30 Years of SLAM:

John Leonard

Samuel C. Collins Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology

With thanks to many many people.....

30 Years of SLAM:

A Personal Historical Perspective on 3 Decades of Mobile Robotics Research

John Leonard

Samuel C. Collins Professor of Mechanical and Ocean Engineering

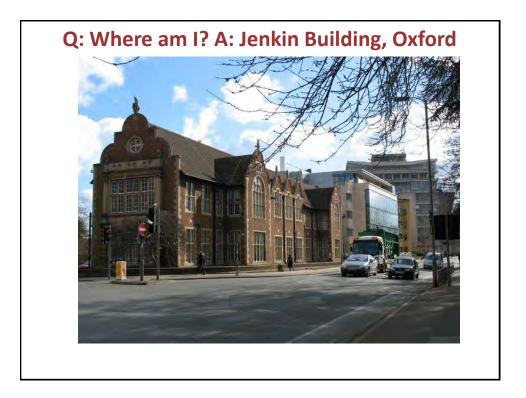
Massachusetts Institute of Technology

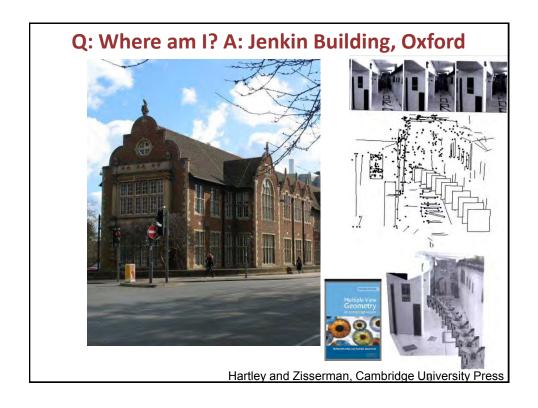
With thanks to many many people.....

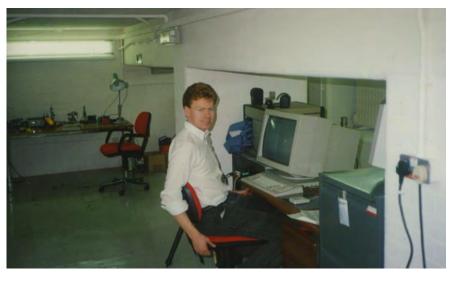
Outline

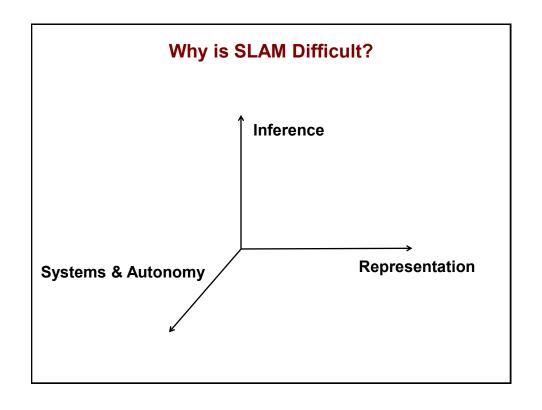
- 1985-2015
 - 30 Years of papers
 - Are the "old" questions answered?
 - How do we measure progress?
- Is SLAM "solved?"
 - If yes, how do we know it is solved?
 - If no, what are the open questions?

Q: Where am I?







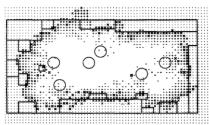


1985

Occupancy Grids ICRA 1985

High Resolution Maps from Wide Angle Sonar

Hans P. Moravec Alberto Elfes
The Robotics Institute
Carnegie-Mellon University



igure 6: The Two-Dimensional Sonar Map After Thresholding.

Visual Map Making for a Mobile Robot Rodney Brooks, ICRA 1985

Visual Map Making for a Mobile Robot

Rodney A. Brooks MIT Artificial Intelligence Lab 545 Technology Square, Cambridge, Mass 02173. 1985

Abstract. Mobile robots sense their environment and receive error laden readings. They try to move a certain distance and direction, and do so only approximately. Rather than try to engineer these problems away it may be possible, and may be necessary, to develop map making and navigation algorithms which explicitly represent these uncertainties, but still provide robust performance. The key idea is to use a relational map, which is rubbery and stretchy, rather than try to place observations in a 2-d coordinate system.

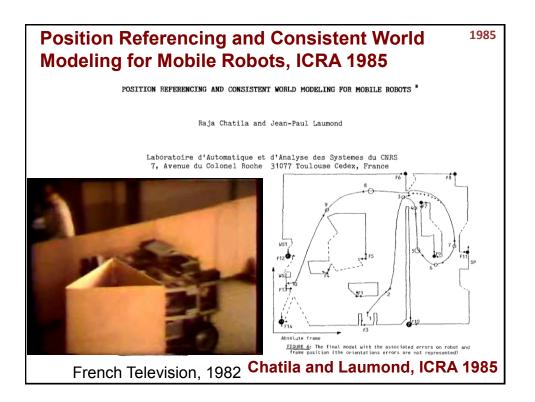
1. Introduction

We are interested in building mobile robot control systems useful for cheap robots (i.e., on the order of the price of an automobile) working in unstructured domains such as the home, material handling in factories, street cleaning, office and hotel cleaning, mining and agriculture. The same capabilities can be useful for robots, which do not have to be so cheap to be economically feasible, and which do tasks like planetary exploration, space station maintenance and construction, asteroid mining, nuclear reactor operations, military reconaissance and general military operations.

2. Almost all mobile robot projects have had as one of their underlying assumptions that it is desirable to produce a world model in an absolute coordinate system. However all sensors and control systems have both systematic and random errors. The former can be dealt with by calibration techniques (although these are often time consuming and are confounded on mobile robots by the fact that the robot itself is not fixed to any coordinate system). The latter are always present. It is usual to model some worse case bounds on such errors but this will not always suffice (e.g. mismatches in stereo vision can produce depth measurements with error magnitude the full range of depths which can be measured). In any case the bounded errors at least must be dealt with in building models of the world and using them. A number of approaches have been taken to this problem:

a.Ignore it. This has only been successful in the most toylike of worlds. b.Use fixed reference beacons. This implies that the environment is either structured for the robot's benefit in the case that beacons are explicitly installed, or that the environment has been pre-surveyed for the robot's benefit in the case that known positions of existing beacons (e.g. power outlets) are used.

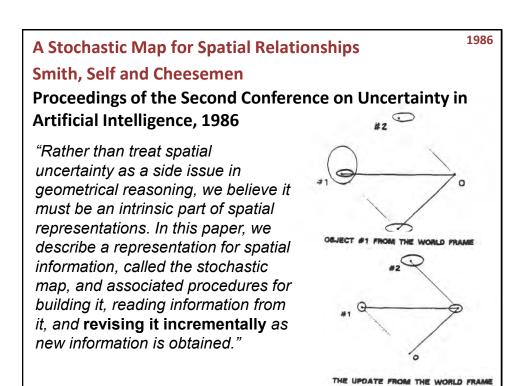
"The key idea is to use a relational map, which is rubbery and stretchy, rather than to try to place observations in a 2-D coordinate frame.

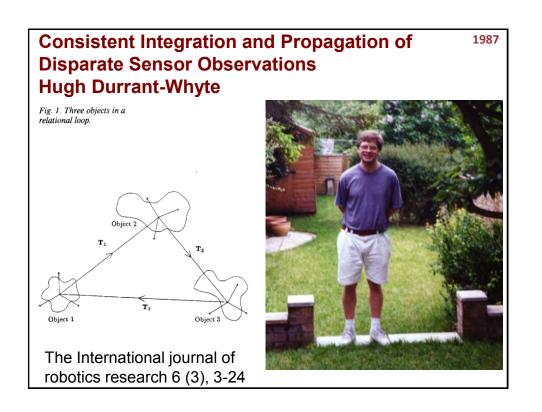


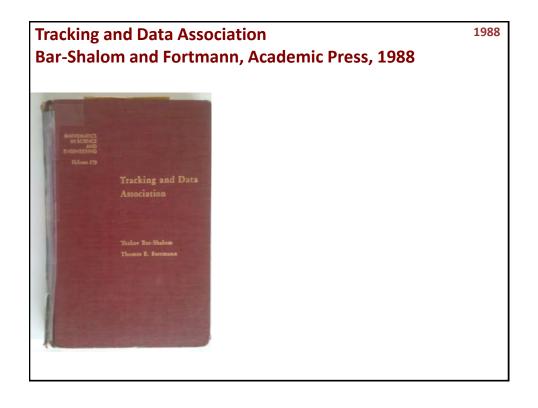
A Stochastic Map for Spatial Relationships Smith, Self and Cheesemen

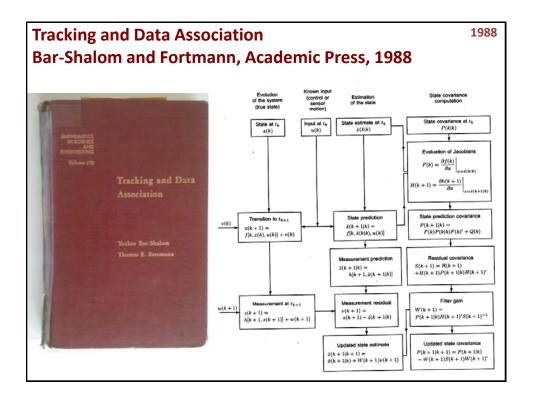
1986

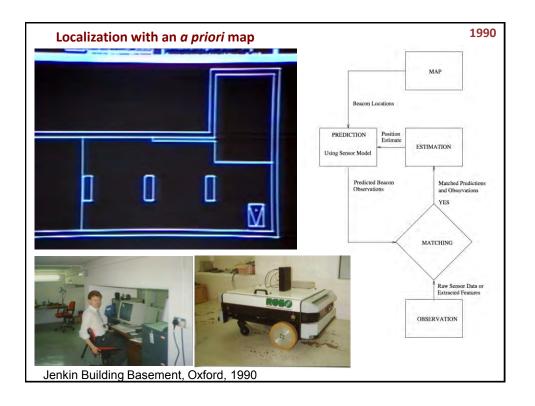
Proceedings of the Second Conference on Uncertainty in Artificial Intelligence, 1986

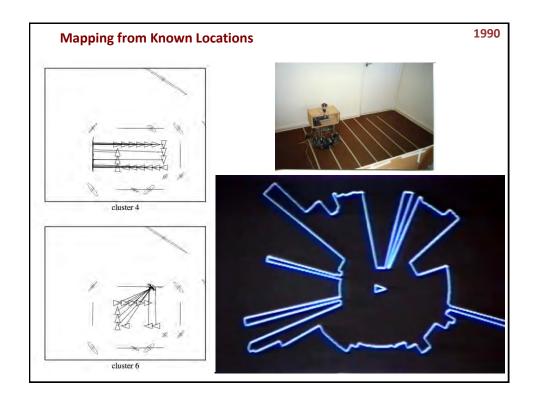


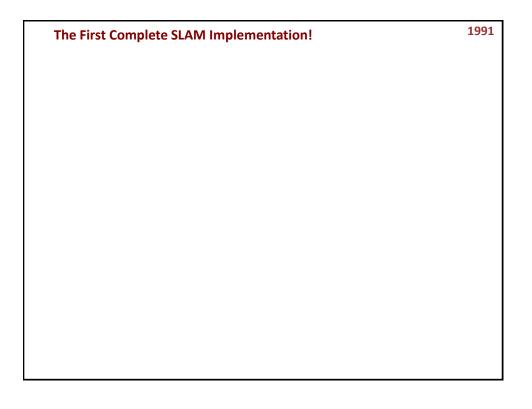


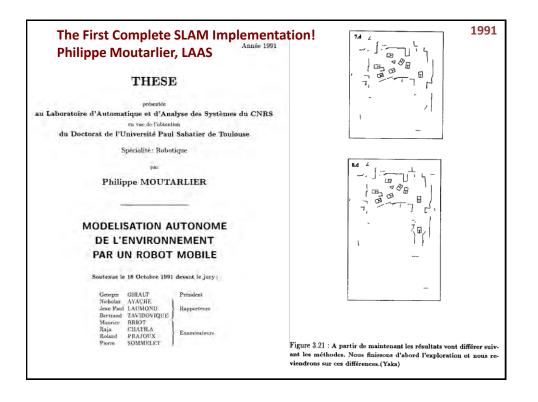












Dynamic Environments (?)

John J. Leonard Hugh F. Durrant-Whyte for an Autonomous Department of Engineering Science

University of Oxford Parks Road, Oxford OX1 3PJ England

Ingemar J. Cox

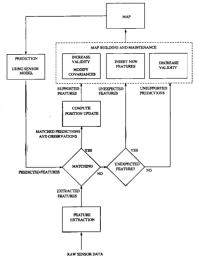
NEC Research Institute Princeton, New Jersey 08540

Abstract

This article presents an algorithm for autonomous map building and maintenance for a mobile robot. We believe that mobile robot navigation can be treated as a problem of tracking ge ometric features that occur naturally in the environment. We represent each feature in the map by a location estimate (the feature state vector) and two distinct measures of uncertainty. a covariance matrix to represent uncertainty in feature location, and a credibility measure to represent our belief in the validity of the feature. During each position update cycle, pre dicted measurements are generated for each geometric feature in the map and compared with actual sensor observations. Suc cessful matches cause a feature's credibility to be increased. Unpredicted observations are used to initialize new geometric features, while unobserved predictions result in a geometric feature's credibility being decreased. We describe experimental results obtained with the algorithm that demonstrate successful map building using real sonar data.

IJRR, 1992

Dynamic Map Building Mobile Robot



4 Simultaneous Localization and Map Building

The ideal localization system would allow the robot to start at a fixed location with no map of the surrounding environment, and from here to incrementally both build a map and use this map to locate its position relative to the start point. This is known as the simultaneous localization and map building (SLAM) problem. The SLAM problem is complex both as a mathematical exercise and in practical realization. It has received considerable attention over the years from a number of researchers [14, 5]. The essential problems are reasonably well known, however solutions have remained elusive, and a significant implementation has still not been attempted. We describe here the essential elements of the SLAM problem and some recent work in obtaining solutions to this problem.

1995

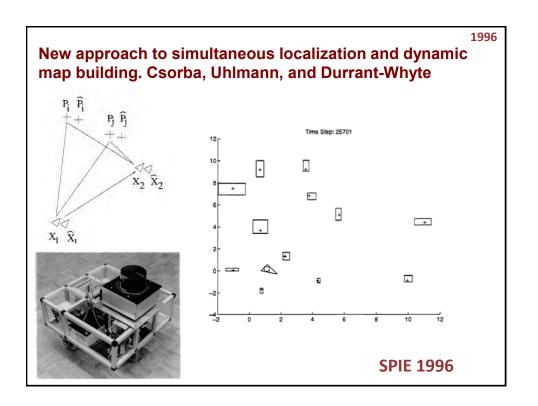
1992

Hugh Durrant-Whyte Grasp Lab PhD 1986

Advisor: Lou Paul Mentors: Ruzena Bacisy and Max Mintz

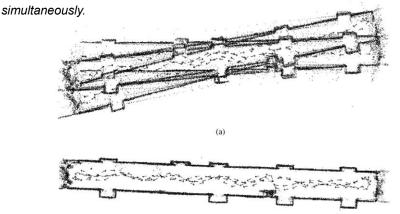
Durrant-Whyte, et al., "Localization of Autonomous Guided Vehicles", ISRR, 1995

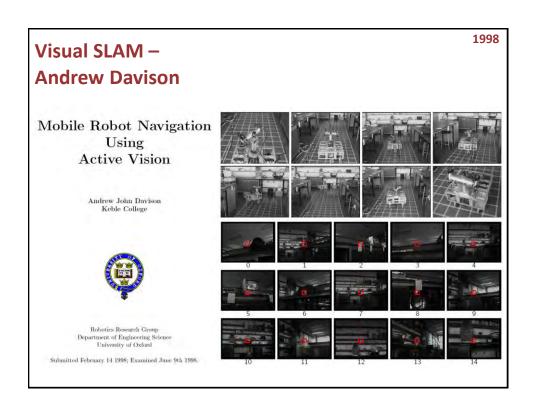
1997

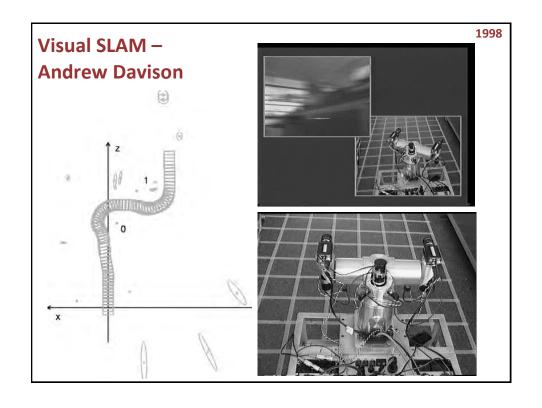


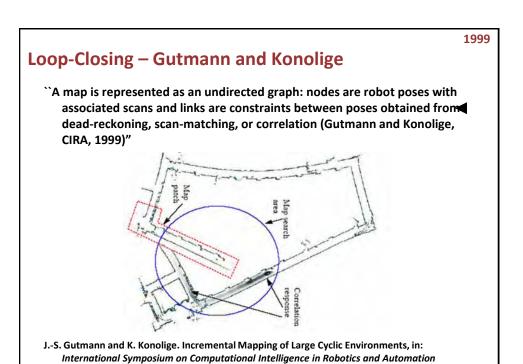
Consistent Pose Estimation (Lu and Milios)

Our approach is to maintain all the local frames of data as well as the relative spatial relationships between local frames. These spatial relationships are modeled as random variables and are derived from matching pairwise scans or from odometry. Then we formulate a procedure based on the maximum likelihood criterion to optimally combine all the spatial relations. Consistency is achieved by using all the spatial relations as constraints to solve for the data frame poses



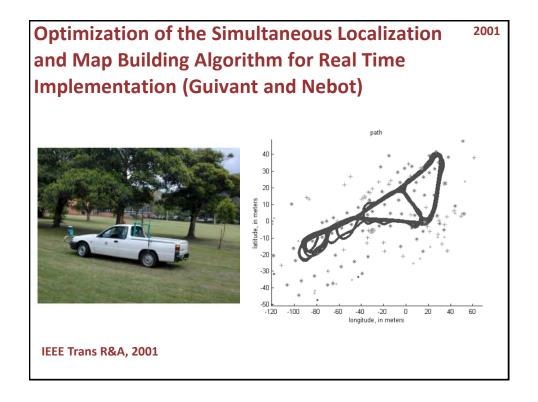


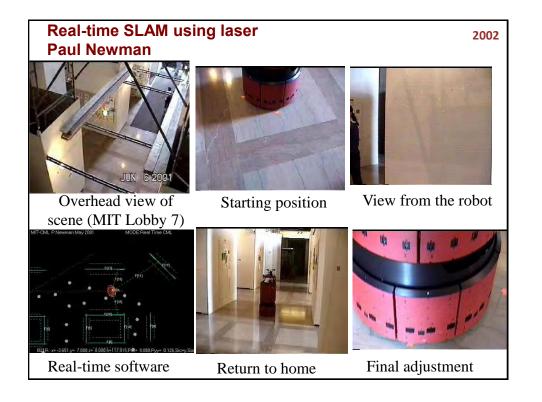


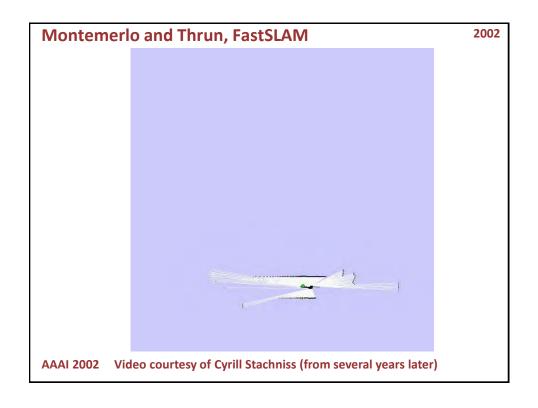


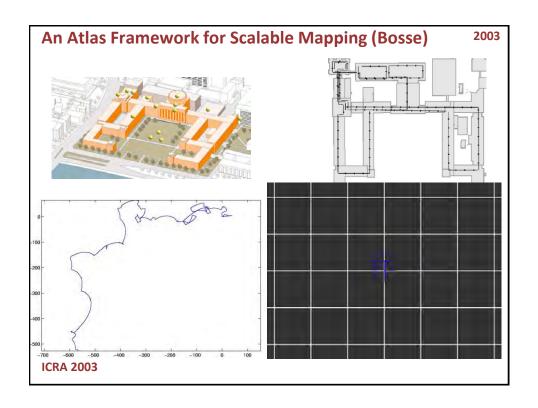
(CIRA'99), Monterey, November 1999.

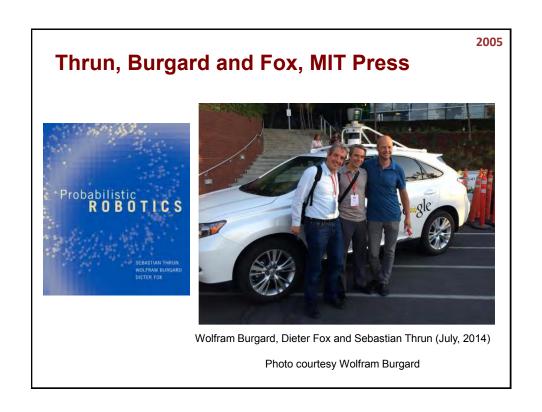
Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva – Thrun et al. The Minerva Experience

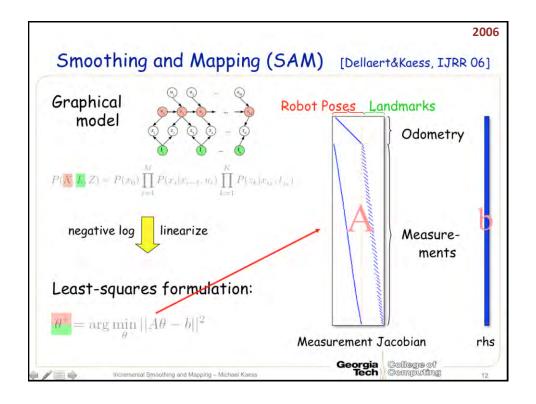


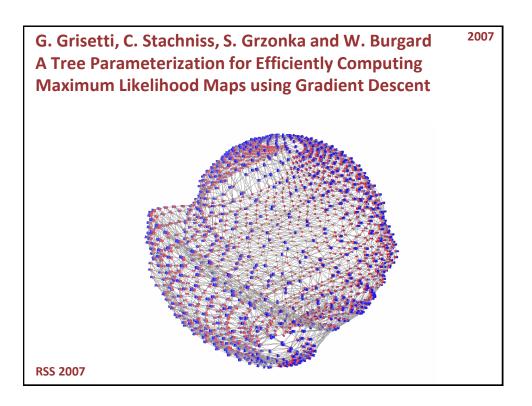






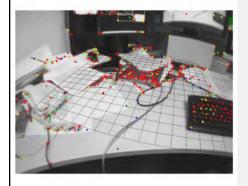






Parallel Tracking and Mapping (PTAM) Klein and Murray

2009



Parallel Tracking and Mapping for Small AR Workspaces

Extra video results made for ISMAR 2007 conference

Georg Klein and David Murray Active Vision Laboratory University of Oxford

ISMAR, 2007 (Best Paper Award)

FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance Mark Cummins and Paul Newman

IJRR 2009

Sibley et al. – Relative Bundle Adjustment/VSLAM

2010

Planes, Trains and Automobiles – Autonomy for the Modern Robot

Gabe Sibley, Christopher Mei, Ian Reid and Paul Newman

Abstract—We are concerned with enabling truly large scale autonomous navigation in typical human environments. To this end we describe the acquisition and modeling of large urban spaces from data that reflects human seasory input. Over 200GB of image and inertial data are captured using head-mounted stereo cameras. This data is processed into a relative map covering 121 km of Southern England. We point out the numerous challenges we encounter, and highlight in particular the problem of undetected ego-motion, which occurs when the robot finds itself on-or-within a moving frame of reference. In contrast to global-frame representations, we find that the continuous relative representation naturally accommodates moving-reference-frames—without having to identify them first, and without inconsistency. Within a moving-reference-frame, and without forsistency. Within a moving-reference-frame, and without forsistency sensing, motion with respect to the global-frame is effectively unobservable. This underlying truth drives us towards relative topometric solutions like relative bundle adjustment (RBA), which has no problem representing distance and metric Euclidean structure, yet does not suffer inconsistency introduced by the attempt to solve in the global-frame.

I. INTRODUCTION

Autonomous navigation in human working environments is an important problem, and this paper is motivated by our attempt to make sense of the 121 km path between Oxford and London depicted in Figs. 1 and 2. The map begins in an office in Oxford, and proceeds with various forms of transport

Oxided London

Figure 1: 121 km path between Oxford in the upper left and London in the bottom right. We compute visual estimates for 89.4% of this distance. Using appearance-based place recognition and inertial dead reckoning, 100% is covered topologically, which is sufficient for path planning. The graph begins in an office in Oxford, and proceeds with various forms of transport including: foot, bicycle, train, subway, escalator, rickshaw, punting-boat and ferris wheel. Note that we cannot detect our true position in the global inertial frame – when we are traveling on the train or subway for instance, motion with respect to the global inertial frame becomes effectively unobservable in the presence of noise.

ICRA 2010

2011

KinectFusion - Izadi, Necombe et al.

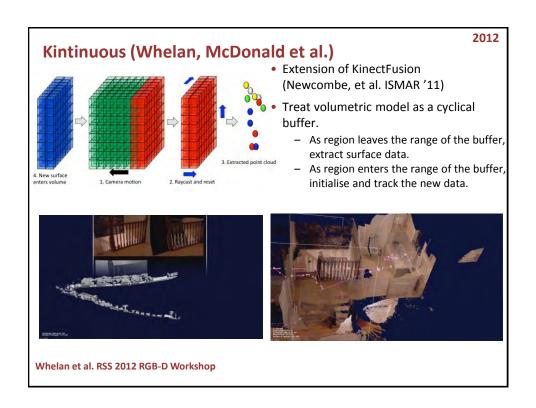
SIGGRAPH Talks 2011

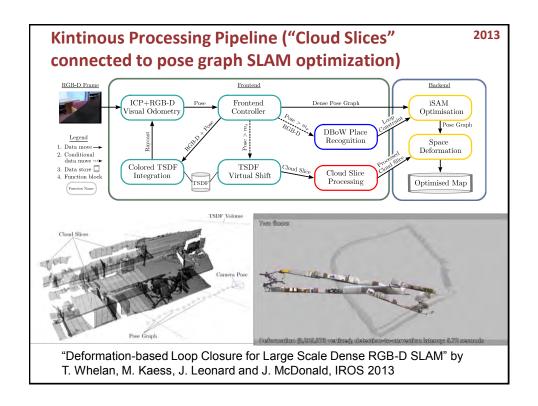
KinectFusion:

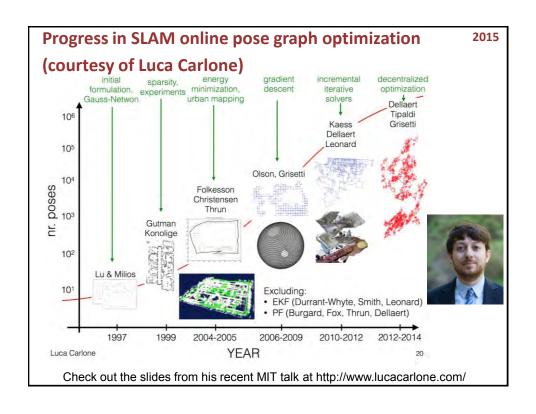
Real-Time Dynamic 3D Surface Reconstruction and Interaction

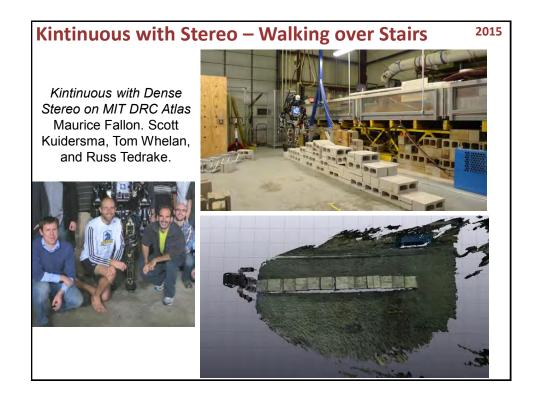
Shahram Izadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London 3 Newcastle University 4 Lancaster University 5 University of Toronto









Conclusion and Future Research Challenges

Goals:

- My dream is to achieve persistent autonomy and lifelong map learning in highly dynamic environments
- Can we robustly integrate mapping and localization with real-time planning and control?

Open Questions:

- Robustness we would love to have guarantees of performance, but we do not have them for most approaches
- Representation how can we integrate many different types?
- We need dynamic scene understanding and robust vision (recent work in computer vision is very exciting, but current precision-recall curves indicate we have a long way to go)

Is SLAM "Solved?"

Its an Exciting Time to Work in Mobile Sensing!

Postdocs and PhD students that can build real-time 3D perception, navigation and motion planning systems are in high demand:

- Virtual Reality
- Mobile Devices
- Self-Driving Vehicles
- Drones

Big tech companies such as Google, Apple, Facebook and Uber

Small startups such as skydio

Traditional companies in transition, such as Ford, Delphi, Continental, Bosch...

Vision for Mobile Robotics: A Research Agenda

- We need an object-based understanding of the environment that facilitates life-long learning
- Let's build rich representations that leverage knowledge of location to better understand about objects, and concurrently uses information about objects to better understand location
 - Sudeep Pillai: Monocular SLAM Supported Object Recognition (presented at RSS2015 on Tuesday)
 - Ross Finman: Automatic Discovery of Objects in lifelong Dense RGB-D maps
 Key Idea: can we learn about objects through

observing changes in the world?

