APPENDIX C

RAGHAVAN AND ROTH’S SOLUTION

The Sylvester dialytic elimination method described in Appendix B is effec-
tive for a small system of polynomial equations of relatively low degree. For
more complicated polynomial systems, the method can make a problem un-
manageably large. Therefore, it is desirable to develop alternative methods of
generating new linearly independent equations that introduce no new power
products, or at worst a small number of new power products. In this appendix
we describe a technique employed by Raghavan and Roth (1990a,b) for solv-
ing the inverse kinematics of the general 6 R manipulator.

C.1 LOOP-CLOSURE EQUATION

Let us consider the general 6 R manipulator shown in Fig. 2.11. For conve-
nience, we decompose 'A; as a product of two matrices:

A, = 1G, 'H,, (C.1)
where
[ chy, —sB; O O] 10 0 a |
1 ) cty 0 0 1 0 cay —soy O
e [4 d =
G" 0 0 1 0 an H2 0 Stin Ct¥r dg
3 0 0 0 1 LO 0 0 1|

Note that ' G, contains only the joint variable and 'H, contains only the link
parameters.
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4786 RAGHAVAN AND ROTH'S SOLUTION
Substituting Eq. (C.1) into (2.99), we obtain
A, 1G, 'H,y 2A3 PA4 A5 A = A, (C.2)

Premultipling both sides of Eq. (C.2) by (“A; 'G,)~" and postmultiplying both
sides by Az ', we obtain

Hy A3 A "As = 'G5 PAT Ag A (C.3)

Note that by moving 6, 6;, and &5 to the right-hand side of the equation,
we have effectively lowered the degrees of the equations. When the matrix
multiplication is carried out, Eq. (C.3) takes the form

" 11003, 04, 05)  f12(63,64,05)  f13(83,64,05)  f14(03,04,05)
f21(03,04,05)  f22(63,64,05)  [23(63,04,05) f2u(03, 04, 05)
f31(04, 05) f32(04, 05) f33(64, 65) f34(8s4, 05)
(0 0 0 |

" f1(61,62,05)  fl(81,62,06) fl3(81,62)  [14(61,6) ]
f'_;](gls92|96) f;2(91$82:96) f£3(91a92) f£4(91!92)
f:;](gh 62! 9&) f;;z(gls 92: 96) fg:S(@l- 82) f]fd.(e[! 92)

0 0 0 |

(C.4)

Equation (C.4) only reveals the variables appearing in the elements of
Eq. (C.3). An examination of Eq. (C.4) reveals that the six scalar equa-
tions obtained from the third and fourth columns are free of the variable 6.
These six equations can be written in vector form, denoted as a and b, as
follows:

093 893 0 Iy as 092 892 0 h_\'
a. | —cogsth caacly  sap py |+ 0 | =586 —cth O [ &y
saasty  —sancts can || p: d» 0 0 1 h-
(C.5)
093 593 0 Ve 092 8192 0 My
b: —Ca2893 CC!QCQ;:, Stz Vy | = 892 —C@g 0 iy |, (C6)
Seas8f3 —swacly  cag v, 0 0 1 7

where

fox = &xCO4 + gy$64 + a3,
py = —(gx804 — gyCls)carz + g:5U3,

j (g_r504 — gyC94)SC{3 + g.Ccasz + ds,
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Ve = M COs + m S04,
vy = —(m,S0s — mycly)cas + m,sa;,

V. = (m,sty — mycly)sas + m Cas,

and where g., gy, &, hx, by, By, My, My, My, ny, 0y, and n, are defined in
Chapter 2 under Egs. (2.106) and (2.107). We note that 1y, py, s, Vy, vy,
and v. are linear functions of the terms s6450s, $64cls, 04805, cB4Chs, 804, Cbs,
sts, cOs, and [, whereas hy, hy, h., ny, ny, and n, are linear functions of the
terms s&;, ¢&,, and 1.

The two vectors a and b in Egs. (C.5) and (C.6) represent six scalar equa-
tions in five unknowns: 0y, 6, ..., 65. To eliminate several variables at a time,
we treat some of the power products as new variables with the other power
products suppressed. Toward this end, we writc Egs. (C.5) and (C.6) in the
matrix form

504505 i s6,86,
SG4C95 §9109;
C94595 .(:91‘597
c04cBs cch
A S64 = B <0 ; (€75
o4 ;:91,
395 892
co
15 | ¢y |

where A is a 6 x 9 matrix whose elements are linear combinations of sf3, cfs,
and 1, and B is a 6 x 8 matrix whose elements are all constants.

It can be shown that the products a’a, a'b, a x b, and (aTa)b —
2(aTh)a result in eight additional polynomials which take the same form
as Eq. (C.7) (Raghavan and Roth, 1990a). Combining these eight equations
with Eq. (C.7), we obtain 14 linearly independent equations, which can be
written

6450; i s, 56, i
394(;55 ;
891099_
094395 6.6
(394095 £015v3
A’ SB4 = B’ c0ct; , (C.8)
561
C04 .
(.(91_
8195
co 85
15 L cts |
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where A’ is a 14 x 9 matrix whose elements are linear combinations of s6s,
cfs, and 1, and B’ is a 14 x 8 matrix whose elements are constants.

C.2 ELIMINATION OF ¢, AND 6,

In this section we show how 6 and 8, can be eliminated simultaneously from
Eq. (C.8). Toward this goal, we treat sf;s6;, s6;cbs, c8;86;, chch,, s6;, ¢y,
s6,, and ¢, in Eq. (C.8) as eight independent variables, and the left-hand-
side terms as constants. Then Eq. (C.8) represents 14 linearly independent
equations in eight unknowns. We can solve these eight variables from any
eight of the 14 equations and substitute them back into the remaining six
equations. This results in six independent equations, free of 8; and 6>, which
can be arranged in matrix form:

504565 |
594095
094 86'5
clscts
E Sy =[O} (C.9)

L b

where E is a 6 x 9 matrix whose elements are linear combinations of s, c6s,
and 1.

C.3 ELIMINATION OF 64 AND 65

In this section we eliminate 0, and 85 simultaneously. We note that the six
equations in Eq. (C.9) are already written with the variable 63 suppressed. We
make use of the following trigonometric identities to convert the equations
into polynomials.

ch; = 1+;f"—’ (C.10)
2t;
56‘; = Tﬁ, (C] 1)

where #; = tan(6;/2).
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Substituting Egs. (C.10) and (C.11) for i = 4 and 5 into Eq. (C.9) and then
multiplying each equation by (1 + #1)(1 + t3) to clear the denominators, we
obtain

(2427
ffts
I
1412
E’ tats | = [0], (C.12)

wherc E’ is a 6 x 9 matrix whose elements are linear combinations of s65, cfs,
and 1. Substituting Egs. (C.10) and (C.11) for i = 3 into Eq. (C.12) and
multiplying the first four resulting equations by (1 + 7). we obtain

t%rsz
15
2

f41‘52
E" I415
I4
ts
]

[0], (C.13)

}

where E” is a 6 x 9 matrix. Note that the elements in the first four rows of
E” are quadratic in 3, whereas the elements in the last two rows are rational
functions of #3, the numerators being quadratic polynomials in 3 and the de-
nominators being (1 + 7§). Multiplying Eq. (C.13) by 7, yields the following
six additional linearly independent equations:

3,2
Iis

E" | t7ts | = [0]. (C.14)
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Finally, we combine Egs. (C.13) and (C.14) in matrix form:

e
tits
3
L
t3ts
E" 0 t2 .

4 = [0]. C.15
[415

R

We may consider 112, 17 1s, 13, 132, t3t5, 12, 1412, tts, ty, t2, ts, and 1 as 12 un-
knowns. Then Eq. (C.15) constitutes a set of 12 linearly independent equa-
tions. The compatibility condition for nontrivial solution to exist is that the
coefficient matrix must be singular. Setting the determinant of the coefficient
matrix to zero yields a 16th-degree polynomial in #3. See Raghavan and Roth
(1990a) for a more detailed derivation of the equation. Once 65 is solved,
the other variables can be solved by back substitution. We conclude that the
inverse kinematics of the general 6 R robot has at most 16 real solutions.
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