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30 Years of SLAM:
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on 3 Decades of Mobile Robotics Research
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Outline

* 1985-2015

— 30 Years of papers
— Are the “old” questions answered?
— How do we measure progress?

¢ |s SLAM “solved?”

— If yes, how do we know it is solved?
— If no, what are the open questions?

Q: Where am I?
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Q: Where am I? A: Jenkin Building, Oxford

Q: Where am I? A: Jenkin Building, Oxford

Hartley and Zisserman, Cambridge University Press




METR4202 — Special Guest Lecture October 30, 2015

Jenkin Building Basement, Circa 1989

Why is SLAM Difficult?

N
Inference

S

Systems & Autonomy Representation
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1985

Occupancy Grids
ICRA 1985

High Resolution Maps from Wide Angle Sonar

Alberto Elfes
The Robotics Institute

Hans P. Moravec

Carnegie-Mellon University

Tigure 6: The Two-Dimensional Sonar Map After Thresholding.

Visual Map Making for a Mobile Robot 1985

Rodney Brooks, ICRA 1985

Visual Map Making for a Mobile Robot

Rodney A. Brooks
MIT Artificial Intelligence Lab
545 Technology Square, Cambridge, Mass 02173.

(7.5, 8.7

Abstract. Mobile robots sense their environment and re-
ceive error laden readings. They try to move a certain dis-
tance and direction, and do so only approximately. Rather
than try to engineer these problems away it may be possible,
and may be necessary, to develop map making and naviga-
tion algorithms which explicitly represent these uncertain-
ties, but still provide robust performance. The key idea is to
use a relational map, which is rubbery and stretchy, rather
than try to place observations in a 2-d cvordinate system,

1. Introduction

We are interested in building mobile rebot control systems
useful for cheap robots (ie., on the order of the price of an
antomohile) working in unstructured domains such as the
home, material handling in factories, street cleaning, cffice
and hotel cleaning, mining and agriculture. The same capa-
bilities can be useful for robets, which do not have to be so
cheap to be economically feasible, and which do tasks like:
planetary exploration, space station maintenance and con-
struction, asteroid mining, nuclear reactor operations, mili-
tary reconaissance and general military operations.

“The key idea is to use a relational map, which is rubbery and stretchy,
rather than to try to place observations in a 2-D coordinate frame.

2. Almost all mobile robot projects have had as one of
their underlying assumptions that il is desirable to produce
a world model in an absolute coordinate system. However
all sensors and control systems have both systematic and
random errors. The former can be dealt with by calibration
techniques (although these are often time consuming and are
confounded on mobile roboets by the fact that the robot itself
is not fixed to any coordinate system). The latter are always
present. It is usual to model some worse case bounds on
such errors but this will not always suffice (e.g. mismatches
in stereo vision can produce depth measurements with error
magnitude the [ull range of depths which can be measured).
In any case the bounded errors at least must be dealt witl
in building models of the world and nsing them. A number
of approaches have been taken to this problem:

a.dgnore it. This has only been successful in the most toylike of worlds.

b.ljse fixed veference beacons. This implies that the environment is
either structured for the robot’s benefit in the case that beacons are
expiicitly installed, or that the environment has been pre-surveyed for
the robot's benefit in the case that kuown positions of existing beacons
(e.g. power outlets) are used.
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Position Referencing and Consistent World 1985

Modeling for Mobile Robots, ICRA 1985

POSITION REFERENCING AND CONSISTENT WORLD MODELING FOR MOBILE ROBOTS *
Raja Chatila and Jean-Paul Laumond

d'Analyse des Systemes du CNRS
31077 Toulouse Cedex, France

Laboratoire d'Automatique et
T, Avenue du Colonel Roche

e s
8
Abstract O
In order to understand its environment, a mobile g/
o

robot should be able to model consistently this
environment, and to locate itself correctly. One
ma jor difficulty to be sclved is the inaccuracies
introduced by the sensors. The approach proposed in
this paper to cope with this problem relies on
1) defining general principles to deal with A
uncertainties : the use of a multisensory system,
favo ring of the data collected by the more
accurate sensor in a given situation, averaging of
different but consistent measurements of the same N 2

entity weighted with their assocciated /

uncertainties, and 2) a methodelogy enabling a N /

mobile robot to define its own reference landmarks *'. Y H 1” wo
while exploring its environment. These ideas are F14 s LA

S -

presented together with an example of their Absolute frame

application on the mobile robot HILARE. FIGURE 6: The final nedel with the associsted errors on robat and
frame position (the orientations errors are not represented)

French Television, 1982 Chatila and Laumond, ICRA 1985

A Stochastic Map for Spatial Relationships 1986

Smith, Self and Cheesemen
Proceedings of the Second Conference on Uncertainty in
Artificial Intelligence, 1986
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A Stochastic Map for Spatial Relationships 1986

Smith, Self and Cheesemen
Proceedings of the Second Conference on Uncertainty in
Artificial Intelligence, 1986

“Rather than treat spatial
uncertainty as a side issue in
geometrical reasoning, we believe it
must be an intrinsic part of spatial
representations. In this paper, we
describe a representation for spatial
information, called the stochastic
map, and associated procedures for
building it, reading information from
it, and revising it incrementally as
new information is obtained.”

Consistent Integration and Propagation of 1987
Disparate Sensor Observations
Hugh Durrant-Whyte

Fig. 1. Three objects ina
relational loop.

Object 1 Object 3

The International journal of
robotics research 6 (3), 3-24
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Tracking and Data Association
Bar-Shalom and Fortmann, Academic Press, 1988

1988

Tracking and Data Association
Bar-Shalom and Fortmann, Academic Press, 1988

1988
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Localization with an a priori map

Jenkin Building Basement, Oxford, 1990

1990

Mapping from Known Locations

1990
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The First Complete SLAM Implementation!

1991

ant les

d'abord I’

Figure 3.21 : A partir de maintenant les résultats vont différer suiv-
Nous fini:

viendrons sur ces différences.(Yaka)

The First Complete SLAM Implementation! e 1991
Philippe Moutarlier, LAAS = I U

j} 22 :

b

10

October 30, 2015
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Dynamic Environments (?) 1992

John J. Leonard Dynamic Map Building
Hugh F. Durrant-Whyte for an Autonomous

Department of Engineering Science
University of Oxford 3
Parks Road, Oxford OX1 3P MOblle RObOt

England

Ingemar J. Cox rar
NEC Research Institute
Princeton, New lersey 08540

Abstract

This article presents an algorithm for autonomous map building
and maintenance for a mobile robor. We believe that mobile
robot navigation can be treated as a problem of tracking ge-
ometric features that oceur naturally in the environment. We
represent each feature in the map by a location estimate (the
feature state vector) and two distinct measures of uncertainty:
a cavariance matrix to represent uncertainty in feature loca-
tion, and a credibility measure 10 represent our belief in the
validity of the feature. During each position update cycle, pre-
dicted measurements are generated for each geometric feature
in the map and compared with actual sensor observations. Suc-
cessful marches cause a feature’s credibiliry to be increased.
Unpredicted observations are used 1o initialize new geometric
features, while unobserved predictions result in a geometric
feature’s credibility being decreased. We describe experimental
results obrained with the algorithm thar d. ful
map building using real sonar data.

URR, 1992 N ——

1995

Hugh Durrant-Whyte
Grasp Lab PhD 1986

Advisor: Lou Paul

Mentors: Ruzena Bacjsy
and Max Mintz

Durrant-Whyte, et al., “Localization of Autonomous Guided Vehicles”, ISRR, 1995

11
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1996
New approach to simultaneous localization and dynamic
map building. Csorba, Uhlmann, and Durrant-Whyte

SPIE 1996

1997
Consistent Pose Estimation (Lu and Milios)

Our approach is to maintain all the local frames of data as well as the relative
spatial relationships between local frames. These spatial relationships are
modeled as random variables and are derived from matching pairwise scans or
from odometry. Then we formulate a procedure based on the maximum likelihood
criterion to optimally combine all the spatial relations. Consistency is achieved by
using all the spatial relations as constraints to solve for the data frame poses

simultaneously.

12



METR4202 — Special Guest Lecture

October 30, 2015

Visual SLAM -
Andrew Davison

1998

Visual SLAM -
Andrew Davison

1998

13
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1999
Loop-Closing — Gutmann and Konolige

A map is represented as an undirected graph: nodes are robot poses with
associated scans and links are constraints between poses obtained fromdq
dead-reckoning, scan-matching, or correlation (Gutmann and Konolige,
CIRA, 1999)”

J.-S. Gutmann and K. Konolige. Incremental Mapping of Large Cyclic Environments, in:
International Symposium on Computational Intelligence in Robotics and Automation
(CIRA'99), Monterey, November 1999.

Probabilistic Algorithms and the Interactive 2000
Museum Tour-Guide Robot Minerva — Thrun et al.

14
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latitude, in meters
o

Optimization of the Simultaneous Localization 2001
and Map Building Algorithm for Real Time
Implementation (Guivant and Nebot)

path

50 . N .
-120 -100 -80 -B0

IEEE Trans R&A, 2001

-40 -20 0 20 40 B0
longitude, in meters

Real-time SLAM using laser
Paul Newman

Overhead view of Starting position
scene (MIT Lobby 7)

Real-time software Return to home

2002

View from the robot

Final adjustment

15
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First SLAM Summer School

2002

Montemerlo and Thrun, FastSLAM

AAAI 2002 Video courtesy of Cyrill Stachniss (from several years later)

2002

16
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An Atlas Framework for Scalable Mapping (Bosse) 2003
=]
i |
e
ICRA 2003
2005

Thrun, Burgard and Fox, MIT Press

Wolfram Burgard, Dieter Fox and Sebastian Thrun (July, 2014)

Photo courtesy Wolfram Burgard

17
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2006

G. Grisetti, C. Stachniss, S. Grzonka and W. Burgard
A Tree Parameterization for Efficiently Computing
Maximum Likelihood Maps using Gradient Descent

RSS 2007

2007

18



METR4202 — Special Guest Lecture

October 30, 2015

2007
Parallel Tracking and Mapping (PTAM)

Klein and Murray

Parallel Tracking and Mapping
for Small AR Workspaces

Extra video results made for
ISMAR 2007 conference

Georg Klein and David Murray
Active Vision Laboratory
University of Oxford

ISMAR, 2007 (Best Paper Award)

2009
FAB-MAP: Probabilistic Localization and Mapping in
the Space of Appearance
Mark Cummins and Paul Newman

IJRR 2009

19
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Sibley et al. — Relative Bundle Adjustment/VSLAM

ICRA 2010

2010

KinectFusion — Izadi, Necombe et al.

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram lzadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University
S University of Toronto

2011

20
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2012
Kintinuous (Whelan, McDonald et al.)

e Extension of KinectFusion
(Newcombe, et al. ISMAR "11)

e Treat volumetric model as a cyclical
buffer.

— Asregion leaves the range of the buffer,

extract surface data.

— Asregion enters the range of the buffer,

initialise and track the new data.

Whelan et al. RSS 2012 RGB-D Workshop

2013

SLAM++
Salas-Moreno et al.

CVPR 2013

21
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Kintinous Processing Pipeline (“Cloud Slices” 2013
connected to pose graph SLAM optimization)

RGB-D Frame Frontend

Backend
ICP+RGB-D )_ Posc Frontend ) Dense Pose Graph iSAM
Visual Odometry Controller J 2
o,
<
x
egend Q,

Optimisation
NS
. R

il“nsm Graph

Space
D Deformation
e

3. Data store [J Colored TSDF
4. Function block Integration

Cloud Slice

Processing

Optimised Map

“Deformation-based Loop Closure for Large Scale Dense RGB-D SLAM” by
T. Whelan, M. Kaess, J. Leonard and J. McDonald, IROS 2013

2014
Google Tango — Journey

www.youtube.com/watch?v=44vppay5UDc

22
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Kintinuous with Stereo — Walking over Stairs

Kintinuous with Dense
Stereo on MIT DRC Atlas
Maurice Fallon. Scott
Kuidersma, Tom Whelan,
and Russ Tedrake.

Progress in SLAM online pose graph optimization 2015
(courtesy of Luca Carlone)
Check out the slides from his recent MIT talk at http://www.lucacarlone.com/
2015

23
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Conclusion and Future Research Challenges
Goals:

* My dream is to achieve persistent autonomy and lifelong map
learning in highly dynamic environments

» Can we robustly integrate mapping and localization with
real-time planning and control?

Open Questions:

* Robustness — we would love to have guarantees of
performance, but we do not have them for most approaches

* Representation — how can we integrate many different types?

* We need dynamic scene understanding and robust vision
(recent work in computer vision is very exciting, but current
precision-recall curves indicate we have a long way to go)

Is SLAM “Solved?”

24
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Its an Exciting Time to Work in Mobile Sensing!

Postdocs and PhD students that can build real-time
3D perception, navigation and motion planning
systems are in high demand:

* Virtual Reality

* Mobile Devices

* Self-Driving Vehicles
* Drones

Big tech companies such as Google, Apple, Facebook
and Uber

Small startups such as skydio

Traditional companies in transition, such as Ford,
Delphi, Continental, Bosch...

Vision for Mobile Robotics:
A Research Agenda

* We need an object-based understanding of the
environment that facilitates life-long learning

e Let’s build rich representations that leverage knowledge
of location to better understand about objects, and
concurrently uses information about objects to better
understand location

— Sudeep Pillai: Monocular SLAM Supported Object
Recognition (presented at RSS2015 on Tuesday)
— Ross Finman: Automatic Discovery of Objects in
lifelong Dense RGB-D maps
Key Idea: can we learn about objects through
observing changes in the world?

25
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Pillai and Leonard, RSS 2015

Why is SLAM Difficult?

N
Inference

>

Systems & Autonomy Representation

26
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Why is SLAM Difficult?

Inference
State Estimation & Data Assocation

Systems & Autonomy Representation

Why is SLAM Difficult?

N
Inference
State Estimation & Data Assocation
Learning
Systems & Autonomy Representation

27
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Why is SLAM Difficult?

Inference
State Estimation & Data Assocation
Learning

Systems & Autonomy Representation

Metric vs. Topological

Why is SLAM Difficult?

N
Inference
State Estimation & Data Assocation
Learning
Systems & Autonomy Representation

Metric vs. Topological
Objects

28
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Why is SLAM Difficult?

Inference
State Estimation & Data Assocation
Learning

Representation
Metric vs. Topological
Objects

Dense

Systems & Autonomy

Why is SLAM Difficult?

N

Inference
State Estimation & Data Assocation
Learning

>

Representation
Metric vs. Topological
Objects

Dense

Systems & Autonomy
From Demo to
Deployment

29



