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Probabilistic Robotics:
Planning & Control
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Schedule of Events

Week | Date Lecture (W: 12:05-1:50, 50-N202)
1 27-Jul [Introduction
Representing Position & Orientation & State
(Frames, Transformation Matrices & Affine Transformations)
10-Aug |Robot Kinematics Review (& Ekka Day)
17-Aug [Robot Inverse Kinematics & Kinetics
24-Aug [Robot Dynamics (Jacobeans)
31-Aug [Robot Sensing: Perception & Linear Observers
7-Sep |Robot Sensing: Single View Geometry & Lines
14-Sep [Robot Sensing: Feature Detection
21-Sep [Robot Sensing: Multiple View Geometry
28-Sep Study break
10 | 5-Oct [Motion Planning
11 | 12-Oct [Probabilistic Robotics: Localization & SLAM
Probabilistic Robotics: Planning & Control
(State-Space/Shaping the Dynamic Response/LQR)
13 | 26-Oct [The Future of Robotics/Automation + Challenges + Course Review

3-Aug

OoN O~ W N

12 |19-Oct
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Final Exam!

+ 4 Questions | 60 Minutes

® Open Book THE UNIVERSITY &,
.. . . OF QUEENSLAND il
« Similar in nature to the 2015 Quiz bk —
Top i CS: School of Information r:;:’:;:::;’:: Electrical Engineering
+ Position, orientation and location S
in space e

» Robot analysis
(forward/Inverse kinematics,
recursive Newton-Euler
formulations, etc.)

 Sensing geometry (including
camera calibration)

» Multiple-view geometry Q

+ Motion planning and control ~~ =~

Tesal
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Lab 3: Robotics of a Domino Sort

I. Playing Dominoes of a Sort « Qption 2: Play Dominos

e Ny
S P
s -3
& 6 R
sord
NN
N o /e
v
¢ %
N\
Source https://en.wikipedia. ia/File:Muggins.jpg
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Cool Robotics Share _ _
Planning & Control Robotics

White House Al Symposium |4~ Obstacles + Dynamics \
» Report on the opportunities,

Fast and Accurate Knife-Edge

ConSIderatlonS1 Cha”enges Of Al Maneuvers for Autonomous Aircraft

Hu,
1

Partial collisions allowed!

Bio-inspired Swarms of
Small Aerial Robots

* Related Event (similar thread):
ETHZ Cybathlon

(Oct 14, 2016)
Source: (top) ht

) https://youtu.be/voN9CCmzxYk |
(bottom) https://youtu.be/LS8sad42xevA
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Integrated Planning and Control Methods...
« A motivating problem (for agility)

— Cart and pole in a cluttered workspace ...

Q? METR 4202: Robotics October 19, 2016 - 6
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Outline

1. Guest Presentation:
Josh Song, CHARM Planning

4. Control (State-Space | Shaping Response | LQR)

5. Integrated Planning & Control

=

]

L
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Control

(Feedback is our friend!)




Control Theory
» The use of feedback to regulate a signal

Desired
signal x4

Signal x Control input u

/ Plant

Errore =x-Xy4

(By convention, x4 = 0) X = f(x,u)

§? METR 4202: Robotics October 19, 2016 - 9

Model-free vs model-based

» Two general philosophies:
— Model-free: do not require a dynamics model to be provided
— Model-based: do use a dynamics model during computation
* Model-free methods:
— Simpler (eg. PID)
— Tend to require much more manual tuning to perform well
* Model-based methods:
Can achieve good performance (optimal w.r.t. some cost function)
Are more complicated to implement
Require reasonably good models (system-specific knowledge)
Calibration: build a model using measurements before behaving

Adaptive control: “learn” parameters of the model online from sensors

Q? METR 4202: Robotics October 19, 2016 -10




P D control

 Proportional- -Derivative controller
— A workhorse of 1D control systems
— Model-free

 Proportional Case:

Gain

-u(t) = —K,x(t)
— Negative sign assumes control acts in the same direction as x

TTT?-....

X t

§®? METR 4202: Robotics October 19, 2016 -11

P'D control: Integral term

Integral gain
o u(t) = —K,x(t) — K, I(t)

e I(t) = fotx(t)dt (accumulation of errors)

—F—w
0
lee—0O)

72¢ 00
lTIT t

Residual steady-state errors
driven asymptotically to O

Q? METR 4202: Robotics October 19, 2016 -12




P'D control: Integral term: Instability

+ ladds apole
« If not tuned correctly - this adds instability
« Ex: For a 2" order system (momentum), P control

o ©
e
e
Divergence
kS -
X
< . :
e
5}
@ METR 4202: Robotics October 19, 2016 -13
P'D control: Derivative term
Derivative gain
e u(t) = —K,x(t) - K;x'(¢t)
TAT\TT\‘%\ T /. (@) ®

X R 4

qp METR 4202: Robotics
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P'D control: Together

. P+I+D:
- u(t) = —K,x(t) — K, I(t) — K, x(t)

- I(t) = [;x(t)dt y

Ki=2
1.5
Kp=05
Kp=2 1
1 t —
‘ W
N na Kp=1 Ki=1 kd=1
Kp=1Ki=1Kd=11%5
referance signal
Kd=

4 B g 10 12 14 18 18 20
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Stability and Convergence
 System is stable if errors stay bounded

-
N—

 System is convergent if errors -> 0

/_\\/

% METR 4202: Robotics October 19, 2016 -16
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Example: Trajectory following
« Say a trajectory X .(t) has been designed
— E.g., arocket’s ascent, a steering path for a car, a plane’s landing
» Apply PID control
— u(t) = K (Xges(t)- X(1)) - K 1(t) + Ky (xges(1)-X(1))
1) = [} Xges () — x(D)dt
« The designer of X4, needs to be knowledgeable about the
controller’s behavior!

§®? METR 4202: Robotics October 19, 2016 -17

Controller Tuning Workflow

« Hypothesize a control policy
 Analysis:
— Assume a model
— Assume disturbances to be handled
— Test performance either through mathematical analysis, or
through simulation
 Go back and redesign control policy

— Mathematical techniques give you more insight to improve
redesign, but require more work

Q? METR 4202: Robotics October 19, 2016 -18




Multivariate Systems
What about more than more interacting aspect?

x = f(x,u)
xeXcR"
ueUcR™

* Note: m = n and variables are coupled
—> This is not as easy as setting n PID controllers

=» Derive a “space” of controllers??

7
O
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State-Space Modelling

(ELEC3004 Super-Summary!)

(“Hear Ye! It be stated”)

10



Affairs of state

* Introductory brain-teaser:

— If you have a dynamic system model with history (ie.
integration) how do you represent the instantaneous state of the
plant?

Eg. how would you setup a simulation of a step response, mid-step?

start

q@? METR 4202: Robotics October 19, 2016 -21

Introduction to state-space

« We can identify the nodes in the system

— These nodes contain the integrated time-history values of the
system response

— We call them “states”

1
Xy Xy %
u D 2 Yy

—-12

P

(A

qp METR 4202: Robotics October 19, 2016 -22
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Linear system equations

« We can represent the dynamic relationship between the
states with a linear system:

.X:l = _7X1 — 12x2 + u
.X:Z - x1 + OxZ + Ou
y = x1+ 2x,+0u
@ METR 4202: Robotics October 19, 2016 -23

State variable transformation

 Important note!

— The states of a control canonical form system are not the same as
the modal states

— They represent the same dynamics, and give the same output, but
the vector values are different!

» However we can convert between them:
— Consider state representations, x and g where

x=Tq

T is a “transformation matrix”

Q? METR 4202: Robotics October 19, 2016 -24
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State variable transformation

» Two homologous representations:
x = Ax + Bu and q=Fq+ Gu
y=Cx+ Du y=Hq+Ju

We can write:
X =Tq= ATz +Bu
qg=T ATz + T 1Bu

[Therefore, F=T 1ATandG=T 1B ]

Similarly, C=HTand D =]

Y, METR 4202: Robotics ctober 19, 2016 -2
@ METR Roboti ] 19,2016 -25

Example:

(Back To) Robot Arms

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control”




Remembering the Motion Models:

 Recall from Dynamics, the Required Joint Torque is:

7. =D (q) g+ Ci(q,q;) +h(q) +b(q)
Dynanicel - R COUBIEGIONE

Inertial Tensor — (centrifugal and

a function of coriolis) issues
position and due to multiple
acceleration moving joints

Frictional Effect
due to Joint/Link
movement

§? METR 4202: Robotics
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Lets simplify the model

« This torque model is a 2" order one (in position) lets look
at it as a velocity model rather than positional one then it
becomes a system of highly coupled 1%t order differential

equations

« We will then isolate Acceleration terms (acceleration is

the 1%t derivative of velocity)

a=1v=q= D;(q) (r; — Ci(g,4;) — h(q) —b(d1))

cp METR 4202: Robotics

October 19, 2016 -28
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The State-Space Control Model:

Inertial Coupling

1/s }4@1—

. Friction b
L
Coriolis
+ Centrifugal c
B Effects
Gravitation h
Effects

q@? METR 4202: Robotics
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Setting up a Real Control

« We will (start) by using positional error to drive our

torque devices

State Space Model,
Generalized

Feedback, Q,

e TOFCJUE Needeu_>

Jgint Dri%e

 This simple model is called a PE (proportional error)

controller

qp METR 4202: Robotics
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PE Controller:

« To a 1t approximation, T = K *1

 Torque is proportional to motor current

* And the Torque required is a function of ‘Inertial’
(Acceleration) and ‘Friction’ (velocity) effects as suggested by
our L-E models

- Which can be approximated as:

Kmlm = Jeq(j + Feqq

q@? METR 4202: Robotics October 19, 2016 -31

Setting up a “Control Law”

« We will use the positional error (as drawn in the state
model) to develop our torque control

« We say then for PE control:

T X kpe(gd — 9(1)

* Here, ky is a “gain” term that guarantees sufficient current
will be generated to develop appropriate torque based on
observed positional error

Q? METR 4202: Robotics October 19, 2016 -32
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Using this Control Type:

* Itis arepresentation of the physical system of a mass on a
spring!
» We say after setting our target as a ‘zero goal’ that:

—kpe *x 0 = JO + FO

the solution of which is:

0, is a function of
the servo

feedback as a
function of time!

METR 4202: Robotics October 19, 2016 -33

Gl

State Space Model of PD:

+ State Space Model, Ifint Drive
_Qd + Ermr—’{ K, 'y > Generalized frm TOIqUE Needled e j\\ Q
A
Kd

dQ/dt

Feedback, Q,

October 19, 2016 -34

q@ METR 4202: Robotics
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PID State Space Model:

State Space Model,

+
—Q, + Error—»{ K, y Generalized

dQ/dt

Feedback, Q,

October 19, 2016 -35
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State Model of Adjustable Controller

Kinematic/
o Kinetic Models
- Physical
| Parameters
A 4

Controller w/ Adj Robot Sys. et
- + Error=p, )L contro Inputemefp|  TrANSfEr e Drive Pcsll\oanorque—HAcma‘
Parameters Functions Fos.

A T |
Calchrlve

Modifications
Desired Drive

T Performance Actual Drive using
Index | e Seeparratte Feedback
Sensors

Measure

Decision
Logic

7'y

Feedback, Q,

October 19, 2016 -36
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State-Space

Control Design

AKA, it’s all about U ©

Punchline: it’s an Optimization
(Algebraic Riccati equation = Nonlinear optimization = Search! ...
Just like SLAM | Motion Planning!!)

State-space control design

« Design for discrete state-space systems is just like
the continuous case.

— Apply linear state-variable feedback:
u=—Kx
such that det(zl — ® +T'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[T &r o&o?r ... on1r] to be full-rank.

Q@ METR 4202: Robotics October 19, 2016 -38
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Great, so how about control?

+ Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F —GK) < 0

* In fact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

% METR 4202: Robotics October 19, 2016 -39
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Example: PID control
« Consider a system parameterised by three states:

— X1,X2,X3
— where x, = x; and x5 = X,

1
xX= 1
-2

y=1[0 1 O0]x+0u

x — Ku

X, 1S the output state of the system;
x11S the value of the integral;
x5 1S the velocity.

qp METR 4202: Robotics October 19, 2016 -4(
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» We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
—2—K;
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

7
O
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Example:

Inverted Pendulum

21



Digital Control

%M!f + %ml‘; —mgfcost

hors 1t eoky o he s h lcky ftho it e . 1.0 U on b
et oo § i ey o e s v s e o
[
. .
d d
= (d—(x ~t5n0)) + (& (ecost)
— — it it
Simplifying the expression for V3 leads to:
oF = & — 2ib cos + 6
e Logargants nn ren

1 . 1 -
L= (M4 m) i = mbifcost + zmé* — mgfeosd

and the equations of mtion are:

d oL

Ao
doL_oL_,
dtag 90

substiating [ inthess squations and simpifing eads o the squations tat describ ths motion o
(M +m) & — mblcosd + ml6?sing = F
(6 - gsind = i cosd

. .

80

m

Wikipedia, o

Cart and pole T
=

]

ldeg]
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Inverted Pendulum

Velocity pick-off

—>w

1 1
L= =Mv} + =mvi —mglcosd

2 2

whara Ty is the velocity of the cart and U is the velocity of the point mass 72. U4 and Uz can be
expressed in terms of x and ¢ by writing the velocity as the first derivative of the position;

2 -2

v =T

d Pod :
wl = (E(x — £sin 6‘)) + (E(ﬂ cosﬁ'))

Simplifying the expression for Vg leads to:

v? = &® — 2008 cosd + (26

The Lagrangian is now given by

1 : 1 :

L=5(M+ m) & — méid cost + Emﬁzﬂz — mglcosf
and the equations of mation are:

dé .

o L,

dt gz  ox

QoL L _,

dtge 98

substituting [ in these equations and simplifying leads to the equations that describe the motion o

(M +m) & — mili cos + mf)®sind = F
{0 — gsint = & cost)

N\ METR 4202: Robotics

October 19, 2016 -44
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Inverted Pendulum — Equations of Motion

 The equations of motion of an inverted pendulum (under a
small angle approximation) may be linearized as:
6=0w
o =06 =0%§ +Pu

s M+m
1
P=-—

Where:

If we further assume unity Ml (Ml = 1),thenP = 1

q@? METR 4202: Robotics October 19, 2016 -45

Inverted Pendulum —State Space
» We then select a state-vector as:

16 . [a] _[w

x= [w] hence x = [w = [w]

» Hence giving a state-space model as:

0 11, [0

2 0]13 - ]

A= 0 1
« The resolvent of which is
_ [ s —-1171 1 s 1

PO =GI=-D7=]_p2 ] =m[Q2 S]

« And a state-transition matrix as:
sinh Qt
cosh Qt
Q
Q sinh Qt cosh Qt

d(t) =

Q? METR 4202: Robotics October 19, 2016 -46
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Shaping of

Dynamic Responses

ELEC3004 Flashback: Another way to see P 1|D

 Derivative * Integral

D provides: — Eliminates offsets
— High sensitivity (makes regulation ©)
— Responds to change — Leads to Oscillatory

= permits larger Ko — Adds an “order” but

i i instability

— Noise sensitive (Makes a 2™ order system 39 order)
— Not used alone

( its on rate change
of error — by itself it
wouldn’t get there)

- “Diet Coke of control

- “Interesting cake of control”

% METR 4202: Robotics October 19, 2016
N
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PID control
« Consider a system parameterised by three states:

- X1,X2,X3
— where Xy = 56'1 and X3 = 56'2

1
x= 1
-2

y=1[0 1 0]x+0u
X, 1S the output state of the system;
x41s the value of the integral;
x5 IS the velocity.

x—Ku

q@? METR 4202: Robotics October 19, 2016 -49

PID control [2]

« We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
—2— K,
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

qp METR 4202: Robotics October 19, 2016 -50
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Implementation of Digital PID Controllers

We will consider the PID controller with an s-domain transfer function
U(s)
X(s)

K
Gus) = Kp + TI + Kps. (13.54)

We can determine a digital implementation of this controller by using a discrete
approximation for the derivative and integration. For the time derivative, we use

the backward difference rule

u(kT) = fi—f . %(x(kT) — x[(k — DTY). (13.55)

The z-transform of Equation (13.55) is then

-1

ﬁTz X(2) = z

Tz

() - Lx ().

The integration of x(f) can be represented by the forward-rectangular integration at

t = kT as

u(kT) = u[(k — 1)T] + Tx(kT), (13.56)

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

§? METR 4202: Robotics
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Implementation of Digital PID Controllers (2)
where u(kT) is the output of the integrator at t = kT The z-transform of Equation
(13.56) is
U(z) = 2 'U(2) + TX(2),
and the transfer function is then

U@ _ Tz

X@ z-1

Hence, the z-domain transfer function of the PID controller is

Kz o oz-1
z—1 Do -

Glz) = Kp + (13.57)

The complete difference equation algorithm that provides the PID controller is
obtained by adding the three terms to obtain [we use x(k7) = x(k)]

u(k) = Kpx(k) + K [u(k — 1) + Tx(k)] + (Kp/T)[x(k) — x(k — 1)]
= |Kp + K, T + (Kp/T)|x(k) — KpTx(k — 1) + Kpu(k —1).  (13.58)

Equation (13.58) can be implemented using a digital computer or microprocessor.
Of course, we can obtain a PI or PD controller by setting an appropriate gain equal
to zero.

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

cp METR 4202: Robotics
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Let’s Generalize This: Shaping the Dynamic Response

« A method of designing a control system for a process in
which all the state variables are accessible for
Measurement

=>» This method is also known as pole-placement

» Theory:

—  We will find that in a controllable system, with all the state variables
accessible for measurement, it is possible to place the closed-loop poles
anywhere we wish in the complex s plane!

» Practice:

—  Unfortunately, however, what can be attained in principle may not be
attainable in practice. Speeding the response of a sluggish system requires
the use of large control signals which the actuator (or power supply) may not

be capable of delivering. And, control system gains are very sensitive to the
location of the open-loop poles

=

METR 4202: Robotics October 19, 2016 -53

K¢
L

Pole Placement

27



Pole Placement (Following FPW — Chapter 6)

» FPW has a slightly different notation:
x = Fx + Gu,
y = Hx.
x(k + 1) = ®x(k) + Tu(k),
y(k) = Hx(k),

FT
d=¢"",

77
I’:f eF1dnG,
0
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Pole Placement
« Start with a simple feedback control law (“controller”)

I
w=-Kx=—[KKy...] | 22

 It’s actually a regulator
it does not allow for a reference input to the system.
(there is no “reference” r (r = 0))

 Substitute in the difference equation
x(k +1) = dx(k) — TKx(k)
« Z Transform:
(zZI —Pd+TK)X(z) =0
=>» Characteristic Eqgn:
det|z —® +TK| =0
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Pole Placement

Pole placement: Big idea:

« Arbitrarily select the desired root locations of the closed-
loop system and see if the approach will work.

« AKA: full state feedback
- enough parameters to influence all the closed-loop poles

» Finding the elements of K so that the roots are in the
desired locations. Unlike classical design, where we
iterated on parameters in the compensator (hoping) to find
acceptable root locations, the full state feedback, pole-
placement approach guarantees success and allows us to
arbitrarily pick any root locations, providing that n roots
are specified for an nt"-order system.
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Meaning — No Free Lunch

« The energy (and sensitivity) moves around
(in this case in “frequency”)

Serious design

Frequency

« Sensitivity reduction at low frequency unavoidably leads
to sensitivity increase at higher frequencies.

Source: Gunter Stein's interpretation of the water bed effect — G. Stein, IEEE Control Systems Magazine, 2003.
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Back to Pole Placement

* Given:

Zi = :811 ﬁZﬂ :831

 This gives the desired control-characteristic equation as:

ac(z) =(z—p)(z—B)(z—Pp3)..=

* Now we “just solve” for K and “bingo”
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Pole Placement Example (FPW p. 241)

Example 6.1: Suppose we want to design a control law for the
satellite attitude-control system described by (2.45) with @ = [z; @3]
Example 2.13 showed that the discrete model for this system is

@:[B ﬂ and r:[TQT/ﬂ.

We want to pick z-plane roots of the closed-loop characteristic equa-
tion so that the equivalent s-plane roots have a damping ratio of
¢ = 0.5 and real part of s = —1.8 rad/sec (i.c., s = —1.8 £ 53.12
rad/sec). Using z = e*T with a sample period of 7' = 0.1 sec, we find
that z = 0.8 + j0.25, as shown in Fig. 6.1. The desired characteristic

equation is then
z2 —1.62+0.70 =0, (6.9)
and the evaluation of (6.7) for any control law K leads to

z[l “] ll T]+[T;,/2Jfl<1 1{2]‘20

det (2145 4 0 1

or

22+ (TKy + (T2)2)Ky — 2)z + (T%/2)Ky — TKz +1=0. (6.10)
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Pole Placement Example (FPW p. 241)

Equating coefficients in (6.9) and (6.10) with like powers of z, we
obtain two simultaneous equations in‘ the two unknown elements of

K:
TKy+ (T?/2)K) —2 = —1.6,
(T?/2)K1 — TKy +1 = 0.70,

which are easily solved for the coefficients and evaluated for 7' = 0.1
sec:

0.10 0.35
Kl = ;172*

=10, K, = 5 ke 3.5.
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Pole Placement Example (FPW p. 241)

I | |
! | | I

z = plane loci of roots of constant { and w,, A control roots
s =—tw, t ju,/—¢? A\ estimator roots
z=¢Ts

T = sampling period
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Ackermann's Formula (FPW p. 245)
» Gains maybe approximated with:

[K=[0..0 T & &T.. 8" 'T|'a(®)

« Where: C = controllability matrix, n is the order of the
system (or number of state elements) and «a,:

C=[ &r..]

ae(B) = B" + a;B" L + @@ 2+ 4 o],

- a;oehelfizibikso®ite TEGir=e charartefislid-equation.
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Ackermann's Formula Example (FPW p.246)

Example 6.2: Applying Ackermann’s formula to the satellite at-
titude-control system of Example 6.1, we find from (6.9) that

ay; = —1.6, ay = +0.70,

and therefore

win=[s 7]l T]ouny - [% 87

Furthermore, we find that
_[Tism 3722
r q:r1_{ B8 ]
and

r cprrlzl/Tz[ 1 +3T/2]

1 -T2
and finally

K = [K; K] = (1/T))[0 1]{’1 3T/2} 10.1 0.41']

1 -7/24[0 o1
therefore
1
[K1 Ko] = ﬁ[0.1 0.357)
=[10 3.3],

which is the same result as that obtained earlier.
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Viewing State-Space as

a Tool for Solving ODEs
Simultaneously

State Space as an ODE

 The basic mathematical model for an LTI system consists
of the state differential equation

(1) =Ax())+Buw)  x(i))=x,
v(t) = Cx(t)+ Duft)

« The solution is can be expressed as a sum of terms owing
to the initial state and to the input respectively:

x(1)=e"x, + L e bu(r)dr y(t)=ce"x, + Jo ce® by (T)d T+ du(t)
— ———

zero-input response  zero-state response

 This is a first-order solution similar to what we expect
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State Equation Solution: Matrix Exponential

i . o e
x(t) 4 e x [D EObu(nydr p(t)=ce"x, + Jv e Obu(T)dt + du(r)

 The first term can be handled via a Taylor Series

A= %A”(r—r[))" :I+A(r—r0]+%A3(r—r0)2+%A3(f—r[,)3 +..

[

e

=

=0

—> This case is known as the matrix exponential function
- Also referred to as the state-transition matrix,
denoted by @ (t, t,):

X(1) = ®(1)x, + [ ®(-7)Bu(7)dr

Ji

» The state-transition matrix satisfies the homogeneous state
equation, thus, it represents the free response of the system. That is,
it governs the response that is excited by the initial conditions only
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Output Equation Solution

 Having the solution for the complete state response, a
solution for the complete output equation can be obtained
as:

Vi) =Ce*'x, + ‘.r Ce**Bu(7)dt + Du(r)
Iy

i_‘._’
zero-input response: y,;(t) Yzs(t): zero-state response
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State Equation Solution
» Thus, the solution to the unforced system (u=0):

x(H) A - e [ x (0
x,(0) _ Gu(®) - $.0 | x2(0)

x"'(r) ¢,,1'(r) :ﬁ..,“(r) x,,@
Note: the term ¢;;(t) can be interpreted as the response of the i*" state variable
due to an initial condition on the jt state variable when there are zero initial
conditions on all other states.
« The solution of the state differential equation can also be

obtained using the Laplace transform:
X(s5)=(sI- A)'x, +(sI- A)'BUfs)

C L[iim = Ax(1)+ Bum]
L[z = L[ax@]+ L[Bu] / |
C $X(5)— X, = AX(5)+ BU(s) G S e I

> Lon]=@()=[s1-A]" —— @@ =1 [s1-A]
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Properties of the Matrix Exponential

 Note that eAtis just a notation used to represent a power series.

At agt
e #[e"] 0 0 00
. H H H -1 0 0 0
« Example 1: Consider the following 4x4 matrix — 4- |
0 0 -10
Let’s obtain the first terms of the power series:
0000 0 0 0 0] 0000
s 0000 s (o000 so|000o0 R .
1000 o ooo T loooo AT=0 vk=24
0100 -1 0 0 0] 0000
The power series contains only a finite number of nonzero terms:
[1 0 0 0 0 0 0 0
a 1 s> 1,5, | -t 1 00 . ] e 0 00
e —I+Ar+EAr+EA.’ = ¥ ot 10 [f ] 0« 0 0
_ _ -1 L -t 1 0 0 e 0
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Properties of the matrix exponential

» For any real nxn matrix A, the matrix exponential % satisfies:

1. eAlis the unigque matrix for which: ie-“ = AeM g-“| =I(mxn)

dt (=3
2 Forany t, and t; e*@™ =¢g*tetn
As a consequence: e*® = =ete M =1
A . . R {&]’17 —At
Thus, e is invertible for all t, being the inverse: € =&

3.For all t, A and e commute with respect to matrix product: Ae* =e*'A

4 For all t: ["f&[]r =et"

5. For any real nxn matrix B, efA-Bii=pAteBt for all t if and only if AB=BA

6. Finally, a useful property of the matrix exponential is that it can be
reduced to a finite power series involving n scalar analytic functions o(t)

n-1
EDWAGEY
k=0
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Using this to Solve State Space Problems

« Example:
— Solve the following linear second-order ordinary differential
V() +Tv()+12v(t) = u(t)

— Consider the input u(t) is a step of magnitude 3
and the initial conditions ir0)=005 y(0)=010
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State-Space Exercise

» Solve the following linear second-order ordinary differential eq:
a. Using standard solution techniques . .
b. Using S-S solution techniques YO+ 7y(O)+12y(O) =u()
Consider the input u(t) is a step of magnitude 3
and the initial conditions: 7(0)=0.05 1(0)=010

The first question can be solved by the students in order to review the g
techniques exposed in previous courses.

To solve the second question, we first choose state variables using phase-

variable choice. _/\

) . v - 0 1
— H1_[o 1][x S A{ 1
X =i= B |-12 -7]|n ] 2 12 7]
X, =¥=u -12x-7x, x,(0) _ 0.10 ‘B I

0.05 Powers of A are not nulls,

x,(0)
thus, obtaining the state
transition matrix as a powel

RS
viy=|1 0} +10]-u(r o -
¥ [ ] | x, | [ ] @ series is not practical
G Oliver, UIB Nc \D
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State-Space Exercise

» The expression ®(r) =L‘1|517A]" is recommended:
A {s —1}
Hoas - [s+7 1
12 s+7 D(s)=(sI-A) " =— 1| |
C N s+7s+12| =12 5|
det(sT-A)=|sI-A|=s*+7s+12 -

» Thus, from X(s)=(sI-A)"'x, +(sI-A)"'BU(s)

1 s+7 1]0.10 1 s+7 1[0
X$)=——77 i B
s +7s+12|1—12 s[|0.05] s°+7s+12|-12 s 1

0.15> +0.75s +3
1 {0.15‘ +0,75+%:|= s(s+3)(s+4)

3
s

- _ X (s)
sS+7Ts+12| 0.055+1.8 0.055+1.8 X, (s)
(s+3)(s+4)
0.1s>+0.755+3 025 055 04 _ 0.055+1.8 1.65 1.60

= - + X,(5)= - = -
s(s+3)(s+4) s 543 s+4 (s+3)(s+4) s+3 s+4

X,(s) =
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Linear Quadratic Regulator

e X' = Ax + Bu

« Objective: minimize quadratic cost
[xTQ x + uTRudt

Error term “Effort” penalization

« Qver an infinite horizon

t@ METR 4202: Robotics
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Closed form LQR solution

» Closed form solution
u=-Kx, withK=R1BP

« Where P is a symmetric matrix that solves the Riccati

equation

— ATP +PA-PBRIB™P +Q =0

— Derivation: calculus of variations
 Packages available for finding solution
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Toy Nonlinear Systems

Cart-pole Acrobot
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From Linear to Nonlinear

*  We know how to solve (assuming g, U, X; convex):

H
min,, . Z gilze, u)

ect to

* How about nonlinear dyg,;

=0 (1)

1 = Awxy + Byuy + ¢ Vit
u € Uy, oy € Xy Vi
Ti41 = f(z‘t,ut) Vit

Shooting Methods (feasible)

Iterate for i=1,2,3, ...

Linearize around resulting trajectory

Solve (1) for current linearization

Execute ufj"'). ug"'). ey u.[j'f] (from solving (1)) --- (no execution)---

Collocation Methods (infeasible)

Iterate for i=1,2,3,...

Linearize around current solution of ()

Solve (1) for current linearization

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using
linearization, linearize equality constraints, convex-quadratic approximate objective function
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Model Predictive Control

 Given:
e Fork=0,1,%0, ..., T
— Solve ming. igt _
s.t. ;::_1 = fi(zy,wy) Vte{kk+1,...,T -1}
T = Tk
— Execute u,

— Observe resulting state,

Tht1
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Iterative LQR versus Sequential Convex
Pro%rammlng

H
can solve min,, ZEH(T&- uy)
t=0
subject to w41 = fi(ae, w) VE
uy € U,z € Xy VIt

* Can run iterative LQR both as a shooting method or as a collocation method, it’s just a
different way of executing “Solve (1) for current linearization.” In case of shooting, the
sequence of linear feedback controllers found can be used for (closed-loop) execution.

+ Iterative LQR might need some outer iterations, adjusting “t” of the log barrier

Shooting Methods Collocation Methods

Iterate for i=1,2,3, ... Iterate for i=1,2,3, ...
Execute feedback controller (from solving (1)) --- (no execution)---
Linearize around resulting trajectory Linearize around current solution of (1)
Solve (1) for current linearization Solve (I) for current linearization

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of using
linearization, linearize equality constraints, convex-quadratic approximate objective function
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Example Shooting

% a nonlinear control problem: cartpole
clear; clc; close all;

oting:
T = 100;

u = randn(1,T)*0.1;
max_iters = 10;

x init = [-LO f05 05 013
nk = 4; nu =

x eps

by
0. l
0

¥(:,tH1) = sim _cartpole(x(:,t), u(:,t), dt);
|n((} B{t} r{[) = :nm-gute ]a:nbmm@sm cartpole, X(:,t), u(:,t), dt);

end
figure(l); subplot(3,1,1); hold on; plot{u}; ylabel
subplot(3,1,2); hold on; plot(x(l,:)}; ylabel{ x'}; sub‘glot(l 1,3); hold on; plot(x(2,:));ylabel( \theta');
cost(iter) = 0;
for t=1:T-1
cost.(iter) = cost(iter) + x(:,t) *Q¥x(:,t) + u(z,t) *R*u(:,t) + norm(u(:,t+l)-u(z,t),2);

end
cost(iter) = cost(iter) + x(:,T)'*Q final*x(:,T);
cos

variables x (n
minimize( sum(s_ cvx(l rn ;
subject to
for t=1:T-1
X CVE(:,t+1) == A{t}*(X_cvE(:,t)-X(:,t)) + B{t}*(u cvx(z,t)-u(z,t)) + c{t};
end
for t=1:T=1
5_OVX(1,T) > X_OVK(:,T) Q"X _CVE(:,T) + U_GVK(:,t) *R*U_CVK(:,t) + NOTM(U_CVE(:,t+l)=u_ovK(:,t),2);
end
s_cvk(1,T) 2= x_cvx(:,T) *Q_final*x_evx(:,T);
for t=1:T
NOYmM(X_CVX(:,t) = X(:,t),2) <= X_eps;
norm{u_cvk(:,t) - u{:,t),2) <= u_eps;
end
x_cvk(:, 1) == x_init;
c¥x_end
u = u_cvx;
end
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Example Collocation
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Practical Benefits and Issues with Shooting
+

At all times the sequence of controls is meaningful, and the
objective function optimized directly corresponds to the
current control sequence

For unstable systems, need to run feedback controller during
forward simulation

— Why? Open loop sequence of control inputs computed for the linearized
system will not be perfect for the nonlinear system. If the nonlinear system is
unstable, open loop execution would give poor performance.

— Fixes:

+ Run Model Predictive Control for forward simulation

« Compute a linear feedback controller from the 2" order Taylor expansion
at the optimum
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Practical Benefits and Issues with Collocation

+:

Can initialize with infeasible trajectory. Hence if you have a
rough idea of a sequence of states that would form a
reasonable solution, you can initialize with this sequence of
states without needing to know a control sequence that

would lead through them, and without needing to make them
consistent with the dynamics

Sequence of control inputs and states might never converge
onto a feasible sequence
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Direct policy synthesis: Optimal control

« Input: cost function J(x), estimated dynamics f(x,u), finite
state/control spaces X, U

« Two basic classes:

— Trajectory optimization: Hypothesize control sequence u(t),
simulate to get x(t), perform optimization to improve u(t), repeat.

— Output: optimal trajectory u(t) (in practice, only a locally optimal
solution is found)

— Dynamic programming: Discretize state and control spaces,
form a discrete search problem, and solve it.

— Output: Optimal policy u(x) across all of X

qp METR 4202: Robotics October 19, 2016 -86

43



Discrete Search example

« Split X, U into cells X;,...,X,, Uy,...,u,

 Build transition function X = f(x;,u)dt for all i,k

« State machine with costs dt J(x;) for staying in state |

« Find u(x;) that minimizes sum
of total costs.

« Value iteration: repeated
dynamic programming over
V(x;) = sum of total future
costs

Reward

Value function for 1-joint acrobot

Theta )
§? METR 4202: Robotics October 19, 2016 -87

Receding Horizon Control (aka model predictive

control)
=i -
O%S O
| B I | O
Oég O
O
?ég O
f
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Integrated

Planning & Control

Integrated Planning and Control Methods...
« A motivating problem (for agility)

— Cart and pole in a cluttered workspace ...

45
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Trajectory Generation with Constraints:
Solutions from the Robotics Domain

Tt =F(x,u)

cRL ol

Motion Planning Methods:

Feedback Control Methods:

(M +m) y—l—mlcos% ml92s1n9—f
lcos@y+l€ glbln@
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Trajectory Optimization:
—> Integrated Planning & Feedback:

t=F (x,u)

Planning
Methods

LQG Control
Functions

Trajectory
Optimization

* Direct Collocation

(x: pchip poly, u: lin poly)

* Lyapunov f (POTools)
* SNOPT

» exploits: LQR can be

solved efficiently
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Few Questions Before Starting...

« Can it possibly be this hard?
Yes!
(1) Dynamic systems are nonlinear , (529' 1 glsing) =0
(2) Decision-theoretic planning problems are combinatorial

« Underactuated system?
[ control input cannot drive the state to any arbitrary direction]
- DOF>actuators: car-like robot, airplane, cart and pole, etc
=>» Actuator saturation!

* Why Now?

1. State-of-the-art (LQR-Trees 2009 RSS best paper, kNitro,
SDPARA).

2. Convex Optimization (c/o relaxation) is ~ “online-able”
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Viewing This From a Controls & Policy Perspective

- Plant

\

torque (Nm)

Atkeson, C. & Stephens, B,

position (r) - :
o

Policy for one link example

velocity (r/s)

“Random sampling of states in dynamic programming”IEEE T. Syst. Man Cybern, 2008

Core Idea:;

Feedback motion planning (Assistance function) built from a prior model

and updated online
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Gain-Scheduled RRT

 Rapidly Exploring Random Trees (RRT) (Background):

Features (+):

1. Solve a control problem
2. Scalable

3. Constrained environments

Concerns (--):

Under differential constraints

g (m)

0

Connection gap

4. Works poorly under (good enough?)
differential constraints
5. Hard to avoid the connection gap q(m)
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Gain-Scheduled RRT: RRT Connection Gap

« A RRT solution rarely reaches the goal (or connect the
two trees) with zero error

1 35 .
Connection gap
?
08 3 How large?
- —= |
E o6 £ 25
y
3 04 § 2
0.2 15
0 1
0.8 1 1.2 0.8 1 1.2
Time (s) Time (s)
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Gain-Scheduled RRT: Relaxing the Search

Single state search: Region search
Extensive exploration RRT connection is relaxed

Forward tree

Feedback system

ackwards tree

goal
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Gain-Scheduled RRT: RoA & Verification

« Find a candidate
In the LQR case: J: optimal cost-to-go S: Algebraic Ricatti Eq.

V(X) = (Zgoat — T) = (Tgoat — )" 5(Tgoar — T)

Maximize candidate ( p )

Sum of sqlllares relaxation

 Verify candidate

V(x) locally|positive definite|in B,

I:"(-I) locally |negative definite|in I3,

**R. Tedrake, “LOR-Trees: Feedback Motion Planning on Sparse Randomized Trees”, RSS 2009
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Gain-Scheduled RRT: Result

» Cart and pole in a cluttered workspace ...

obstacle

Cart stopper I Cart stopper

Same initial and final conditions.
Every solution is different due to the random sampling @

B METR 4202 Robotics October 19, 2016 100
S



RRT_vs_GS_sim10.mpg

Gain-Scheduled RRT: Result

GS-bIRRT
,,,,,,,, A
Goal
@ METR Robot 16101

Conclusion
No one answer...

Much left to do!

(it’s not really magic ©)




