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Solving the Kinematics of the 
Most General Six-
and Five-Degree-of-
Freedom Manipulators by 
Continuation Methods 
This paper presents a unique approach to the kinematic analysis of the most general 
six-degree-of-freedom, six-revolute-joint manipulators (Previously, the problem of 
computing all possible configurations of a manipulator corresponding to a given 
hand position was approached by reducing the problem to that of solving a high 
degree polynomial equation in one variable. -In-this-paper Jt is shown that the 
problem can be reduced to that of solving a system of eight second-degree equations 
in eight unknowns, it-is-fttrther-demrmstrate^-thafmis second-degree system can be 
routinely solved using a continuation algorithm. To complete the general analysis, a 
second numerical method—a continuation heuristic —is shown to generate partial 
solution sets quickly. Finally, in some special cases, closed form solutions were-
obtained for some commonly used industrial manipulators. The results can be 
applied to the~analysis~of--both-six-~and-~fme'degree:uf-freedmn manipulators 
composed of mixed revolute and prismatic joints. The numerical stability of 
continuation on small second-degree systems opens the way for routine use in off
line robot programming applications. \ 

Introduction 

Two different types of problems exist in the kinematic 
analysis of manipulators. The first type is known as the direct-
position problem, in which all the relative joint displacements 
are given and the positions of every link including the free 
end, the hand, are to be found. This type of problem can be 
easily solved by the matrix method of analysis [1]. The second 
type is known as the indirect-position problem, in which the 
position and orientation of the hand are given and the relative 
joint displacements are to be found. The indirect-position 
problem is more difficult to solve because the governing 
equations are very complicated and nonlinear. 

In solving the indirect-position problem, we are always 
interested in obtaining a closed-form solution, i.e. an 
algebraic equation relating the given position and orientation 
of the hand to only one unknown joint displacement. In this 
manner all the possible solutions can be found. To achieve 
this goal, many different methods of analysis have been used. 
Pieper and Roth [2] and Pieper [3] pointed out that the 
analysis of an open-loop manipulator is related to the 
displacement analysis of a closed-loop spatial mechanism. In 
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particular, the analysis of a six-degree-of-freedom, 6-
revolute-joint (6-R) manipulator is equivalent to that of a 
single-loop, 7-revolute-joint (7-R) spatial mechanism. 
Therefore, all the methods of analysis used for spatial 
mechanisms, and the results, can be applied to the analysis of 
manipulators. The methods that are most commonly used are: 
screw algebra, dual numbers, dual matrices, dual quar-
ternians, vector methods, (4 x 4) matrices, (3 x 3) matrices, 
etc. [4-11]. However, the ability to obtain closed-form 
solutions seems to be limited to manipulators having special 
geometry. For example, Pieper and Roth [2] applied the (4 x 
4) matrix method to the six-degree-of-freedom manipulator 
with revolute and prismatic joints. They found the sufficient 
condition for a closed-form solution is to have any three 
adjacent joint axes intersecting at a common point. Duffy and 
Rooney [12] and Duffy [13] applied the sine and cosine laws 
of spatial triangles to the equivalent spatial mechanism of a 
manipulator and obtained closed-form solutions of many 
special manipulators. The most general 6-R manipulator 
problem, once referred to as the "Mount Everest" of 
kinematic problems [14], remained unsolved. 

Nevertheless, Roth, et al. [15] concluded by deductive 
reasoning that, corresponding to each given position and 
orientation of the hand, there are at most 32 solutions, and 
that the degree of the polynomial relating one joint 
displacement to the hand position cannot be less than 32. 
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Recently, Duffy and Crane [16] derived the solutions of the 
general 7-R single-loop spatial mechanism. The solution was 
obtained in an implicit form of a (16 x 16) determinant 
equated to zero. The determinant, when expanded, should 
yield a polynomial equation of 32nd degree. An attempt to 
expand the determinant was not successful. Albala [17, 18], 
using indicial notation, was able to derive the solutions of the 
general 7-R single-loop spatial mechanism similar to that 
given by Duffy [16]. Because of the complexity of the 
equation, the analysis of the general 6-R manipulator and 7-R 
spatial mechanism can only be solved by numerical 
techniques. Many different numerical iteration techniques 
have been investigated [11, 15, 18, 19], but the success of these 
numerical methods seems to depend on the initial guesses. For 
the analysis of closed-loop spatial mechanisms, where the 
iteration can be started from a known mechanism position, 
the methods work well. For the indirect-position problem of a 
manipulator, where the desired- position of the hand is 
sometimes very far away from a known position of the 
manipulator or where there is no knowledge of the state of the 
manipulator, the numerical methods applied to date most 
probably will not work. In addition, even if they do work, 
there is almost no way of finding all the possible con
figurations. 

Recently, however, there has been a breakthrough in the 
numerical solution of small systems of polynomial equations. 
Using certain continuation techniques, algorithms can be 
constructed that are guaranteed to find all isolated solutions 
to systems of n polynomial equations in n unknowns [20-26]. 
For background on continuation in general, see [27, 28]. For 
small systems, these algorithms can be implemented to run in 
practical CPU times. 

In this paper, a system of eight second-degree equations in 
eight unknowns is derived whose solution set includes all 
solutions of the most general 6-R manipulator. This system is 
small enough to solve using continuation. The ease with which 
this can be done in practice is illustrated by solving a selection 
of test samples using a generic continuation code, SYMPOL. 

Having established that the problem can be solved com
pletely using SYMPOL, the question of speeding up the 
numerical method led to the development of a special 
continuation "heuristic," SYMMAN. SYMMAN is faster 
than SYMPOL but generally computes only a subset of the 
total set of configurations. The performance of the SYM
MAN heuristic is compared with that of the SYMPOL 
algorithm in the reported numerical tests. 

The Fundamentals 

A manipulator may be considered to consist of a group of 
rigid-bodies, or links, connected together by joints. The 
relative motion associated with each joint can be controlled 
such that the free-end, the hand, can be positioned in a desired 
manner. Although there are a variety of manipulators, we 
shall assume a manipulator has the form of an open-loop 
kinematic chain. Each link is connected to no more than two 
others, and the joints are either of the revolute or prismatic 
type. We shall begin our discussion with the general 6-revolute 
(6-R) manipulator and extend the results to manipulators with 
prismatic joints. 

A 6-R manipulator has six moving links, numbered 
sequentially from 2 to 7, as shown in Fig. 1. Link 1 is 
designated as the base (fixed to ground) and link 7 as the hand 
of the manipulator. Every two neighboring links are con
nected by a j oint. Every j oint is associated with a j oint axis Z,-, 
/' = 1 - 6 . Let Z, and Z,+ 1 be two adjacent joint axes and 
HjOi+ j be the directed common normal between Z, and Zl+X, 
where H, is the intersection of H,Oj+ ^ and Z;, and Oi+1 is the 
intersection of H,Oi+x and Z,+ 1. Then, we can define the 
following linkage parameters as shown in Fig. 2 [1]: 

Link 1 (Fixed to Ground) 
Fig. 1 A general 6-R manipulator 

Zj+i (Joint i+1) 

Link i 
Fig. 2 The basic notation 

Oj = the length of the common normal HjOi+l is the 
offset distance a, 

a,- = the angle to rotate the axis Z, about the common 
normal HtOi+l so that Z,- is parallel to Z,+ 1. The 
sign of rotation is given by the right-hand screw rule 
with the screw taken along the normal HjOi+1. 

df = the distance between the two normals H^^Of and 
HjOj+i measured along Z,. The sign of d, is positive 
if OjHj points to the positive Z, direction. Other
wise, dj is negative. 

B; = the angle to rotate the extended line of H, _ x Oj about 
Z, so that the extended line of //,_iO, is parallel to 
HjOi+i. The sign of rotation is given by the right-
hand screw rule with the screw pointing along the 
positive Z,- -axis. 

If the rth joint is revolute, then ait dj, and a, are constant 
while 6t is variable. If the rth joint is prismatic, then «,, a,-, 
and 6) are constant while d, is a variable. 

A coordinate system (Xh Yj.Zj) is attached to each link of 
the manipulator as shown in Fig. 2. In each coordinate 
system, the Z,-axis is defined to align with the rth joint axis; 
the A',-axis along the extended line of //,•_{O,; and the y,-axis 
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according to the right-hand screw rule. The first coordinate 
system is fixed to ground. Since the common normal HaO\ 
does not exist, the Xx -axis is chosen perpendicular to Z ] , in an 
arbitrary manner. Also, we have attached a seventh coor
dinate system to the free-end to specify the position of the 
hand. The Z7-axis lies in the direction from which the hand 
would approach an object, as shown in Fig. 1. The X-axis is 
defined by the common normal between the Z6 and Z7 axes, 
and the F7-axis according to the right-hand screw rule. 

Let the coordinates of a point P expressed in the /th 
coordinate system be {pxi, pyj,pZi) and in the (/+ l)th coor-
dinate system be (pxi+\,Pyi+i,pZi+\). Then the vectors p( and 
p , + , can be written in the (4 X 1) matrix forms as follows: 

P/ = 

Pxi 

Pyi 

Pzi 

1 

and P/+i = 

Pxi+\ 

Pyi+l 

Pzi+l 

1 

(1) 

The transformation of coordinates from the (/ + l)th 
system to the /th system is [1, 2] 

Pi=A-P i+ i 

where A/ is a (4 x 4) matrix defined as follows: 

(2) 

A,= 

c, -Si\,-

Sj c,Xj 

0 N 

0 0 

Si Hi a , c , 

-CJHJ CljSj 

X, di 

0 1 

(3) 

P i = / l i A2 A3 A4 A5 A6 p7 (9) 

Pieper and Roth [2] defined the equivalent matrix of trans
formation A eq as 

<™ea —<A\ A 2 -A-* A A Ac Ac 

Therefore, equation (9) can be written as 

Pi = ^ e q P7 

(10) 

(11) 

Similarly, the transformation of the unit vector can be written 
as 

" l = ^ e q U 7 (12) 

Since the equivalent matrix of transformation defines the 
relationship between the coordinates of any point in the 
seventh system, p 7 , and that of the same point expressed in 
the first system, p t , the matrix Aeq is known when the 
position and orientation of the hand is specified. Let p(px, py, 
pz)

x be the position vector from the origin of the first system 
to the origin of the seventh system as shown in Fig. 1; and \{lx, 
ly, lz), m(mx, my, mz) and n ^ , ny, nz) be the three mutually 
perpendicular unit vectors aligned with the Xn, Y-,, and Z7 

axes, respectively. Then, when p, I, m, and n are given in the 
first system, the equivalent matrix is given by 

(13) Aeq — 

lx mx nx px 

ly my ny py 

h mz nz Pz 

0 0 0 1 

where c, = cosfl,, s, = sinfl,-, X,- = cosa,, and /*,• = sina,-. 
Also, the inverse transformation exists: 

where 

Ar* = 

(4) 

Ci 

-SjX, 

Si fr 

0 

Si 

c,X, 

- C . f t j 

0 

0 

Mi 

\ 

0 

-a-, 

-din. 

-rf,X, 

1 

(5) 

Similarly, let the components of a unit vector u expressed in 
the /'th coordinate system be (ux/, uyi, uzi) and in the (/ + l)th 
coordinate system be (uxi+l, Uyi+l, uzi+l). Then, the vectors 
u, and u,+1 can be written as 

u„ 

and u,+i 

uxi+\ 

. uyi+\ 

uzi+\ 

(6) 

0 0 

And the transformation of coordinates can be written as 

u,-=/l /u / + 1 (7) 

and 

B I + I = V D I (8) 

Applying the matrix transformation to each pair of 
coordinate systems between two successive links and 
proceeding from link 7 to link 1, we obtain 

Six-Revolute Joint (6-R) Manipulators 

Theoretically, we may use equation (10) to solve the in
direct-position problem of a general 6-R manipulator. We 
may try to eliminate one unknown at a time to obtain one 
equation in one unknown. However, it is difficult to carry out 
this elimination explicitly. Further, solving a high-degree 
polynomial equation leads to unique numerical difficulties 
associated with stability of solutions with respect to sensitivity 
in the coefficients [29]. We choose a different approach. We 
derive instead a system of eight second-degree equations. 
Then we solve this system using the continuation algorithm, 
SYMPOL, and the continuation heuristic, SYMMAN, 
described below. 

Let Pj(pxj, pyj, p^) be the position vector measured from 
the origin of the j'th coordinate system to the origin of the 
sixth coordinate system. Let Mj{uxJ, uyJ, u^) be a unit vector 
attached to the Z6-axis and expressed in the y'th coordinate 
system. Then, by definition, we have 

and u6 = (14) 

These two vectors, when expressed in the first system, are 
related to the hand position and orientation vectors by the 
following two equations. 

1 For brevity we shall omit the subscript 1 when a vector is expressed in the 
first coordinate system. 
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Pl = 

and 

P 

<J 

r 

1 

- lxa6 - (mxli6 + nx\6)d6 + Px 

-lyab- (my/j,6 + ny \6)d6 + py 

-lza6 -(mzn6 + nzX6)d6 + pz 

1 

(15) 

u, = 

u 

V 

w 

0 

= 

mxii6+nx~k6 

myn6+ny\6 

mzfi6+nz~X6 

0 

(16) 

Equations (15) and (16) imply that once the position and 
orientation of the hand are specified, the origin and the Z6-
axis of the sixth coordinate system are automatically defined. 

The transformation of coordinates between p6 and p , , and 
between u6 and u, can also be written as 

and 

p, = AX A2 A3 A4 A5 p6 

u{=Ai A2 A3 A4A5 u6 

(17) 

(18) 

Multiplying both sides of equations (17) and (18) by A2 

Ax ' , we obtain 

AilAr[ PX=A3 A4A5 p6 

and 

A2
XAX

X u, =^t3 A4A5 u6 

For brevity, let us define 

p3=A3 A4 A5 p6 

Pi=A2-' -4f 'p i 

u3=A3 A4 As u6 

and 

u3 = A2
[ Ai~lux 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

Then, p3 and p3' represent the same position vector defined 
from the origin of the third system to the origin of the sixth 
system. Position vector p3 is calculated from the matrix 
product representing the transformation of coordinates from 
links 6 —5—4 to 3 while p3 is calculated from links 6— 1 —2 to 
3. Similarly, u3 and u3 represent the same unit vector that is 
attached to the Z6-axis. Unit vector u3 is calculated from the 
linkage loop 6 — 5—4—3 while u3 is calculated from the loop 
6—1—2—3. Expanding the matrix multiplications of 
equations (21)-(24), the components of the vectors p and u 
can be expressed as follows: 

P*i = c3(.c4gx+s4g2+a3) + s3(,-s4\3gx+c4\3g2 + ix3g3)(25) 

Pyi = s3(.c4gx+s4g2+a3)-c3(-s4\3gx+c4\3g2 + iiig3)(26) 

Pa = s4ix3gx-c4ix.3g2 + \3g3+d3 (27) 

Pii = c2hx+s2h2-a2 (28) 

Pyi = -s2\2hl+c2\2h2 + n2h3~fi1d2 (29) 

Pa = s2fi2hl-c2ix2h2 + \2h3-\2d2 (30) 

«*3 = c3(c4ml+s4m2) + s3(-s4\iml+c4\3m2 + li3in3) (31) 

y3 = s3(c4m, +s 4 / r2 2)-c 3(-s 4A 3m 1 +c4\3m2 + n3m3) (32) 

s4fi3mx -c4n3m2 + \3m3 (33) 

c2nx +s2n2 (34) 

u 

"yi 

and 

-52X2n, + c 2 X 2 / ? 2 + / i 2 « 3 

»ri = s2ti2nx-c2ii2n2 + \2n3 

where 

g\= c5as+a4 

g2= -s5X4as+ix4d5 

g3= ssfi4a5 + \4d5+d4 

hx= clp + slq-al 
h2= -StXiP + c^q + ^ir-di) 
h3= s[fiiP-c1v.lq + \l(r-dl) 

m2= c5X4/x5+/i4X5 

m} = -C5IX4JX5 +X4X3 

and 

n , = CiU + SiV 

n2= -s1\iu + ci\lv + /Xi w 

n3= sl/xlu — cl/j.lv + \iW 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

Notice that g\,g2,g3,mx,m2, and m3 are functions of 05, 
and h^ h2, h3, nx, n2, and n3 are functions of 0,. For the 
reasons of brevity, pxX, pyX, and pzX are replaced by p, q, and 
r, and ux *y\ and uzX are replaced by u, v, and w, respec
tively. Equating the x, y, and z components of p3 and p 3 , and 
u3 and u3 , yields the following: 

(41) 

(42) 

(43) 

(44) 

(45) 

Px3 

Pyi 

Pa 

"x3 

Uy3 

= 

= 

= 

= 

= 

Pxi 

Pyi 

Pa 

U'xl 

u'y3 

and 

<z3> (46) 

Equations (41)-(46) are six nonlinear equations free from 
the variable 66. However, only two of the last three equations 
are independent since they are related by the condition 

u2
x3 + uj3 + u\3 =ux3

2+ u'y3
 2 + u'z3

 2 = 1 (47) 

Therefore, there are only five independent equations in five 
unknowns (dx-65). For simplicity, however, we may consider 
c,(cos0,-) and j,(sin0,) as two independent variables and add 

cj+sf = 1, fori=l,2, . . . , 5 (48) 

as supplementary equations of constraint. This results in ten 
independent equations in ten unknowns. An inspection of this 
system of equations reveals that equations (41), (42), and (44) 
are polynomials of the third degree and equations (43), (46), 
and (48) with / = 1-5 are of the second degree. The total 
degree2 of this system of equations is so large that it is not 
practical to apply continuation methods. Therefore, it is 
necessary to further simplify the system of equations. The 
next section describes how to eliminate 63 from the foregoing 
equations and at the same time obtain a new system of much 
lower total degree. 

Elimination of 03. First, we notice that equations (43) and 
(46) are already free from the angle 03. For the convenience of 
analysis, they have been rewritten in the expanded forms as 
shown below: 

fi2hxs2 - ix2h2c2 - ix3gxs4 + ix3g2c4 = 

-\2h3+\2d2 + \3g3+d3 (49) 

The total degree of a system of polynomial equations is the product of the 
degrees of the independent equations. 
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^ritSi -fi2n2c2 -ti3mis4 + ti3m2c4 = -\2n3 + \3m3 (50) 

The third equation, free from 03, can be obtained by 
equating the sum of products of equations (41) and (44), (42) 
and (45), and (43) and (46), i.e. 

Px-h "x3 +Pyi Uyl +Pzl "z3 =Px3 "*3 +Py3 "y3 +Pzl «rf (51) 

Physically, the left-hand side of equation (51) represents the 
z-component of the position vector, p3 , and the right-hand 
side represents the z-compoment of the position vector, p 3 , on 
the sixth coordinate system. Upon substitution of equations 
(25)-(36) into (51), and after simplification, we obtain 

a2n2s2+a2n1c2+(.a3m2+d3n3m1)s4+(a3ml -d3lx3m2)c4 

= - a i « i -d2n3 -a4mx -(d3\3 + d4)m3 +k{ (52) 

where 

kx = -d5\5+pu + qv + (r-d1 )w (53) 

The fourth equation is obtained by equating the sum of the 
squares of equations (41), (42), and (43), i.e. 

Pi} +PJi +Ph =Pxi 2+Pyi2 +Pe2 (54) 
Physically, the left-hand side of equation (54) represents the 

square of the length of the position vector, p3 , and the right-
hand side represents the square of the length of the position 
vector, p3 . Substituting equations (25)-(30) into (54) and 
simplifying yields 

a2h2s2+a2hlc2 + (a3g2+d3ti3gl)s4 + (a3gl -d3tx3g2)c4 

= -aihi -d2h3 -a4gi -(d3\3+d4)g3 +k2 (55) 

where 

k2 =0.5[/?2 + q2 +(r-d{)
2 -a\+a\+d\ 

-a2
3-d

2
3+aj+dj-a2

5-d
2
5] (56) 

Notice that although each of the products px3 ux3 etc. are 
sixth degree in nature, the resulting equations, equations (52) 
and (55), are polynomials of second degree. Therefore, many 
extraneous solutions have been eliminated during the 
processes of simplification. 

Equations (49), (50), (52), and (55) combined with (48) for /' 
= 1,2,4, and 5 are a set of eight equations in eight unknowns. 
Here, the unknowns are c, and 5,- for i = 1,2,4, and 5. Since 
each equation is of second degree, the system can have at most 
28 = 256 solutions, unless it has an infinite number of 
solutions. More exactly, a system of 8 second-degree 
equations in eight unknowns may have any number of 
solutions from 0 to 256 or it may have an infinite number. No 
other possibilities exist. The SYMPOL algorithm begins with 
256 generic start points and will generate from these all the 
solutions, unless there are an infinite number. There will, in 
fact, be less than 256 solutions to the kinematics problem, but 
this is irrelevant to SYMPOL, which computes all solutions 
by a generic procedure which does not depend on the exact 
number (unless it is infinite). 

It appears that further reduction in the number of 
unknowns is possible. For example, since equations (49), (50), 
(52), and (55) are linear in s2, c2, s4, and c4, we may solve 
them in terms of the others, and substitute them into the two 
equations c\+ s\ = 1 and c\ + sj = 1. The resulting 
equations combined with equation (48) written for / = 1 and 5 
yield a system of four equations in four unknowns (cusuc5, 
and s5). However, because of the complexity involved we did 
not elect to reduce the number of unknowns in this manner. 
Instead, we shall use equations (49), (50), (52), and (55) along 
with equations (48) for i = 1,2,4, and 5 as the system of 
equations for analysis. 

Finding 03 and 06. Once 0j, 62, 04, and 05 are known, 
equations (41) and (42) can be used to solve for 03. Since both 
equations (41) and (42) are linear in c3 and s3, each solution of 

6\, d2, 04, and 95 yields a unique value of c3 and s3 and, 
therefore, 83. The solutions obtained should then be sub
stituted into equations (44) and (45) to check for com
patibility. The solutions that do not satisfy equations (44) and 
(45) are the extraneous solutions and should be disregarded. 

Multiplying both sides of equation (10) by 
(AiA2A3A4A5)~

i, we obtain 

> l 6 = / l 5 - M 4 - M 3 - U 2 - M r U e q (57) 

Hence, the angle 06 can be solved by equating the (1 x 1) and 
(2 x 1) elements of equation (57), i.e. 

cos06 = ( l x l ) e l e m e n t o f ( / l 5 " U 4 ' U 3 - U 2 - 1 ^ r 1 y l e q ) (58) 

sin06 = (2x1) element of ( ^ j - M ^ U a - U i - U f U e , , ) (59) 

Special Cases 

The system of equations will decouple when either any three 
adjacent joint axes intersect at a common point or any three 
adjacent joint axes are parallel to each other. In these cases, 
closed-form solutions can be obtained. To demonstrate the 
decoupling, the following cases are discussed. Fortunately, 
the continuation methods can handle the decoupled system of 
equations without special consideration. Therefore, unless 
computing time is a concern, it is not necessary to have special 
programs to handle these special cases. 

Case (1): Last Three Axes Intersecting. When the last three 
joint axes intersect at a common point, a4 = a5 = d5 = 0 
identically. Equations (49) and (55) reduce to 

li2{hls2-h2c2)=fu (60) 

a2(h2s2+h\C2)=f2, (61) 

where 

/ i = - \2h3 + \2d2 +d3+ \3d4 (62) 

f2=-alhl-d2h3-\3d3d4 + \p2+q2+(.r-d])
2 

-a2+a2
2+d2

2-a
2
3-d

2
3-d

2
4]/2 (63) 

Summing the squares of equations (60)//x2 and (61)/a2, we 
obtain 

provided /i2 ^ 0 and a2 ^ 0. (64) 

Equation (64) is a second degree polynomial in cx and S\. If 
we replace c, by (1 - ^ 2 ) / ( l + r ^ J a n d s j by 2 ^ / ( 1 + t\2), 
where tt = tan (0i/2), we obtain a fourth degree polynomial 
in t{. Therefore, there are at most four solutions of 6\ for 
every given position of the hand. Once 6[ is known, equations 
(60) and (61) yield a unique solution for 82. Since equations 
(41) and (42) are linear in s3 and c3, 03 can be solved uniquely 
once 0! and 02 are known. Notice that once du 02, and 03 are 
solved, equations (50) and (52) can be simplified, in a similar 
manner, to a quartic in tan (05/2). Therefore, corresponding 
to each solution of (0 lf 02, and 03) there are four possible 
solutions for 05 and 04. This results in 16 possible solutions 
for each given manipulator hand position. In what follows, 
we show a different approach to avoid eight extraneous 
solutions. 

Subtracting equation (45) x c3 from equation (44) x s3 

and simplifying, yields 

~\3mls4 +\3m2c4 + ix3m3 = / 3 (65) 

where 

fi =(c2«i +s2n2)s3-{-\2s2ni +\2c2n2 +n2n3)c3 (66) 

Equation (50) may be written as 

li3(mis4-m2c4) + \3m3=f4, (67) 

where 
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/ 4 = M 2 « l 5 2 — A*2«2C2 + ^ 2 « 3 ( 6 8 ) 

Adding equation (65) x n3 to equation (67) x X3 and sim
plifying, yields 

« 3 = W 3 + W 4 (69) 
Hence, we can solve (69) for 05 

— = ± ta - ' / ^ 3 + X^ 4 + ^ ^ ~ ^4^5 

2 ^ - ^ 3 / 3 - ^ 3 / 4 + ^4/^5-^4^5 

90deg > y > - 9 0 d e g (70) 

Therefore, corresponding to each solution of 0,, 62, and 03, 
there are at most two solutions for 05. Once 6X,62,83, and 65 
are known, equations (65) and (67) yield 04 uniquely. Hence, 
there are at most eight possible solutions corresponding to 
each specified position and orientation of the hand. Of the 
eight possible solutions, there are at most four different 
configurations defining the geometry of the upper arm (0i, 02, 
and 03). We have assumed that a2 ^ 0 and /x2 # 0 for the 
derivations just given. If a2 or JX2 equals zero, then equation 
(60) or (61) further simplifies t o / 2 = 0 o r / i = °> a nd t n e 

analysis becomes very straightforward. Note that both a2 and 
H2 can not be zero simultaneously. For if a2 = 0 and \L2 = 0, 
then the second- and third-joint-axes must be coincident and 
one degree-of-freedom is lost from the manipulator. Once 0 f , 
02) 03,04, and 05 are found, 06 can be found by the methods 
outlined in the previous section. 

Case (2): Joint Axes 2, 3 and 4 Parallel to Each Other. 
When the second, third, and fourth joint axes are parallel to 
each other, a2 = a3 = 0 identically. Since the common 
normals between the second and third joint axes and between 
the third and fourth joint axes are undetermined, we can 
always define these two normals such that d2 = d3 = 0. 
Hence, equations (49) and (50) reduce to 

a5)j.4ss =ii\p sx -p.xq c, + Xxr-Xxdx -X4tf5 -d4 (71) 
~H5H4cs =/x,w sx -fxxv c, +A, w-X 4X 5 (72) 

Assuming a5 ^ 0 and /t5 ^ 0, then s5 and c5 can be 
eliminated by summing the squares of equation (71)/#5 and 
equation (72)/'/^5 to yield 

M42 = KniPSi -fixgcx+Xxr-Kxdx -\4ds-d4)/as]
2 

+ [{nlus1-n1v c, +\xw-\4\5)/fi5]
2 (73) 

Equation (73) is a second degree polynomial in cx and sx. If 
c, is replaced by (1 - / i 2 ) / ( l + tx

1)andsx b y 2 f , / ( l + / , 2 ) , 
where?, = tan(0!/2), then equation (73) becomes a fourth 
degree polynomial in tx. Therefore, corresponding to each 
given position and orientation of the manipulator hand, there 
are at most four solutions for 0,. Once the solution for 0S is 
obtained, equations (71) and (72) give a unique value of 05. 

F o r a 2 = «3 = 0, equations (44) and (45) reduce to 
ci4m1+si4m2=c2nl+s2n2 (74) 
s34mx -c34m2 = -s2nx +c2n2 (75) 

where c34 = cos(03 + 04)and.s34 = sin(03 + 04). 
Subtracting equation (75) x s2 from equation (74) X c2, 
yields 

c234mx + s234m2=nx (76) 
Adding equation (75) x c2 to equation (74) x s2, yields 

^2um,-c2Hm2=n2 (77) 
where c234 = cos(02 + 03 + 04), and 5234 = sin(02 + 03 + 
e4). 

Solving equations (76) and (77), yields 
mxn2+m2nx 

S234 = 2— 2 ' 7 8 ^ 

m\ +m2 

194/Vol. 107, JUNE 1985 

and 

C234 = I 2 09) 
mx+m2 ' 

Hence, corresponding to each 0! and 05, there is a unique 
solution for (02 + 03 + 04). 

Similarly, equations (41) and (42) reduce to 
c34£i +sMg2+c3a3=c2hx +s2h2-a2 (80) 

^iig\-cMg2+s1ai= -s2hx+c2h2 (81) 
Subtracting equation (81) x s2 from equation (80) x c2, 
yields 

c234#i +s234g2+c2ia3=hx -a2c2 (82) 
Adding equation (81) x c2 to equation (80) x s2, yields 

S2i4gx-c2Ug2+s23ai=h2-a2s2 (83) 
Eliminating c2 ands 2 f r ° m equations (82) and (83), yields 

2o3 k5 c23 + 2a3 k6s23 - a\ + a\ + k\ + k\ = 0 (84) 
where 

c23 = cos(02 + 03) 

s23 = sin(02 + 03) 

^5 = c234gx+s234g2-hx 

and 

^ 6 = S234§ 1 _ C 2 3 4 g 2 ~ / l 2 

Equation (84) may be converted into a second degree 
polynomial in t23, when c23 is replaced by (1 - t23)/(l + t23) 
ands2 3 by 2/2 3 /(l + t\3), where t23= tan(02 + 03)/2. After 
(02 + 03) is solved, equations (82) and (83) yield a unique 
solution of 02. Hence, there are a total of eight possible 
solutions for dx, 62, 63, 04 and 05, and the value of 06 follows 
from equations (58) and (59). Note that equations (71) and 
(72) will decouple if either as = 0 or ft5 = 0. For a5 = 0 or fis 
= 0, the solution is very straightforward. 

Five-Revolute-Joint (5-R) Manipulators 

In order to position the hand of a manipulator freely in 
space, it is necessary that a manipulator has six degrees of 
freedom. In practice, however, it is sometimes only necessary 
to specify the position of an axis of the hand, while the 
orientation of the hand about the axis is not important. A 
manipulator with five degrees of freedom is then sufficient to 
perform such a task. Manipulators with five degrees of 
freedom can often be found in industrial applications such as 
arc welding and spray painting. The analysis of five-degree-
of-freedom robot arms was treated recently by Sugimoto and 
Duffy [30]. Sugimoto and Duffy introduced a pair of 
hypothetical joints and links to the five-degree-of-freedom 
manipulator to form a hypothetical closed-loop 7-R spatial 
mechanism. The solution was then obtained from the 
hypothetical closed-loop mechanism. The method works well. 
However, it is always necessary to calculate the hypothetical 
pair of links and joints and then solve the hypothetical spatial 
mechanism, and it is also limited to robots with special 
geometry. In what follows, we shall show that the method of 
analysis developed in this paper can be applied directly to the 
analysis of a five-degree-of-freedom manipulator. There is no 
need to introduce a hypothetical pair of links and joints. 

Figure 3 shows a five-revolute-joint manipulator where the 
sixth coordinate system is attached to the hand. Only the 
position of an axis in the hand can be specified freely for a 
manipulator with five degrees of freedom. Let us assume that 
the axis of interest is the Z6-axis. Then, for every specified 
position of the axis, the origin, Oe, and the direction u(«, v, 
w) of the Z6-axis are known. We observe that the trans
formation of coordinates of the vectors p and u from the sixth 
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I_Z6 
u(u,v,w) 

Link 6 
(Hand) 

Link 1 (Fixed to Ground) 
Fig. 3 A fiverevolute-joint manipulator 

system to the first system is identical to that given for the 6-R 
manipulator, i.e. equations (17) and (18) work for both types 
of manipulators. The only difference is that the vectors p! and 
u | are directly specified for a 5-R manipulator while they are 
calculated by equations (15) and (16) for a 6-R manipulator. 
Hence, the equations (41) through (46) or (49), (50), (52), and 
(55) can be used for solving 0, -0 5 . Therefore, solutions of the 
five-degree-of-freedom manipulator can be considered as a 
special case of the general six-degree-of-freedom 
manipulator. 

Manipulators with Prismatic Joints 

So far we have limited our discussions to the manipulators 
with revolute joints only. However, the method can also be 
applied to manipulators with mixed prismatic and revolute 
joints. For an rth prismatic joint, we simply consider a-„ a, 
and 0, as constants and d, as a variable. Then equations (41) 
through (46) along with (25) through (40) can be applied 
except for the case where the sixth joint is prismatic. 

If the third and sixth joints are not prismatic, then it is more 
convenient to use equations (49), (50), (52), and (55) since 03 

has already been eliminated from these four equations. If the 
sixth joint is not prismatic and the third joint is prismatic, 
then it is more convenient to use equations (41), (42), (44), or 
(45), and (46) to solve for 6X, 92, 64, and 05 since these 
equations are already free from the variable d3. The variable 
d3 can be found from equation (43) once dlt 62,d4, and 6S are 
found. 

If the sixth joint is prismatic, then 06 is constant and d6 is 
variable. Therefore, p, q, and r are now functions of d6 and 
an additional equation of constraint is needed. The additional 
equation can be obtained by equating either the x, y, or z 
component of the following vector equation: 

vx=AxA2A-sA4A5v6 (85) 

where v6 is the unit vector aligned with the A"6-axis and ex
pressed in the sixth system, i.e., 

(86) 

and v, is the same unit vector expressed in the first system, 
which is known when the position and orientation of the hand 
are specified. Specifically, v, is given by 

C(,lx-s6\6mx+s6!x6nx 

v , = c6lx-s6\6my+s6ij,6ny (87) 

0 

To illustrate the principle, let us consider the "Stanford arm" 
where the third joint is prismatic [7]. The linkage parameters 
of the Stanford arm are as follows: 

Link / a. di 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 

0 
d2 (constant) 
d3 (variable) 
0 
0 
0 

- 90 deg 
90deg 
Odeg 

-90 deg 
90 deg 
0 

0\ (variable) 
#2 (variable) 
0 deg (constant) 
B4 (variable) 
#5 (variable) 
06 (variable) 

Since 03 = 0 deg, we have 53 = 0andc 3 = 1. Substituting the 
foregoing parameters into equations (41) through (46) yields 

c2(cip + sxq)-s2r = 0 

-sxp + cxq-d2=0 

s2(cxp + sxq) + c2r = d} 

c2(cxu + sxv)-s2w = c4ss 

-sxu + cxv = s4ss 

s2(.cxu + sxv) + c2w-c5 

(88) 

Solving equations (88), we obtain 

0! = 2 t a n - ' [ ( - p ± V p 2 + q2 -^2)/{d2 + q)], 

-180 deg < 0j < 180 deg 
02 = t a n " 1 [(Cjp+ $,#)//•] 

d3 = s2(clp + slq) + c2r (89) 

84 = t an - 1 [(-slu + clv)/[c2(CiU + slv)-s2w]) 

05 = C0S"1[52(Ci« + i'1!;) + C2M'] 

Hence, 8X, 62, d}, 04, and 05 can be found in sequence. 
Once 8X, 02, d}, 84, and 05 are found, 06 can be found by 
solving equations (58) and (59). The solution found is in 
complete agreement with that given in [7], thereby proving 
generality of the method of analysis given in this paper. 

Continuation Methods 

Two continuation methods were used to solve the system of 
equations (48), (49), (50), (52), and (55). SYMPOL is the 
generic continuation technique presented by Morgan in [26]. 
It is not customized to this particular problem; in fact, the 
method uses only the fact that these equations form a system 
of eight second-degree polynomials. SYMMAN is a special 
continuation method that is customized to this problem, as 
described below. 

For SYMPOL there is a substantial theory, backed up by 
much computational experience. This method is slow but 
reliable. For SYMMAN there is some theory, and experience 
demonstrates that SYMMAN will usually find a partial 
solution list quickly. However, neither theory nor experience 
suggest that SYMMAN can be used reliably to find all 
solutions. In some very degenerate cases, SYMMAN will not 
find any solutions at all. For example, if the three joint axes 1, 
2, and 3 intersect at a point, then SYMMAN will not work at 
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all. This is because in this case the initial system has either an 
infinite number of solutions or no solutions. However, such a 
degenerate system can usually be solved in closed form. 

Both continuation methods are based on the following idea. 
Let F{x) = 0 denote equations (48), (49), (50), (52), and (55), 
and let G(x) = 0 denote some system of eight equations in 
eight unknowns which can be solved in closed form. For 
SYMPOL, G(x) is determined by theory [26]. For SYMMAN, 
G{x) is a perturbation of the specific simplification of F(x) = 
0 defined by setting a4 = a5 = d5 = 0. Now we define a 
"continuation equation" 

H(x, t) = (1 - t)G(x) + tF{x) (90) 

with a new parameter /, called the "continuation parameter," 
where t goes from 0 to 1. When t = 0, H(x, f) = G(x) and, 
when t = 1, H(x, t) = F(x). Thus as / goes from 0 to 1, the 
solutions of H{x, 0 = 0 change from solutions of G(x) = 0 to 
solutions of F{x) = 0. To implement continuation, we start at 
a solution to G(x) = 0, increment /, solve H(x, i) = 0, in
crement t again, solve H(x, t) = 0 again, and so on until t = 
1. The sequence of solutions to H(x, 0 = 0 - called a 
"continuation p a t h " - converges to a solution of F(x) = 0. 
When we do this starting at each solution to G(x) = 0, we 
obtain a collection of solutions to F{x) = 0 which we hope 
includes all solutions. The actual implementation involves 
defining a differential equation whose solutions are the 
continuation paths and solving this differential equation using 
a numerical integration technique. The integration is followed 
by Newton's method to refine the final solution estimates at 
the end of each continuation path [25, 26]. 

Several things can go wrong with this process: 

(a) H(x, 0 = 0 might have no solution for some increment 
of /, or it might have several nearby solutions which are hard 
to distinguish or find. 

(b) G{x) = 0 might not have enough solutions to match 
the solutions of F(x) — 0, or for some other reason F{x) = 0 
might have some solutions with no continuation paths con
verging to them. 

(c) As t is incremented, the solution to H(x, 0 = 0 might 
diverge to infinity. 

Each of these types of bad behavior can occur for different 
choices of F and G, but the theory developed for SYMPOL 
tells how to avoid (a) and (b) and how to make (c) unim
portant. SYMPOL finds all solutions, unless there are an 
infinite number. A manipulator problem might have an in
finite number of solutions when arbitrary wrist rotations of 
some joint angles do not change the hand position. When 
there are an infinite number of solutions, SYMPOL will find 
all isolated solutions and tends to find a representative point 
on each solution curve. Using SYMMAN, we can avoid (a), 
but {b) and (c) may occur. Thus we may miss some solutions 
when we use SYMMAN. 

For SYMPOL we define G(x) by 

Gj(x) = ajx/^j-bj for;=l,2, . . . 8 (91) 

where deg, denotes the degree of the polynomial Fj and aj and 
bj are "random" complex numbers. The basic theory of the 
method [26] shows, for this G, that the only possible bad 
behavior is (c) above. However, each solution of F(x) = 0 has 
a convergent sequence as t goes from 0 to 1, so we still get 
what we want: all solutions to F{x) = 0. The random choice 
of Oj and bj is important so that we avoid (a) and (b) and keep 
(c) under control. (Divergence to infinity can occur only as t 
approaches 1.) 

As noted above, G{x) for SYMMAN is a perturbation of 
the simplification of (48)-(50), (52), (55) defined by setting o4 

= a5 = d5 = 0. (See the Appendix.) This will be discussed in 
two steps. Forgetting about the perturbation, the logic of the 
simplification is that in this case G(x) = 0 is solvable in closed 
form and physical. 

By solvable in closed form, we mean that we can write 
down formulas (using the quartic formula) for the solutions. 
The cases in which G(x) = 0 has an infinite number or no 
solutions are exceptions. For example, this occurs when the 
three axes 1, 2, and 3 intersect at a point. In these cases, 
SYMMAN cannot be used. 

By physical, we mean that this case corresponds to an 
actual manipulator, namely one with the last three joint axes 
intersecting in a common point. For this simplifed case, there 
are at most 16 solutions, unless there are an infinite number. 
These 16 consist of eight significant and eight extraneous 
solutions. We observe that by proper back substitution we can 
omit the eight extraneous as described in the previous section. 

The SYMMAN continuation equations, H(x, t), are defined 
by letting the t parameter multiply each of the terms con
taining o4, as, and d5 in the system. (See the Appendix.) It 
turns out that the resulting continuation is subject to all three 
of the things that can go wrong in the abovementioned list. 
However, by a slight modification of H(x, t) we can prevent 
(a) from occurring. We have to live with (b) and (c), although 
in our experience (c) has not occurred. 

If (a) happens, then the whole continuation procedure will 
break down. To prevent this, we perturb the system of 
equations by adding a small random complex constant of the 
form (t— Y)k, with a different constant k for each equation. 
The theory of continuation shows that this "trick" will 
eliminate (a) as a problem. However, practically speaking the 
magnitude of the k must be chosen with care. The existence of 
the (t- \)k terms makes the solutions nonphysical. If the k's 
are too large, then the physical interpretation of the solutions 
will become unreasonable. If the k's are too small, the 
continuation may fail because of a singularity. We have found 
that, after normalizing the system coefficients about unity, 
k's whose order of magnitude is 10"4 seem to work well. In 
other words, no singularities were encountered, and a large 
fraction of the total solution list was found in the test 
examples. (See the next section.) The basic problem with 
SYMMAN is simply that, even when no singularities are 
encountered, at most sixteen solutions can be found. Further, 
no theory guarantees that any solutions will be found. The 
basic justification for SYMMAN rests on physical reasoning, 
along with the fact that it has worked well in tests. 

Numerical Examples 

Overview. The key parameters for SYMPOL and SYM
MAN are the path-integration accuracy, EPS, and the 
maximum arc length for each continuation path, MAX ARC 
[25, 26]. Guidelines for setting these parameters are not 
determined by theory and must be established by experience. 
For SYMPOL we used EPS = 10 6 and MAXARC = 250. 
For all the given examples and for most of the other tests we 
made, the path arc length in SYMPOL was less than 250, 
except for diverging paths. Occasionally, a path required an 
arc length over 250, but never, in our testing, over 800. For 
SYMMAN we used EPS = 10 "4 and MAXARC = 250. For 
all examples and tests the path arc lengths were, in fact, less 
than 10. 

The system of equations (48)-(50), (52), and (55) can have 

Table 1 Hand position and orientation 
Given ^-component ^-component z-component 
vectors 

P 0.22441776* 0.71549788 0.79551628 
I -0.71511545 0.65150320 0.25328538 

m -0.69899036 -0.66895464 -0.25280857 
n 0.00473084 -0.35783135 0.93377425 

*We show only eight digits here. However, full double precision 
(fifteen digits) was used in the computer codes. 
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Table 2(a) Linkage parameters 

a, (unit) dt (unit) a, (deg) 
1 
2 
3 
4 
5 
6 

0.0 
1.000000 

-0.047000 
0.0 
0.0 
0.0 

0.0 
0.345000 
0.0 
1.000000 
0.0 
0.130000 

-90.00 
0.0 

90.00 
-90.00 

90.00 
0.0 

Table 2(A) Linkage parameters 

i a,- (unit) dj (unit) a, (deg) 
1 
2 
3 
4 
5 
6 

0.450000 
0.550000 
0.750000 
0.750000 
0.550000 
0.450000 

0.500000 
0.600000 
0.400000 
1.000000 
0.400000 
0.600000 

80.00 
93.00 

120.00 
120.00 
93.00 
80.00 

Table 2(c) Linkage parameters 

a,- (unit) dj (unit) a;(deg) 
1 
2 
3 
4 
5 
6 

0.500000 
1.000000 
0.125000 
0.625000 
0.312500 
0.250000 

0.187500 
0.375000 
0.250000 
0.875000 
0.500000 
0.125000 

80.00 
15.00 

120.00 
75.00 

100.00 
60.00 

Table 3(a) Computing time and total number of solutions 
found 

Number of solutions found 
Computing CPU 

time (s) Significant Extraneous 

SYMPOL 

SYMMAN 

212.363 

2.012 

Real 

8 

8 

Complex 

0 

0 

8 

8 

Table 3(A) Computing time and total number of solutions 
found 

Number of solutions found 
Computing CPU 

time (s) Significant Extraneous 

SYMPOL 

SYMMAN 

266.513 

8.028 

Real 

6 

6 

Complex 

10 

2 

16 

8 

Table 3(c) Computing time and total number of solutions 
found 

Number of solutions found 
Computing CPU 

time (s) Significant Extraneous 

SYMPOL 

SYMMAN 

250.868 

10.618 

Real 

12 

6 

Complex 

4 

0 

16 

10 

at most 256 solutions, unless it is singular, in which case it 
may have an infinite number of solutions. For SYMPOL, 
there are always 256 generic start points. For each start point, 
a continuation path is generated. Some of these paths con
verge to solutions to (48)-(50), (52), and (55). The rest diverge 
to infinity. In practice, diverging paths are detected by 
determining that their arc length exceeds MAXARC. Each 
isolated solution to the system has a path converging to it. All 
solutions are isolated, unless there are an infinite number of 
solutions. In this latter case, some solutions will be isolated, 
and others will form algebraic hypersurfaces, most commonly 
curves. Thus SYMPOL will find all solutions, unless there are 
an infinite number. However, solutions to equations 
(48)-(50), (52), and (55) are not necessarily solutions to 
equations (41)-(46). Those solutions that satisfy equations 
(48)-(50), (52), and (55) but not (41)-(46), are the so-called 
"extraneous" solutions. The others we call "significant." 
Significant solutions can be real or complex, but only the real 
solutions have physical meaning. For SYMMAN, there are 
only 16 start points. Hence, SYMMAN is faster than 
SYMPOL but can produce at most 16 solutions. 

The hand position and orientation for all the numerical 
examples tested are given in Table 1, where p is the position 
vector and 1, m, and n are the orientation vectors. For each of 
the three examples, there are three associated tables. Thus for 
Example 1, Table 2(a) gives the (input) linkage parameters 
that define the manipulator. Table 3(a) summarizes the 
SYMPOL and SYMMAN output in terms of CPU time and 
how many solutions were found in each of three categories: 
real-significant, complex-significant, and extraneous. Table 
4(a) lists the real-significant solutions found by SYMPOL and 
indicates which were also found by SYMMAN. Note that 03, 
and 66 were found by back substitution after 81,62,64, and ds 

were computed. 

Example 1: Last Three Axes Intersecting. In this case the 
system partially decouples. We notice there are four different 
configurations of the upper arm (d{, 62, and 63), and there are 
two different configurations for the wrist joints (04, 6S, and 
06) corresponding to each configuration of the upper arm. 

Example 2: Symmetrical Robot. This robot is taken from 
the first example of [16] except for a scale factor of 2. It is 
symmetric about the fourth joint axis. 

Example 3: General Robot. The linkage parameters given 
in Table 2(c) represents one of the many general robots with 
arbitrary linkage proportions that we tested. Note that 
SYMMAN missed six of the real significant solutions. 

Summary. Equations of constraint were derived for the 
kinematic analysis of the most general six-revolute-joint 
manipulators. Solutions can be obtained by simultaneously 
solving a system of eight second-degree polynomial equations 
in eight unknowns using continuation methods. 

We found that both SYMPOL and SYMMAN can be used 
to solve the indirect-position problem of the general 6-R 
manipulator. SYMPOL can also be used to solve the 
decoupled cases, without any special considerations. 
Although SYMMAN did solve the decoupled case presented 
in Example 1, it will not find any solutions at all for some 
other decoupled cases, such as when the three joint axes (1, 2, 
and 3) or (3, 4, and 5) intersect at a point, or the two axes (4 
and 5) or (5 and 6) are parallel to one another. SYMPOL 
consistently found 16 significant solutions (except for the 
decoupled cases), taking about 4 minutes per run on the IBM 
370-3033, while SYMMAN found up to eight significant 
solutions in only a few seconds. We notice that although the 
number of real-significant solutions changes from case to 
case, the total number of significant solutions (real and 
complex) is 16 for all the 6-R manipulators tested except for 

Journal of Mechanisms, Transmissions, and Automation in Design JUNE 1985, Vol. 107/197 

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 08/04/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Table 4(a) Real solutions found by SYMPOL 

Joint displacements (deg) 

No. 

1 
2 
3 
4 
5 
6 
7 
8 

h 
- 80.62 
-80.62 
- 80.62 
-80.62 

47.89 
47.89 
47.89 
47.89 

h 
-76.06 
-76.06 
162.66 
162.66 

- 103.94 
- 103.94 

17.34 
17.34 

h 
-28.47 
-28.47 

-146.15 
-146.15 
-146.15 
-146.15 

-28.47 
-28.47 

h 
176.23 
-3 .77 

-36.03 
143.97 

-162.84 
17.16 

-107.55 
72.45 

05 

-125.23 
125.23 

5.23 
-5 .23 
124.38 

-124.38 
14.80 

-14.80 

06 

34.71 
- 145.29 
- 107.20 

72.80 
-84.24 

95.76 
- 166.02 

13.98 

Also 
found by 

SYMMAN 

yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 

Table 4(b) Real solutions found by SYMPOL 

Joint displacements (deg) 

No. 

1 
2 
3 
4 
5 
6 

»i 

- 146.88 
-167.72 

21.50 
63.74 
17.31 
26.20 

h 
170.87 

-173.52 
135.15 

-47.27 
19.31 
6.88 

03 

-11.22 
128.00 

-104.31 
- 172.43 

42.89 
-62.10 

04 

-25.99 
- 179.64 

64.39 
-114.49 
- 164.02 

-45.96 

05 

-108.51 
-3 .12 

-89.40 
- 50.04 

29.10 
-130.25 

«6 

60.82 
179.99 
77.38 

-11.94 
-17.23 

- 129.34 

Also 
found by 

SYMMAN 

yes 
yes 
yes 
yes 
yes 
yes 

Table 4(c) Real solutions found by SYMPOL 

Joint displacements (deg) 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

01 

167.68 
-143.00 

115.86 
107.56 

-106.07 
-65.37 
120.52 

7.75 
- 16.69 

47.26 
20.93 
38.93 

h 
83.55 

100.07 
- 168.65 

2.00 
-140.86 

142.24 
31.27 

103.87 
97.90 

163.44 
58.74 

- 56.45 

03 

168.07 
131.85 

-66.22 
-111.47 

22.07 
56.06 

- 143.03 
-113.21 
-25.97 

-119.49 
-125.17 
- 149.20 

04 

65.84 
18.46 

157.17 
166.77 

-161.28 
-70.90 
114.15 

-21.37 
-80.98 

28.32 
-27.07 

12.28 

05 

-88.67 
-59.49 

-111.41 
-173.54 

35.54 
-51.63 

- 143.62 
-79.90 
-25.72 
-41.13 

- 125.66 
72.23 

06 

-44.77 
-71.52 
156.71 

- 105.56 
134.45 

-116.13 
-64.39 

82.26 
-3 .44 
81.08 

106.21 
67.43 

Also 
found by 

SYMMAN 

no 
no 
no 
no 
yes 
yes 
no 
yes 
yes 
no 
yes 
yes 

the decoupled cases where there are eight significant 

solutions. Since we know that SYMPOL found all the 

solutions for these examples, this suggests that there are only 

16 possible significant solutions for the most general 6-R 

manipulator, even though Roth et al. [3] predicted up to 32 

solutions. 
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H3(x,t) = 

A P P E N D I X 

SYMMAN Continuation Function Definition 

The following eight equations, Hx{x, 0 = 0 , . . . , Hs(x, t) 
= 0, define the SYMMAN continuation equations. 

Le t c 1 , s , , c 2 , s2,c4,s4,c5, andss be denoted b y x l , x 2 , x 3 , 
x4,x5, x6,x7, andxg respectively. We take 

factor = (la, I + la2 I + l«3 I + la4 I + la5 I + 
Id, I + \d2 I + \d3 I + \d41 + \ds l)/10 

for the normalization factor. Then we have 

Hdx, t) = 
l-x, x3 X, ix2q 

+ Xl X4 Hi p 

+ X2 X3 \ H2 p 

+x2 x4 fi2 q 

~X5 *8 M3 ^4 «5 t 

-x6 x-i n3 a5 t 

-Xi HI X2 q 

+ X2 Hi A2 P (Al) 

-x-i HI HI (r-di) 

-x4 \x2 a, 

+xs Hi \x4 d5 t 

-x6 ^ a4 t 

-Xg X3 fx4 a5 t 

+ \i X2 r — X] X2 d\ — X2 d2 — d3 — X3 d4 

- X3 X4 d5 t] /factor 

+ A:1(f-1) = 0 

H4(x,t) = 

-x{ x3 Xi HI v 

+ Xi X4 Hi U 

+ X2 X3 X, n2 U 

+ X2 X4 Hi V 

+x5 x-i /*3X4 Hi 

-x6 XZHJ ix5 (A2) 

-Xi /*,X2 v 

+ X2Hi\2U 

-X3 IX1IX2 W 

+ XS Hi ^ 5 

+ X-, \3H4 Hi 

+ X, X2 w-X3 X4 \s+(t-l)k2=0 

[xy x3a2 u 

+Xi x4 \ta2 v 

+ x2 x3a2 v 

-x2 x4 X[ a2 u 

-X5 X7 Hir\4Hid} 

+ XS XSH5«3 

+ X6 Xn \4Hi"i 

+ x6 xSHilxs di 

-Xi ( - a , U + HI d2 v) 

+x2 (a, V + HI d2 u) 

+ X4 H\Ol W 

-X5 Hi M4^5 d3 

+x6 ^4X5 a3 

-Xn 0*4 A*5 d4 + \i H4 M5 ^3) 

+ Xg H5 «4 ' 

+ di w + \i d2 w + X3 X4 \5d3 + \4 X5 d4 + 

+ X5 d5 t-p u -q v — r w]/factor 

+ Ar3(r-1) = 0 

[Xi x3 a2 p 

+ *) x4Xi a2 q 

+ x2 x3a2 q 

-x2 x4\t a2p 

+ xs x7a3 a5 t 

+x5 x8/*3X4 «s di t 

+x6 Xn HiOi di t 

-x6 Xg X4a3 as t 

+ Xi (a, p-Hi d2 q) 

+ x2 (a, q + H\ d2p) (A4) 

-Xi ax a2 

+ x4 (-HI a2 di+Hi a2 r) 

+ x5 (a3 a4-Hi M4 di d5) t 

+ x6 (HA «3 d5+Hi a4 di)t 

+X-, a4a5 t 

+xs (/*4 a5 d4 + X3 /i4 «5 di) t 

+ ( - a , 2 -d^ -a2
2 -d2

2 + a3
2 +d3

2 +a4
2 t 

+ d4
2+a5

2 t + ds
2 t-p2 -r2)/2 
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+ d1 r+\t d2 r-\i rf, d2 + \3 d3 d4 where 

+ X3 \ 4 did5 t+ X4 d4 d5 /]/(factor2) A:, = 1.9656E - 04 + / 2.4712E-04 

+ Ar4(f-1) = 0 fc2=2.7202E-04 + i 8.4575E-04 

k3 = 3.8144E-04 + / 4.8048E-04 

£ 4 = -4 .9656E-04- /2 .4712E-04 

H5(x, t)=x1
2+x2

2-l =0 (A5) (with / = V ^ l ). These kt, k2, /t3,and k4 define the 
"perturbation" of the SYMMAN system referred to above. 

H6(x, t) =x3
2 + x4

2 - 1 =0 (A6) Note that when t = 0 and kx = k2 = k3 = k4 = 0, (A1)-(A8) 
define the equations of constraint for a manipulator having 

H7(x, t) =xi
2 +x6

2 - 1 =0 (A7) the last three axes intersecting at a common point. When t = 
1, (A1)-(A8) define the equations of constraint for the given 

HB (x, t) = xy
 2 + xs

 2 -1 = 0 (A8) general manipulator. 
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