
APPENDIX C 

RAGHAVAN AND ROTH'S SOLUTION 

The Sylvester dialytic elimination method described in Appendix B is effec­
tive for a small system of polynomial equations of relatively low degree. For 
more complicated polynomial systems, the method can make a problem un­
manageably largc. Therefore, it is desirable to develop alternative methods of 
generating new linearly independent equations that introduce no new power 
products, or at worst a small number of new power products. In this appendix 
we describe a technique employed by Raghavan and Roth (I 990a,b ) for sol y­

ing the inverse kinematics of the general 6R manipulator. 

C.1 LOOP-CLOSURE EQUATION 

Let us consider the general 6R manipulator shown in Fig. 2.11. For conve­
nience, we decompose lA2 as a product of two matrices: 

lA2 = lC2
1H2, (C. I ) 

where 

ce2 -sez 0 0 I 0 0 a2 

lC - S02 ce2 0 0 
and 1Hz = 0 caz - saz 0 

2 - 0 0 1 0 0 d2 sa2 ca2 
0 0 0 1 0 0 0 1 

Note that 1 C z contains only the joint variable and 1H 2 contains only the link 
parameters. 
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Substituting Eq . (C .l ) into (2 .99), we obtain 

(C.2) 

Premultipling both sides of Eq. (C.2) by (oAI IG2) - 1 and postmultiplying both 
'd b sA -I b ' SI es Y 6' we 0 taw 

(C.3) 

Note that by moving el , e2, and e6 to the right-hand side of the equation, 
we have effectively lowered the degrees of the equations. When the matrix 
multiplication is carried out, Eq. (C.3) takes the form 

/ 11 «(13,84, es) 
/21 (0) , 04, (5) 

h(F!4, Os) 
o 

i de}, e4 , es) 
122(83,84, es) 

132 (e4 , Os) 
o 

/ 13 (e3, e4 , es) 
/n(e3, e4, (5) 
/de4 , ( 5 ) 

o 

/ 14 (e3, e4 , ( 5 ) 

124 (e3 , e4 , ( 5 ) 

/14 (e4 , ( 5 ) 

I 

1{I(e l , e2, (6) 

I~I (e l , e2, (6) 

1;1 (el , e2 , ( 6) 

I {z (el , fh (6) 

1;2 (el , lho 1J6) 
I;z (e j, e2, ( 6) 

I L3(ej , ( 2 ) 

123 (el , ( 2) 

1;3(e l , ez) 

1{4(el , (2) 

f~4(e l ' ez) 
1{4(el , (2) 

o o o I 

(C.4) 

Equation (C.4) only reveals the variables appearing in the elements of 
Eq. (C.3). An examination of Eq. (C.4) reveals that the six scalar equa­
tions obtained from (he third and fourth columns are free of the variable e6· 

These six equations can be written in vector form, denoted as a and b , as 
follows: 

where 

5e3 
W 2Ce3 

- sa2ce) 

Se3 

W 2CIJ3 

-Sa2ce3 

ILx = grcIJ4 + gvse4 + Ci 3 , 

fLy = - (g, S04 - g ),Ce4 )W3 + g, S<X3, 

0] [ IZ X] o n \" 
1 1l , 

(C.6) 

fL , = (gx S04 - gyC( 4)sa3 + g,ca3 + d3, 
------
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v, = nl,cli4 + tn "Sli4 . 

Vy = -(mx s04 - m ycli4)ca) + m , sa3. 

v, = (nl,sli4 - inyCli4)Sit3 + m , Cit3. 

and where g,. g.\' . g,. h.t·• hy. h,. nix. my. m" n." n", and n, are defined in 
Chapter 2 under Eqs. (2. 106) and (2. 107). We note that /J-x, /J-y, /J-" vx , v),, 
and v, are linem' functions of the terms sli4slis, S84CliS' cli4slis, C84Cli5 , sli4 • c84, 

slis, clis. and 1. whereas hx , h r , h" n.\' , ny , andll z are linear functions of the 
terms sli] , e8], and 1. 

The two vectors a and b in Eqs. (C.S) and (C.6) represent six scalar equa­
tions in fi ve unknowns: 0] . 82 • .. . , 85• To eliminate several variables at a time, 
we treat some of the power products as new variables with the other power 
products suppressed. Toward this end , we write Eqs. (C.S) and (C.6) in the 
matrix fonn 

s84slis s8]s8l s84c8s s8] c82 c84 slis c8]s82 c84clis cli j c82 A Sli4 = B (0) 
58, 

c84 c8] 
sli5 s8l clis 

C82 
1 

where A is a 6 x 9 matrix whose elements arc linear combinations 0[583. c83, 

and I, and B is a 6 x 8 matrix whose elements are all constants. 
It can be shown that the products aT a , a Tb , a x b , and (aT alb -

2(aTb)a result in eight additional polynomials which take the same form 
as Eq. (C .7) (Raghavan and Roth , 1990a) . Combining these eight equations 
with Eq. (C.7), we obtain 14 linearly independent equations, which can be 
written 

A' 

58450.1 

sli4cli,; 
c84slis 
Cli4CliS 

Sli4 

C04 

s8s 
cli5 
1 

= 8 ' 

s8] Sli2 
sli] cli2 
clirsli2 

ce] ce2 

slir 
elir 
502 

cli2 

(C .g) 
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where A' is a 14 x 9 matrix whose elements are linear combinations of S03, 
C03, and 1, and S f is a 14 x 8 matrix whose elements are constants. 

C.2 ELIMINATION OF lit AND (Jz 

In this section we show how 0) and 02 can be eliminated simultaneously from 
Eq. (C.8). Toward this goal, we treat sO) S02, SOl C02, cO) S02, cO) c~, SOl , CO l, 
se2 , and C02 in Eq. (C.8) as eight independent variables, and the left-hand­
side terms as constants . Then Eg. (C.S) represents 14 linearly independent 
equations in eight unknowns. We can solve these eight variables from any 
eight of the 14 equations and substitute them back into the remaining six 
equations. This results in six independent equations, free of 0) and 02, which 
can be arranged in matrix form: 

504S0S 
S04COS 
c04slfS 
c04clfS 

E S04 = [0] , (C.9) 

C04 
sOs 
cOs 
1 

where E is a 6 x 9 matrix whose elements are linear combinations of S03, Clf3, 

and 1. 

C.3 ELIMINATION OF 114 AND Os 

In this section we eliminate 04 and Ifs si multaneously. We note that the six 
equations in Eq. (C.9) are already written with the variable 83 suppressed. We 
make use of the foll owing trigonometric identities to convert the equations 
into polynomials. 

(C.IO) 

(C. I I ) 

where (; = tan(0;/2) . 
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Substituting Eqs. (C.lO) and (C.J I) for i = 4 and 5 into Eq. (C. 9) and then 
multiplying eacb equation by (1 + (1)( 1 + tff ) to clear the denominators. we 
obtain 

( 2,2 
4 5 
2 

t4 15 
12 
4 

2 
1415 

£ ' t4 15 = [0]. (C I 2) 
14 

t 2 
5 

15 

I 

where £ ' is a 6 x 9 matrix whose elements are linear combinations of 5113 • C1l3. 
and I. Substituting Eqs. (C.lO) and (C ll ) for i = 3 into Eq. (C.12) and 
multiplying the first four resliiting equations by (l + If), we obtain 

1
2

t
2 

4 5 
2 

14 15 
/ 2 
4 

2 
t415 

£" '415 = [OJ, (C.1 3) 
14 
12 
5 

15 

1 

where £ " is a 6 x 9 matrix. Note that the elements in the first four rows of 
E" are quadratic in 13. whereas the elements in the last two rows are rational 
functions of 13. the numerators being quadratic polynomials in 13 and the de­
nominators being (l + Il) . Multiplying Eq. (C13) by 14 yields the following 
s ix additionallineariy independent equations: 

= [OJ. (C. 14) 
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Finally, we combine Eqs. (C I3) and (C.l4) in matrix form: 

[ 
E" 0 ] 
o E" = [0]. (C.lS) 

We may consider Ill~, tlls, Il, IJt~ , rJIs, tJ, 141J, 1415, 14, IJ, 15, and 1 as 12 un­
knowns. Then Eq. (CIS) constitutes a set of 12 linearly independent equa­
tions. The compatibility condition for nontrivial sulutiun tu exi~t is that the 
coefficient matrix must be singular. Setting the determinant of the coefficient 
matrix to 7.ero yields a 16th-degree polynomial in 13. See Raghavan and Roth 
( 1990a) for a more detailed derivation of the equation. Once e) is solved, 
tbe other variables can be solved by back substitution. We conclude that the 
inverse kinematics of tbe general6R robot has at most 16 real solutions. 
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