Friction

Coriolis

Centrifugal 

Effects

Gravitation 

Effects

Inertial Coupling

 

Setting up a Real Control 

• We will (start) by using positional error to drive our 

torque devices 

 

 

 

 

 

 

 

• This simple model is called a PE (proportional error) 

controller 

 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q
Joint Drive
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PE Controller: 

• To a 1st approximation,  = Km*I 

• Torque is proportional to motor current 

 

 

• And the Torque required is a function of ‘Inertial’ 

(Acceleration) and ‘Friction’ (velocity) effects as suggested by 

our L-E models 

 

 

  Which can be approximated as: 

 

 

 

Setting up a “Control Law” 

• We will use the positional error (as drawn in the state 

model) to develop our torque control 

• We say then for PE control: 

 

 

 

 

 

• Here, kpe is a “gain” term that guarantees sufficient current 

will be generated to develop appropriate torque based on 

observed positional error 
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Using this Control Type: 

• It is a representation of the physical system of a mass on a 

spring! 

• We say after setting our target as a ‘zero goal’ that: 

 

 

  

 the solution of which is: 

  

 

a is a function of 

the servo 

feedback as a 

function of time! 

 

State Space Model of PD: 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q
Joint Drive

K
d

dQ/dt
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PID State Space Model: 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q

K
d

dQ/dt

ki   dt

Joint Drive

 

State Model of Adjustable Controller 

+ Controller w/ Adj.

Parameters
Error Control Input

Feedback, Q
a

Q
d

+

-

Drive Position/Torque
Actual

Pos

Performance

Index

Measure

Robot Sys.

Transfer

Functions

Desired Drive

Calc. Drive

Actual Drive using

Separate Feedback

Sensors

Decision

Logic

Modifications

Kinematic/

Kinetic Models

Physical

Parameters

 



19 

State-Space  

Control Design 
 

AKA, it’s all about  𝒖   

 

 

Punchline:  it’s an Optimization   

(Algebraic Riccati equation     Nonlinear optimization    Search! …   

Just like SLAM | Motion Planning!!) 

 

State-space control design 

• Design for discrete state-space systems is just like 

the continuous case. 

– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 

such that  det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧) 

where 𝛼𝑐(𝑧) is the desired control characteristic equation 

 

Predictably, this requires the system controllability matrix 

𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
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Great, so how about control? 

• Given 𝒙 = 𝐅𝒙 + 𝐆𝑢, if we know 𝐅 and 𝐆, we can design a 

controller 𝑢 = −𝐊𝒙 such that 

eig 𝐅 − 𝐆𝐊 < 0 

 

 

 

 

 

 

• In fact, if we have full measurement and control of the states of 𝒙, 

we can position the poles of the system in arbitrary locations! 

 

(Of course, that never happens in reality.) 

 

Example: PID control 

• Consider a system parameterised by three states:  

– 𝑥1, 𝑥2, 𝑥3 

– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 

 

𝑥2is the output state of the system;  

𝑥1is the value of the integral;  

𝑥3 is the velocity. 
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• We can choose 𝐊 to move the eigenvalues of the system  

as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 

 

 

It’s straightforward to see how adding derivative gain  
𝐾3 can stabilise the system.  

 

Example: 

Inverted Pendulum 
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Digital Control 

Wikipedia,  

Cart and pole 

 

 

Inverted Pendulum 
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• The equations of motion of an inverted pendulum (under a 

small angle approximation) may be linearized as: 

𝜃 = 𝜔 

𝜔 = 𝜃 = 𝑄2𝜃 + 𝑃𝑢 

Where: 

𝑄2 =
𝑀 +𝑚

𝑀𝑙
𝑔 

𝑃 =
1

𝑀𝑙
.   

 

If we further assume unity Ml (𝑀𝑙 ≈ 1), then 𝑃 ≈ 1 

Inverted Pendulum – Equations of Motion 

 

• We then select a state-vector as:  

𝒙 =
𝜃
𝜔

, hence 𝒙 = 𝜃 

𝜔 
=

𝜔
𝜔 

 

• Hence giving a state-space model as: 

𝐴 =
0 1
𝑄2 0

,𝐵 =
0
1

 

• The resolvent of which is: 

Φ 𝑠 = 𝑠𝐼 − 𝐴 −1 =
𝑠 −1

−𝑄2 𝑠

−1

=
1

𝑠2 − 𝑄2

𝑠 1
𝑄2 𝑠

 

• And a state-transition matrix as: 

Φ 𝑡 =
cosh 𝑄𝑡

sinh 𝑄𝑡

𝑄
𝑄 𝑠𝑖𝑛ℎ 𝑄𝑡 cosh𝑄𝑡

 

 

Inverted Pendulum –State Space 
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Shaping of  

Dynamic Responses 

 

ELEC3004 Flashback: Another way to see P I|D 

• Derivative 

D provides: 

– High sensitivity 

– Responds to change  

– Adds “damping” &  

∴ permits larger KP 

– Noise sensitive 

– Not used alone 
(∵ its on rate change 

 of error – by itself it  

wouldn’t get there) 

 “Diet Coke of control” 

• Integral 

– Eliminates offsets 

(makes regulation ) 

– Leads to Oscillatory 

behaviour 

– Adds an “order” but 

instability 
(Makes a 2nd order system 3rd order) 

 

 

 “Interesting cake of control” 
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PID control 

• Consider a system parameterised by three states:  

– 𝑥1, 𝑥2, 𝑥3 

– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 

𝑥2is the output state of the system;  

𝑥1is the value of the integral;  

𝑥3 is the velocity. 

 

PID control [2] 

• We can choose 𝐊 to move the eigenvalues of the system  

as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 

 

 

It’s straightforward to see how adding derivative gain  
𝐾3 can stabilise the system.  
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Implementation of Digital PID Controllers 

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1  

 

 

Implementation of Digital PID Controllers (2) 

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1  
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Let’s Generalize This: Shaping the Dynamic Response 

• A method of designing a control system for a process in 

which all the state variables are accessible for 

Measurement 

 This method is also known as pole-placement 

 

• Theory: 

– We will find that in a controllable system, with all the state variables 

accessible for measurement, it is possible to place the closed-loop poles 

anywhere we wish in the complex s plane! 

• Practice: 

– Unfortunately, however, what can be attained in principle may not be 

attainable in practice. Speeding the response of a  sluggish system requires 

the use of large control signals which the actuator (or power supply) may not 

be capable of delivering. And, control system gains are very sensitive to the 

location of the open-loop poles 
 

Pole Placement 
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• FPW has a slightly different notation: 

Pole Placement (Following FPW – Chapter 6) 

 

• Start with a simple feedback control law (“controller”) 

 

 

• It’s actually a regulator 

∵ it does not allow for a reference input to the system. 

(there is no “reference” r  (r = 0)) 

 

•  Substitute in the difference equation 

𝑥 𝑘 + 1 = Φ𝑥 𝑘 − Γ𝐾𝑥(𝑘) 

• 𝒵 Transform: 

𝑧𝐼 − Φ + Γ𝐾 𝑋 𝑧 = 0 

Characteristic Eqn:   

det 𝑧𝐼 − Φ + Γ𝐾 = 0 

Pole Placement 

 

http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
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Pole placement: Big idea:  

• Arbitrarily select the desired root locations of the closed-

loop system and see if the approach will work.  

• AKA: full state feedback 

∵ enough parameters to influence all the closed-loop poles 

• Finding the elements of K so that the roots are in the 

desired locations. Unlike classical design, where we 

iterated on parameters in the compensator (hoping) to find 

acceptable root locations, the full state feedback, pole-

placement approach guarantees success and allows us to 

arbitrarily pick any root locations, providing that n roots 

are specified for an nth-order system. 

Pole Placement 

 

• The energy (and sensitivity) moves around  

(in this case in “frequency”) 

 

 

 

 

 

 

• Sensitivity reduction at low frequency unavoidably leads 

to sensitivity increase at higher frequencies. 

 

 

 

 

 

 

 

Meaning – No Free Lunch 

Source: Gunter Stein's interpretation of the water bed effect – G. Stein, IEEE Control Systems Magazine, 2003. 
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• Given: 

𝑧𝑖 = 𝛽1, 𝛽2, 𝛽3, … 

 

 

• This gives the desired control-characteristic equation as: 

𝑎𝑐 𝑧 = 𝑧 − 𝛽1 𝑧 − 𝛽2 𝑧 − 𝛽3 … = 

 

 

• Now we “just solve” for K and “bingo” 

Back to Pole Placement 

 

Pole Placement Example (FPW p. 241) 
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Pole Placement Example (FPW p. 241) 

 

Pole Placement Example (FPW p. 241) 
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Ackermann's Formula (FPW p. 245) 

• Gains maybe approximated with: 

 

 

• Where: C = controllability matrix, n is the order of the 

system (or number of state elements) and 𝛼𝑐: 

 

 

 

 

– 𝛼𝑖: coefficients of the desired characteristic equation 

 

Ackermann's Formula Example (FPW p.246) 
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Viewing State-Space as 

a Tool for Solving ODEs 

Simultaneously 

 

State Space as an ODE 

• The basic mathematical model for an LTI system consists 

of the state differential equation 

 

 

 

• The solution is can be expressed as a sum of terms owing 

to the initial state and to the input respectively: 

 

 

 

• This is a first-order solution similar to what we expect 
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State Equation Solution: Matrix Exponential 

• The first term can be handled via a Taylor Series  

 

 

 This case is known as the matrix exponential function 

 Also referred to as the state-transition matrix, 

 denoted by Φ (t, t0): 

 

•  The state-transition matrix satisfies the homogeneous state 

equation, thus, it represents the free response of the system. That is, 

it governs the response that is excited by the initial conditions only 

 

Output Equation Solution 

• Having the solution for the complete state response, a 

solution for the complete output equation can be obtained 

as: 
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State Equation Solution 

• Thus, the solution to the unforced system (u=0): 

 
 

 

Note: the term ϕij(t) can be interpreted as the response of the ith state variable 

due to an initial condition on the jth state variable when there are zero initial 

conditions on all other states. 

• The solution of the state differential equation can also be 

obtained using the Laplace transform: 

 

 

 

 
 

Properties of the Matrix Exponential 

• Note that eAt is just a notation used to represent a power series.  

 

• Example 1: Consider the following 4x4 matrix 
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Properties of the matrix exponential 

 

Using this to Solve State Space Problems 

• Example:  

– Solve the following linear second-order ordinary differential  

 

– Consider the input u(t) is a step of magnitude 3  

and the initial conditions  
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State-Space Exercise 

 

 

State-Space Exercise 
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LQR 

 

Linear Quadratic Regulator 

 

• 𝑥’ =  𝐴𝑥 +  𝐵𝑢 

 

• Objective: minimize quadratic cost 

 𝑥𝑇𝑄 𝑥 +  𝑢𝑇𝑅 𝑢 𝑑𝑡 
 

 

 

• Over an infinite horizon 

 

Error term “Effort” penalization 
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Closed form LQR solution 

• Closed form solution 

u = -K x, with K = R-1BP 

• Where P is a symmetric matrix that solves the Riccati 

equation 

– ATP + PA – PBR-1BTP + Q = 0 

– Derivation: calculus of variations 

• Packages available for finding solution 

 

Toy Nonlinear Systems 

 

Cart-pole Acrobot 

Mountain car 
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From Linear to Nonlinear  
• We know how to solve (assuming gt, Ut, Xt convex): 

 

 

   

• How about nonlinear dynamics:  

 

Shooting Methods (feasible) 

Iterate for i=1, 2, 3, … 

  Execute                (from solving (1)) 

  Linearize around resulting trajectory 

  Solve (1) for current linearization 

Collocation Methods (infeasible) 

Iterate for i=1, 2, 3, … 

          --- (no execution)--- 

  Linearize around current solution of (1) 

  Solve (1) for current linearization 

 

 

(1) 

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using 

linearization, linearize equality constraints, convex-quadratic approximate objective function 

 

Model Predictive Control 

• Given:  

• For k=0, 1, 2, …, T 

– Solve 

 

 

 

– Execute uk 

– Observe resulting state, 
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Iterative LQR versus Sequential Convex 

Programming 
• Both can solve 

 
 

 

 

• Can run iterative LQR both as a shooting method or as a collocation method, it’s just a 

different way of executing “Solve (1) for current linearization.”  In case of shooting, the 

sequence of linear feedback controllers found can be used for (closed-loop) execution. 

 

• Iterative LQR might need some outer iterations, adjusting “t” of the log barrier 

 

 

   

 

Shooting Methods 

Iterate for i=1, 2, 3, … 

  Execute feedback controller (from solving (1)) 

  Linearize around resulting trajectory 

  Solve (1) for current linearization 

Collocation Methods 

Iterate for i=1, 2, 3, … 

          --- (no execution)--- 

  Linearize around current solution of (1) 

  Solve (1) for current linearization 

 

 

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using 

linearization, linearize equality constraints, convex-quadratic approximate objective function 

 

Example Shooting 
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Example Collocation 

 

+ : 

At all times the sequence of controls is meaningful, and the 

objective function optimized directly corresponds to the 

current control sequence 

-- : 

For unstable systems, need to run feedback controller during 

forward simulation 
– Why?  Open loop sequence of control inputs computed for the linearized 

system will not be perfect for the nonlinear system.  If the nonlinear system is 

unstable, open loop execution would give poor performance. 

– Fixes: 

• Run Model Predictive Control for forward simulation 

• Compute a linear feedback controller from the 2nd order Taylor expansion 

at the optimum 

Practical Benefits and Issues with Shooting 
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+ : 

Can initialize with infeasible trajectory.  Hence if you have a 

rough  idea of a sequence of states that would form a 

reasonable solution,  you can initialize with this sequence of 

states without needing to know a control sequence that 

would lead through them, and without needing to make them 

consistent with the dynamics 
 

-- : 

Sequence of control inputs and states might never converge 

onto a feasible sequence  

Practical Benefits and Issues with Collocation 

 

Direct policy synthesis: Optimal control 

• Input: cost function J(x), estimated dynamics f(x,u), finite 

state/control spaces X, U 

 

• Two basic classes: 

– Trajectory optimization: Hypothesize control sequence u(t), 

simulate to get x(t), perform optimization to improve u(t), repeat. 

– Output: optimal trajectory u(t) (in practice, only a locally optimal 

solution is found) 

– Dynamic programming: Discretize state and control spaces, 

form a discrete search problem, and solve it.  

– Output: Optimal policy u(x) across all of X 
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Discrete Search example 

• Split X, U into cells x1,…,xn, u1,…,um 

• Build transition function xj = f(xi,uk)dt for all i,k 

• State machine with costs dt J(xi) for staying in state I 

• Find u(xi) that minimizes sum 

of total costs. 

• Value iteration: repeated 

dynamic programming over 

V(xi) = sum of total future 

costs 

Value function for 1-joint acrobot 

 

Receding Horizon Control (aka model predictive 

control) 
 

... 

horizon 1 horizon h 
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Integrated 

Planning & Control 
 

 

(Hooray!!!) 

 

Integrated Planning and Control Methods… 

• A motivating problem (for agility) 

– Cart and pole in a cluttered workspace … 
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Trajectory Generation with Constraints: 

Solutions from the Robotics Domain 
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Trajectory Optimization: 

 Integrated Planning & Feedback: 

Planning 

Methods 
Trajectory 

Optimization 

 

• Direct Collocation  

(x: pchip poly, u: lin poly) 

• Lyapunov f (POTools) 

• SNOPT 

• exploits: LQR can be 

solved efficiently 

LQG Control 

Functions 

 

Few Questions Before Starting… 

• Can it possibly be this hard?  

 Yes! 
 (1) Dynamic systems are nonlinear  

 (2) Decision-theoretic planning problems are combinatorial 

 

• Underactuated system?  
 [≜ control input cannot drive the state to any arbitrary direction] 

  DOF>actuators: car-like robot, airplane, cart and pole, etc   
   Actuator saturation! 

 

• Why Now? 

1. State-of-the-art  (LQR-Trees 2009 RSS best paper, kNitro, 
SDPARA).   

2. Convex Optimization (c/o relaxation) is ~ “online-able” 
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Viewing This From a Controls & Policy Perspective 

Core Idea: 
Feedback motion planning (Assistance function) built from a prior model 
and updated online  

 

Gain-Scheduled RRT 

• Rapidly Exploring Random Trees (RRT) (Background): 

 

Features (+): 

1. Solve a control problem 

2. Scalable 

3. Constrained environments 

 

Concerns (--): 

4. Works poorly under  

differential constraints 

5. Hard to avoid the connection gap 

 

𝑞(𝑚) 

𝑞  (𝑚) 
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Gain-Scheduled RRT: RRT Connection Gap 

• A RRT solution rarely reaches the goal (or connect the 

two trees) with zero error 

 

 

Gain-Scheduled RRT: Relaxing the Search 

Backwards tree 

Forward tree 

goal 

Feedback system 
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Gain-Scheduled RRT: RoA & Verification 

• Find a candidate 

 

•  

Maximize candidate ( ρ ) 

 

 

 

 

• Verify candidate  

**R. Tedrake, “LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees”, RSS 2009 

V(x) = 

In the LQR case:   J: optimal cost-to-go S: Algebraic Ricatti Eq. 

Sum of squares relaxation 

goal 

 

Gain-Scheduled RRT: Result 

• Cart and pole in a cluttered workspace … 

 

Same initial and final conditions. 

Every solution is different due to the random sampling 

obstacle 

Cart stopper Cart stopper 

 

RRT_vs_GS_sim10.mpg
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Gain-Scheduled RRT: Result 

• Cart and pole in a cluttered workspace … 

 

 

Conclusion 

No one answer… 

Much left to do! 

 
(it’s not really magic ) 

 


