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Schedule of Events 

Week Date Lecture (W: 12:05-1:50, 50-N202) 

1 27-Jul Introduction 

2 3-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 10-Aug Robot Kinematics Review (& Ekka Day) 

4 17-Aug Robot Inverse Kinematics & Kinetics 

5 24-Aug Robot Dynamics (Jacobeans) 

6 31-Aug Robot Sensing: Perception & Linear Observers 

7 7-Sep Robot Sensing: Single View Geometry & Lines 

8 14-Sep Robot Sensing: Feature Detection 

9 21-Sep Robot Sensing: Multiple View Geometry 

  28-Sep Study break 

10 5-Oct Motion Planning 

11 12-Oct Probabilistic Robotics: Localization & SLAM 

12 19-Oct Probabilistic Robotics: Planning & Control 

13 26-Oct 
State-Space Automation (Shaping the Dynamic Response/LQR)  

+ Course Review 

 

http://robotics.itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Follow Along Reading: 

Robotics, Vision & Control  

by Peter Corke  

 

Also online:SpringerLink 

 

UQ Library eBook: 

364220144X   

Planning & Control  

• Planning (Global Motion) 

– pp. 91-103 

(Yup! That’s all Peter Corke has to 

say! Yet there is a Chapter [15] on 

Visual Servoing, a local motion 

method that can’t handle obstacles). 

• SLAM 

– pp. 123-4 

(§6.4-6.5) 

Today 

Reference Material 

UQ Library / Online (PDF) 

UQ Library 

(TJ211.4 .L38 1991) 

http://petercorke.com/Book.html
http://petercorke.com/Book.html
http://petercorke.com/Home/Home.html
http://petercorke.com/Home/Home.html
http://www.springerlink.com/content/978-3-642-20143-1/?MUD=MP#section=945405&page=1
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://library.uq.edu.au/record=b2833159~S7
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA51161329990003131
planning.cs.uiuc.edu
http://search.library.uq.edu.au/61UQ:61UQ_All:61UQ_ALMA2185663660003131
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(Kinematic) 

Motion Planning 

 

Motion Planning?  Let’s Get Moving… 
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Motion Planning?  Let’s Get Moving? 

 

Motion Planning? The clutter can not be “ignored” 
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Motion Planning: Processing the Limits 

 

Path-Planning Approaches 

• Roadmap 

Represent the connectivity of the free space by a network 

of 1-D curves 

• Cell decomposition 

Decompose the free space into simple cells and represent 

the connectivity of the free space by the adjacency graph 

of these cells 

• Potential field 

Define a function over the free space that has a global 

minimum at the goal configuration and follow its steepest 

descent 
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See Also: http://robotics.itee.uq.edu.au/~ai/ 

 

External Configuration Is Important … 

Configuration Space 

• A robot configuration is a specification of the positions of all robot 

points relative to a fixed coordinate system 

• Usually a configuration is expressed as a “vector” of 

position/orientation parameters 

 
 

 

http://robotics.itee.uq.edu.au/~ai/doku.php/wiki/schedule
http://robotics.itee.uq.edu.au/~ai/doku.php/wiki/schedule
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Motion Planning in C-Space 

 

q=(q1,…,qn) 

q1 
q2 

q3 

qn 

 

 

Configuration Space of a Robot 

• Space of all its possible configurations 

• But the topology of this space is usually not that of a 

Cartesian space 

C = S1 x S1 
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Geometric Planning Methods 

• Several Geometric 

Methods: 

– Vertical (Trapezoidal)  

Cell Decomposition 

 

 

– Roadmap Methods 

• Cell (Triangular) 

Decomposition 

• Visibility Graphs 

• Veroni Graphs 

 

 

 

Start 

Goal 

 

I. Rotational Sweep 
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Rotational Sweep 

 

Rotational Sweep 
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Rotational Sweep 

 

Rotational Sweep 
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II. Cell-Decomposition Methods 

Two classes of methods: 

• Exact cell decomposition 

– The free space F is represented by a collection of non-

overlapping cells whose union is exactly F 

 

– Example: trapezoidal decomposition 

 

• Approximate cell decomposition 

– F is represented by a collection of  

non-overlapping cells whose union is contained in F 

Examples: quadtree, octree, 2n-tree 

 

 

Trapezoidal decomposition 
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Planar sweep  O(n log n) time, O(n) space 

Trapezoidal decomposition 

 

Trapezoidal decomposition 
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Trapezoidal decomposition 

 

Trapezoidal decomposition 
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II.Visibility Graph 

tangent segments 

 Eliminate concave obstacle vertices 

can’t be shortest path 

 

Generalized (Reduced) -- Visibility Graph 

tangency point 
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Three-Dimensional Space 

Computing the shortest collision-free path in a  

polyhedral space is NP-hard 

Shortest path passes  

through none of the  

vertices 

locally shortest  

path homotopic  

to globally shortest  

path 

 

Sketch of Grid Algorithm (with best-first search) 

• Place regular grid G over space 

• Search G using best-first search algorithm with potential 

as heuristic function 
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Simple Algorithm (for Visibility Graphs) 

• Install all obstacles vertices in VG, plus the start and goal 

positions 

• For every pair of nodes u, v in VG 

 If segment(u,v) is an obstacle edge then 

   insert (u,v) into VG 

 else 

 for every obstacle edge e 

  if segment(u,v) intersects e 

   then go up to segment 

       insert (u,v) into VG 

• Search VG using A* 
 

 

III. Potential Field Methods 

• Approach initially proposed for  

real-time collision avoidance [Khatib, 86] 

 

Goal

Goal Force
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eMotion

Robot
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Attractive and Repulsive fields 

 

Local-Minimum Issue 

•  Perform best-first search (possibility of  

   combining with approximate cell decomposition) 

•  Alternate descents and random walks 

•  Use local-minimum-free potential (navigation function) 
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Disc Robot in 2-D Workspace 

 

Rigid Robot Translating and Rotating in 2-D 
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IV. Roadmap Methods 

• Visibility graph 

• Voronoi diagram  

• Silhouette 

First complete general method that applies to spaces of 

any dimension and is singly exponential in # of 

dimensions [Canny, 87] 

• Probabilistic roadmaps  (PRMS)  

 and Rapidly-exploring Randomized Trees (RRTs) 

 

 

Roadmap Methods 

• Visibility graph 

Introduced in the Shakey project at SRI in the late 60s. 

Can produce shortest paths in 2-D configuration spaces 

g 

s 
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Roadmap Methods 

• Voronoi diagram  

Introduced by 

Computational 

Geometry researchers. 

Generate paths that 

maximizes clearance.  

 

O(n log n) time 

O(n) space 

 

Limits of Geometric Planning Methods 

• How does this scale to high 

degrees of freedom? 

 

• What about “dynamic 

constraints”? 

 

• What about optimality? 

 

• How to tie this to learning 

and optimization  

Start 

Goal 
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Sample-Based Motion Planning 

• PRMs • RRTs 

 

Rapidly Exploring Random Trees (RRT) 

q(m) 

  
  
 

q
(m

/s
) 

x init  
s(m) 

r(
m

) 

x goal x rand  
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Sampling and the “Bug Trap” Problem  

 

Multiple Points & Sequencing 

• Sequencing 

– Determining the “best” order to go in  

 Travelling Salesman Problem 
 

A salesman has to visit each city on a given list exactly once. 

In doing this, he starts from his home city and in the end he has to 

return to his home city. It is plausible for him to select the order in 

which he visits the cities so that the total of the distances travelled 

in his tour is as small as possible.  

 

 

Multi-Goal Problem 
 

A salesman has to visit each city on a given list exactly once. 

In doing this, he starts from his home city and in the end he has to 

return to his home city. It is plausible for him to select the order in 

which he visits the cities so that the total of the distances travelled 

in his tour is as small as possible.  

 

 

 

 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 
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Travelling Salesman Problem 

 

Start 

Goal 

Goal 

Goal 

Goal 

Goal 

• Given a  distance 

matrix C=(cij) 

 

• Minimize: 

 

 
• Note that this problem is NP-Hard  

 

 

 

 

 

  BUT, Special Cases are Well-Solvable! 

 

 

Travelling Salesman Problem [2] 

• This problem is NP-Hard  

 

 

 

 

 BUT,  

 Special Cases are  

 Well-Solvable! 

 

 

 

For the Euclidean case  

(where the points are on the 2D Euclidean plane) : 

• The shortest TSP tour does not intersect itself, and thus 

geometry makes the problem somewhat easier. 

• If all cities lie on the boundary of a convex polygon, the 

optimal tour is a cyclic walk along the boundary of the 

polygon (in clockwise or counterclockwise direction). 

 

The k-line TSP 

• The a special case where the cities lie on k parallel (or 

almost parallel) lines in the Euclidean plane. 

• EG:  Fabrication of printed circuit boards 

• Solvable in O(n3) time by Dynamic Programming  

(Rote's algorithm) 

 

The necklace TSP 

• The special Euclidean TSP case  

where there exist n circles around  

the n cities such that every cycle  

intersects exactly two adjacent  

circles 
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Cool Robotics Share 

 

 


