

Motion Planning

METR 4202: Robotics & Automation

Dr Surya Singh -- Lecture # 10

October 5, 2016

metr4202@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~metr4202/

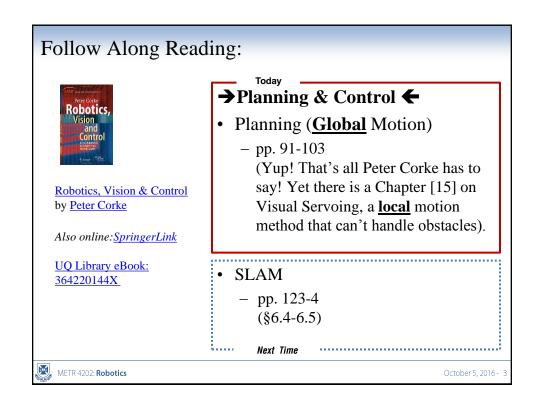
[http://metr4202.com]

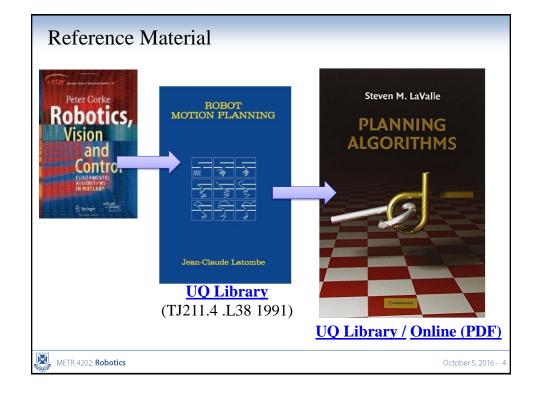
(cc) BY-NO-SA

Schedule of Events

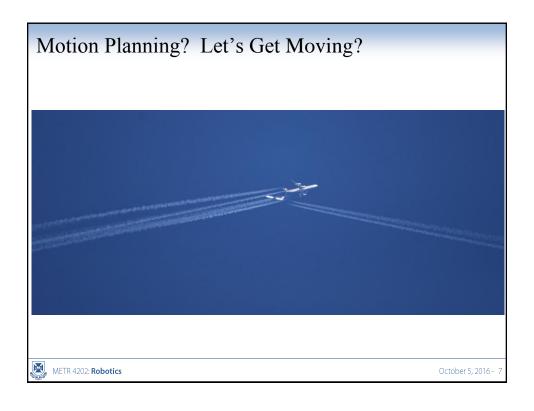
Week	Date	Lecture (W: 12:05-1:50, 50-N202)
1	27-Jul	Introduction
2	3-Aug	Representing Position & Orientation & State
		(Frames, Transformation Matrices & Affine Transformations)
3	10-Aug	Robot Kinematics Review (& Ekka Day)
4	17-Aug	Robot Inverse Kinematics & Kinetics
5	24-Aug	Robot Dynamics (Jacobeans)
6	31-Aug	Robot Sensing: Perception & Linear Observers
7	7-Sep	Robot Sensing: Single View Geometry & Lines
8	14-Sep	Robot Sensing: Feature Detection
9	21-Sep	Robot Sensing: Multiple View Geometry
	28-Sep	Study break
10	5-Oct	Motion Planning
11	12-Oct	Probabilistic Robotics: Localization & SLAM
12	19-Oct	Probabilistic Robotics: Planning & Control
13	26-Oct	State-Space Automation (Shaping the Dynamic Response/LQR) + Course Review

METR 4202: Robotics





(Kinematic) Motion Planning



Motion Planning: Processing the Limits



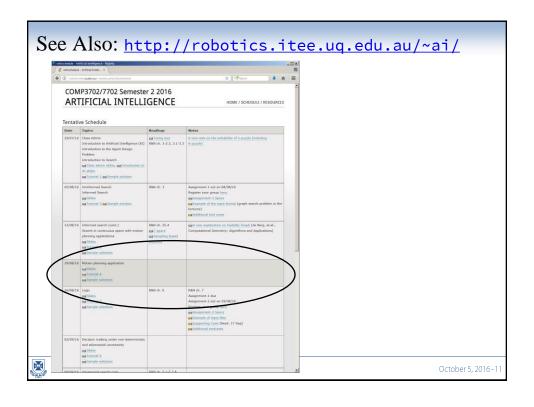
METR 4202: Robotics

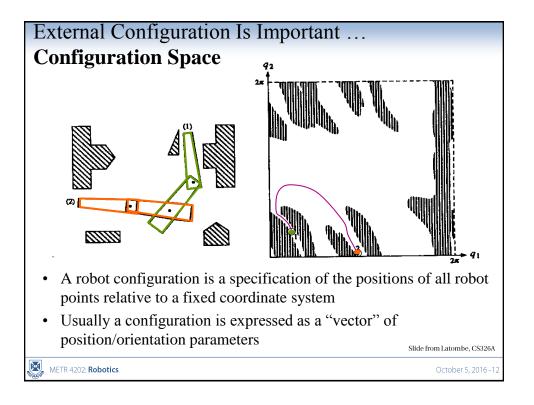
October 5, 2016 - 9

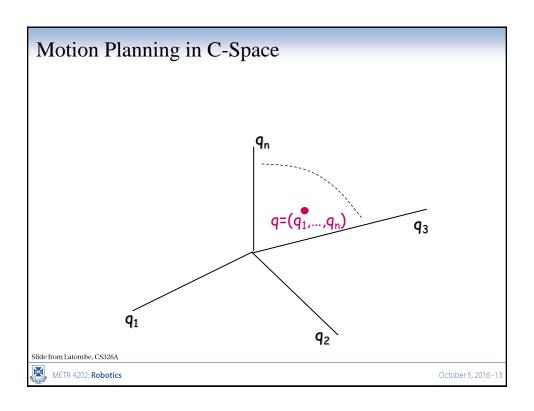
Path-Planning Approaches

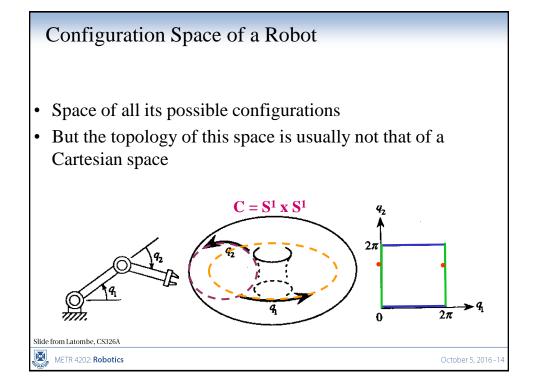
- Roadmap
 Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

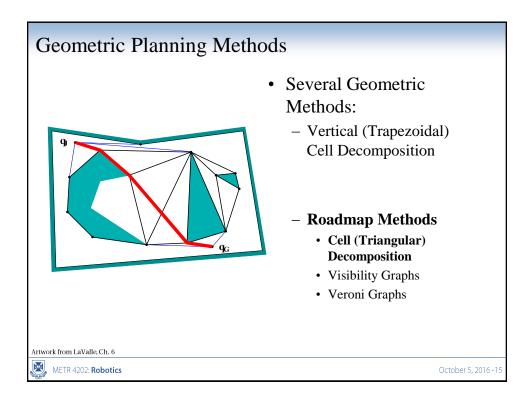
Slide from Latombe, CS326A

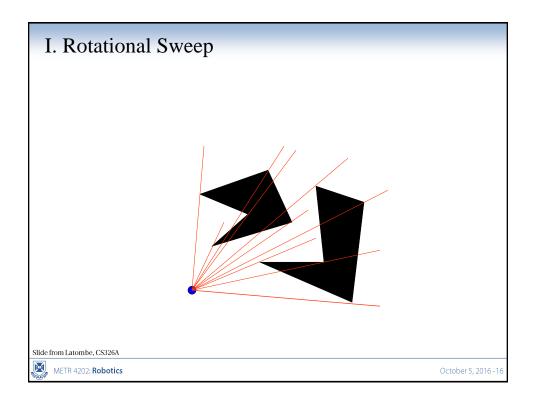


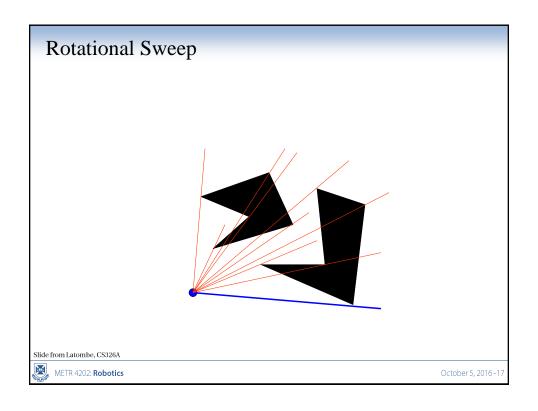


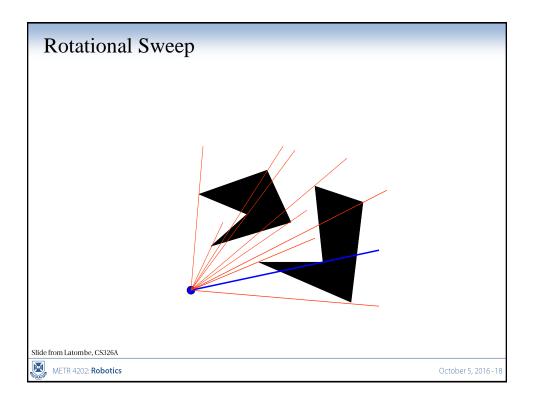


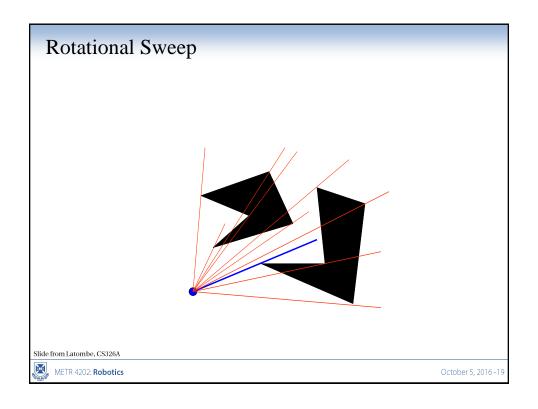


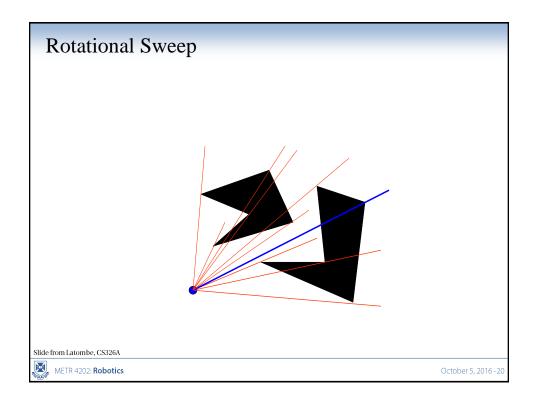








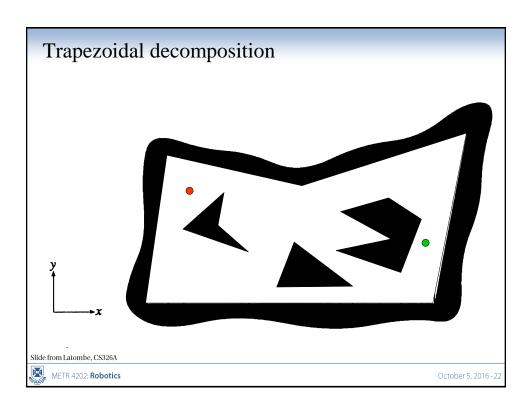


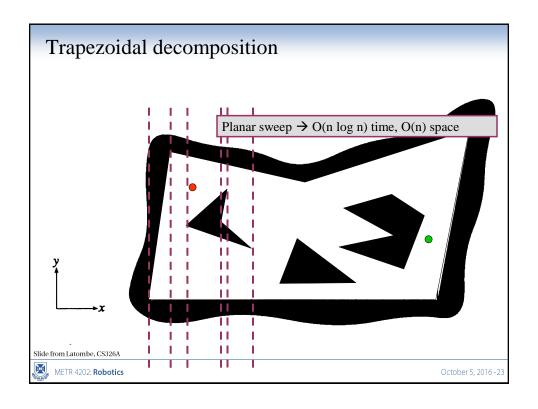


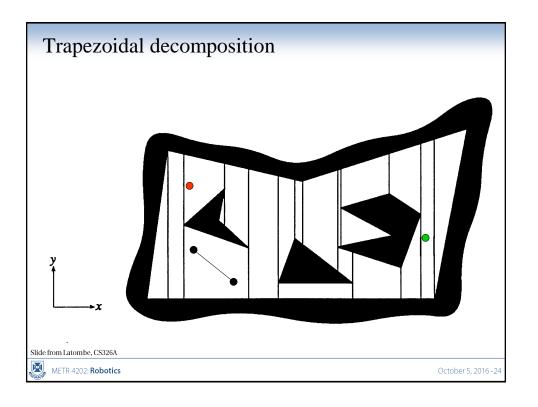
II. Cell-Decomposition Methods

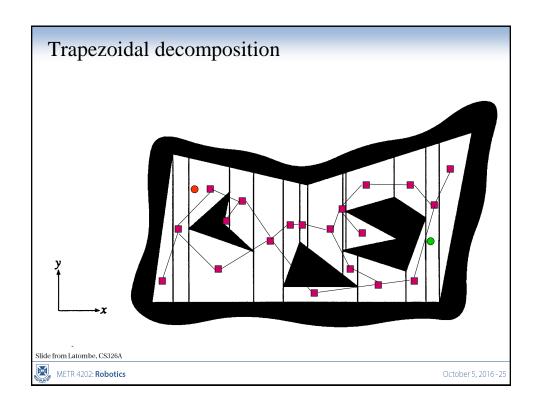
Two classes of methods:

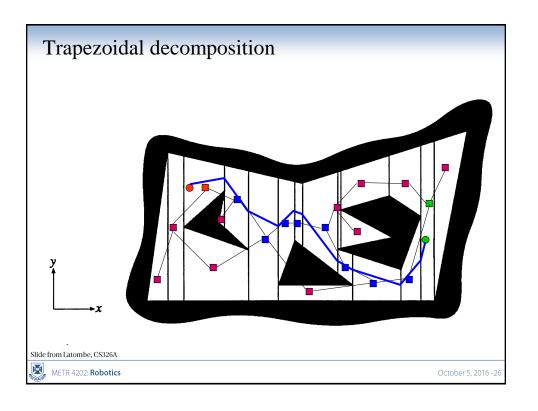
- Exact cell decomposition
 - The free space F is represented by a collection of nonoverlapping cells whose union is exactly F
 - Example: trapezoidal decomposition
- · Approximate cell decomposition
 - F is represented by a collection of non-overlapping cells whose union is contained in F Examples: quadtree, octree, 2n-tree

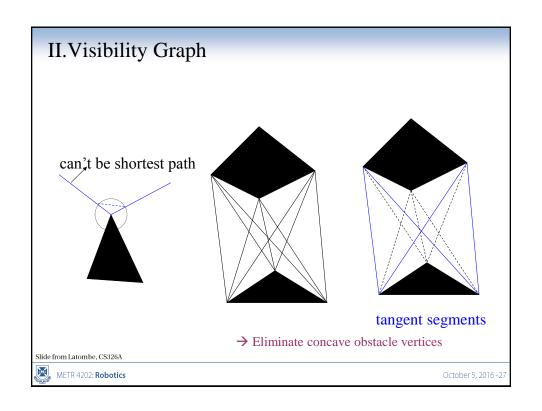


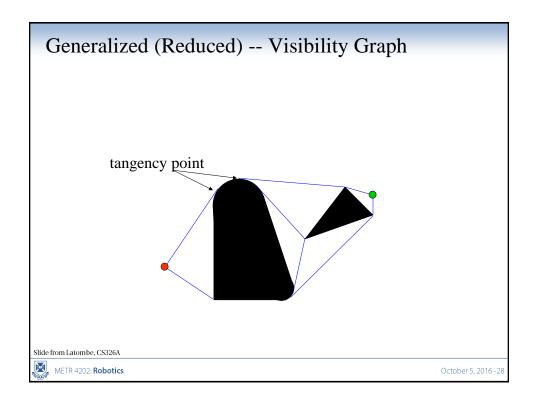


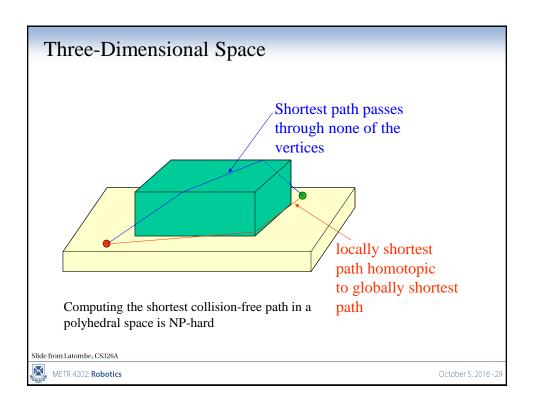






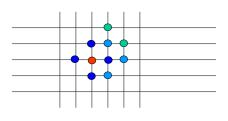






Sketch of Grid Algorithm (with best-first search)

- Place regular grid G over space
- Search G using best-first search algorithm with potential as heuristic function



Slide from Latombe, CS326A

Simple Algorithm (for Visibility Graphs)

- Install all obstacles vertices in VG, plus the start and goal positions
- For every pair of nodes u, v in VG
 If segment(u,v) is an obstacle edge then

insert (u,v) into VG

else

for every obstacle edge e

if segment(u,v) intersects e then go up to segment

insert (u,v) into VG

• Search VG using A*

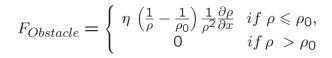
Slide based on Latombe, CS326A

October 5, 2016 - 31

III. Potential Field Methods

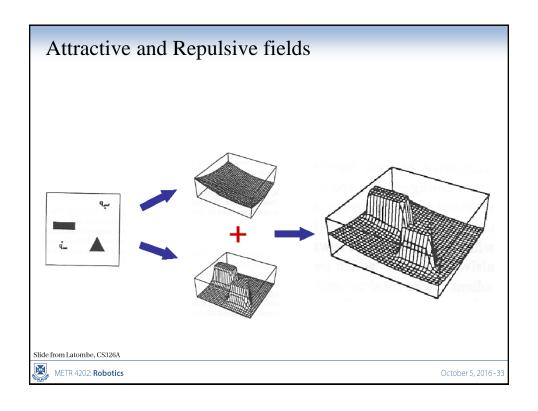
• Approach initially proposed for real-time collision avoidance [Khatib, 86]

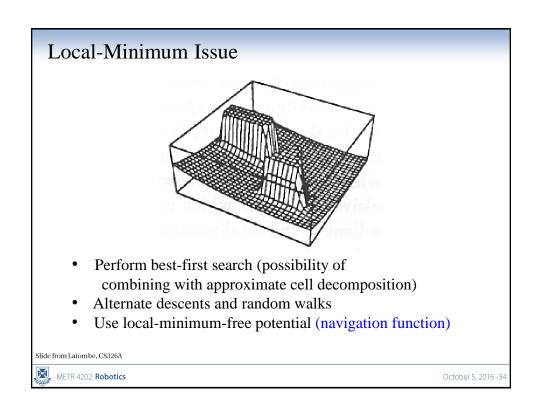
$$F_{Goal} = -k_p(x - x_{Goal})$$

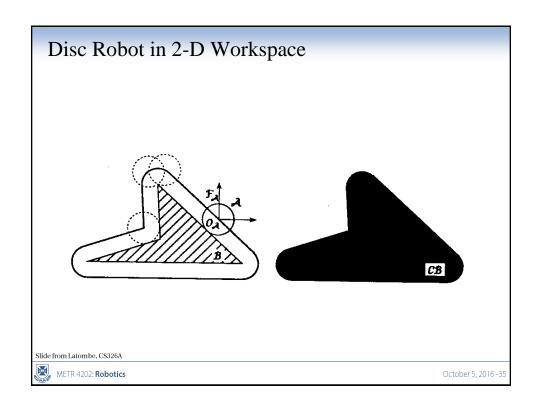


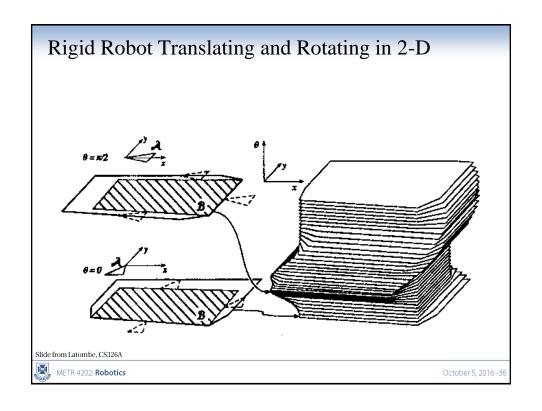
Coay Force Robot

ilide based on Latombe, CS326









IV. Roadmap Methods

- · Visibility graph
- Voronoi diagram
- Silhouette
 First complete general method that applies to spaces of any dimension and is singly exponential in # of dimensions [Canny, 87]
- Probabilistic roadmaps (PRMS) and Rapidly-exploring Randomized Trees (RRTs)

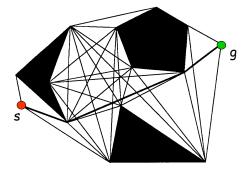
Slide from Latombe, CS326A

October 5, 2016 - 37

Roadmap Methods

· Visibility graph

Introduced in the Shakey project at SRI in the late 60s. Can produce shortest paths in 2-D configuration spaces

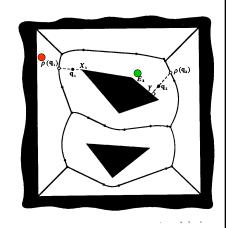


Slide from Latombe, CS326A

Roadmap Methods

Voronoi diagram
 Introduced by
 Computational
 Geometry researchers.
 Generate paths that maximizes clearance.

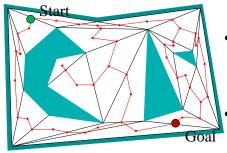
O(n log n) time O(n) space



Slide from Latombe, CS326A

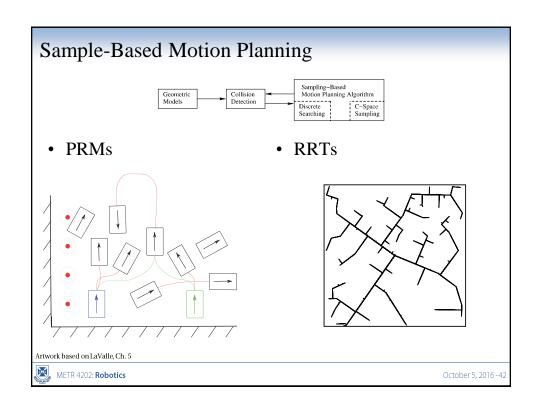
October 5, 2016-39

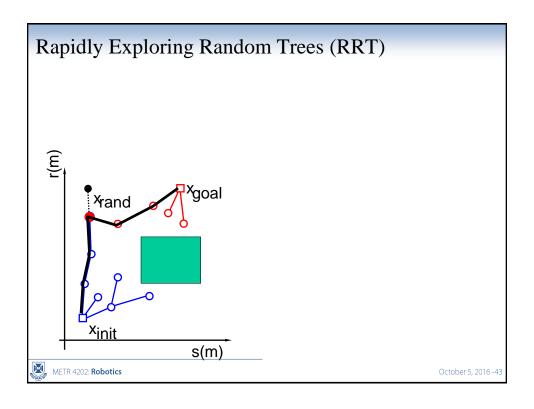
Limits of Geometric Planning Methods

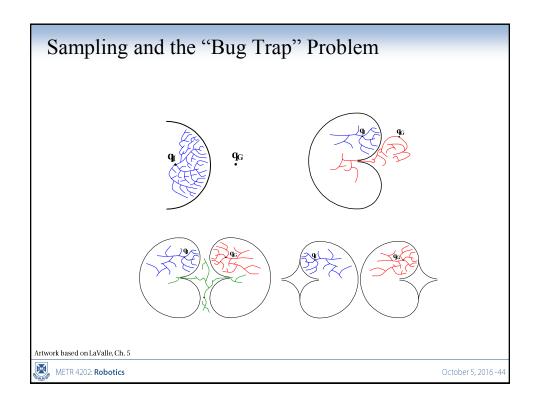


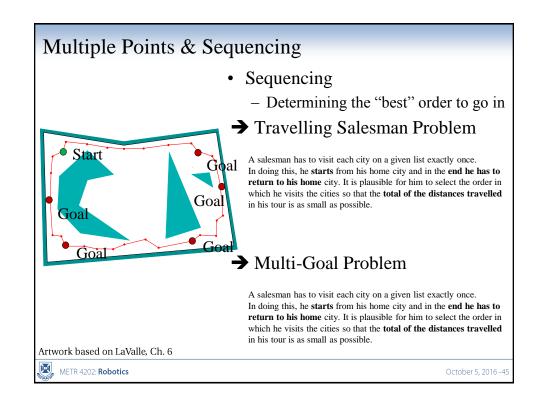
- How does this scale to high degrees of freedom?
- What about "dynamic constraints"?
- What about optimality?
- How to tie this to learning and optimization

Artwork from LaValle, Ch. 6



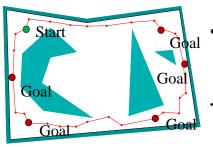






Travelling Salesman Problem

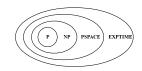
• Given a $n \times n$ distance matrix $\mathbf{C}=(c_{ii})$



• Minimize:

$$c(\pi) = \sum_{i=1}^{n} c_{i\pi(i)}$$

Note that this problem is NP-Hard



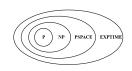
→ BUT, Special Cases are Well-Solvable!

Artwork based on LaValle, Ch. 6

October 5, 2016 - 46

Travelling Salesman Problem [2]

• This problem is NP-Hard



→ BUT,
Special Cases are
Well-Solvable!

For the Euclidean case

(where the points are on the 2D Euclidean plane):

- The shortest TSP tour does not intersect itself, and thus geometry makes the problem somewhat easier.
- If all cities lie on the boundary of a convex polygon, the optimal tour is a cyclic walk along the boundary of the polygon (in clockwise or counterclockwise direction).

The k-line TSP

- The a special case where the cities lie on k parallel (or almost parallel) lines in the Euclidean plane.
- · EG: Fabrication of printed circuit boards
- Solvable in O(n³) time by Dynamic Programming (Rote's algorithm)

The necklace TSP

 The special Euclidean TSP case where there exist n circles around the n cities such that every cycle intersects exactly two adjacent circles

ME ME

METR 4202: Robotics

