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Schedule 

Week Date Lecture (W: 12:05-1:50, 50-N201) 

1 29-Jul Introduction 

2 5-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 12-Aug Robot Kinematics Review (& Ekka Day) 

4 19-Aug Robot Dynamics 

5 26-Aug Robot Sensing: Perception  

6 2-Sep Robot Sensing: Multiple View Geometry 

7 9-Sep Robot Sensing: Feature Detection (as Linear Observers) 

8 16-Sep Probabilistic Robotics: Localization 

9 23-Sep Quiz & Guest Lecture (Tabled) & SLAM 

  30-Sep Study break 

10 7-Oct Motion Planning 

11 14-Oct State-Space Modelling 

12 21-Oct Shaping the Dynamic Response 

13 28-Oct LQR + Course Review 

http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Quiz 

• 1 hour (1.5 × Tutor) 

• 3 Random Sort Patterns 

• 10 Questions 

 

 

 

 

 

SLAM! 

(Better than SMAL!) 
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What is SLAM? 

• SLAM asks the following question: 
 

 Is it possible for an autonomous vehicle to start at an unknown location in an 
unknown environment and then to incrementally build a map of this 
environment while simultaneously using this map to compute vehicle 
location? 

 

• SLAM has many indoor, outdoor, in-air and underwater applications for 
both manned and autonomous vehicles.  

 

• Examples 
– Explore and return to starting point (Newman) 

– Learn trained paths to different goal locations 

– Traverse a region with complete coverage (eg, mine fields, lawns, reef 
monitoring) 

– … 

Components of SLAM 

• Localisation 

– Determine pose given a priori map 

• Mapping 

–  Generate map when pose is accurately known from auxiliary 

source. 

• SLAM 

– Define some arbitrary coordinate origin 

– Generate a map from on-board sensors  

– Compute pose from this map 

– Errors in map and in pose estimate are dependent. 
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Basic SLAM Operation 

 

Example: SLAM in Victoria Park 
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Basic SLAM Operation 

Basic SLAM Operation 
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Basic SLAM Operation 

Basic SLAM Operation 



7 

Dependent Errors 

Correlated Estimates 
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SLAM Convergence  

• An observation acts like a displacement to a spring system 
– Effect is greatest in a close neighbourhood  

– Effect on other landmarks diminishes with distance 

– Propagation depends on local stiffness (correlation) properties 

• With each new observation the springs become increasingly (and 
monotonically) stiffer. 

• In the limit, a rigid map of landmarks is obtained. 
– A perfect relative map of the environment 

• The location accuracy of the robot is bounded by 
– The current quality of the map  

– The relative sensor measurement  

Spring Analogy 
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Monotonic Convergence 

• With each new 

observation, the 

determinant 

decreases over 

the map and for 

any submatrix in 

the map. 

Models 

• Models are central to creating a representation of the 
world. 

• Must have a mapping between sensed data (eg, laser, 
cameras, odometry) and the states of interest (eg, 
vehicle pose, stationary landmarks) 

• Two essential model types: 

– Vehicle motion  

– Sensing of external objects 
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An Example System 
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Control inputs: 
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Vehicle Motion Model 

• Ackerman 

steered vehicles: 

Bicycle model 

 
 

• Discrete time 

model: 

 

SLAM Motion Model 

 

 

 

 

• Joint state: Landmarks are assumed stationary 
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Observation Model 

• Range-bearing measurement  

 

Applying Bayes to SLAM: Available Information 

• States       (Hidden or inferred values) 

– Vehicle poses 

– Map; typically composed of discrete parts called landmarks or 

features 

• Controls 

– Velocity  

– Steering angle 

• Observations 

– Range-bearing measurements 
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Augmentation: Adding new poses and landmarks 

• Add new pose 

 

 

 

• Conditional probability is a Markov Model 

 

Augmentation 

 

 

 

• Product rule to create joint PDF p(xk) 

 

 

• Same method applies to adding new landmark states 
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Marginalisation:  

Removing past poses and obsolete landmarks 
 

• Augmenting with new pose and marginalising the old pose 

gives the classical SLAM prediction step 

Fusion: Incorporating observation information 

• Conditional PDF according to observation model 

 

 

 

• Bayes update:  

proportional to product of likelihood and prior 
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Implementing Probabilistic SLAM 

• The problem is that Bayesian operations are intractable in 

general. 

– General equations are good for analytical derivations, not good 

for implementation 

 

• We need approximations 

– Linearised Gaussian systems (EKF, UKF, EIF, SAM) 

– Monte Carlo sampling methods (Rao-Blackwellised particle 

filters) 

EKF SLAM 

• The complicated Bayesian equations for augmentation, 

marginalisation, and fusion have simple and efficient 

closed form solutions for linear Gaussian systems 

 

• For non-linear systems, just linearise 

– EKF, EIF: Jacobians 

– UKF: use deterministic samples 
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Kalman Implementation 

• So can we just plug the process and observation models 

into the standard EKF equations and turn the crank? 

 

• Several additional issues: 

– Structure of the SLAM problem permits more efficient 

implementation than naïve EKF. 

– Data association. 

– Feature initialisation. 

Structure of SLAM  

• Key property of stochastic SLAM  
– Largely a parameter estimation problem 

 

• Since the map is stationary 
– No process model, no process noise 

 

• For Gaussian SLAM 
– Uncertainty in each landmark reduces monotonically after landmark 

initialisation 

– Map converges  

 

• Examine computational consequences of this structure in next 
session. 
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Data Association 

• Before the Update Stage we need to determine if the 

feature we are observing is:  

– An old feature  

– A new feature 

 

• If there is a  match with only one known feature, the 

Update stage is run with this feature information. 
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New Features 

• If there is no match then a potential new feature has been detected 

 

• We do not want to incorporate a spurious observation as a new 

feature 

– It will not be observed again and will consume computational time and 

memory 

– It will add clutter, increasing risk of future mis-associations 

– The features are assumed to be static. We don’t not want to accept 

dynamic objects as features: cars, people etc. 

Acceptance of New Features 

• Get the feature in a list of potential features 

• Incorporate the feature once it has been observed for a number of times 

 

• Advantages: 

– Simple to implement 

– Appropriate for High Frequency external sensor 

 

• Disadvantages: 

– Loss of information 

– Potentially a problem with sensor with small field of view: a feature may 
only be seen very few times 

• APPROACH 1 
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Acceptance of New Features 

• The state vector is extended with past vehicle positions and the estimation of the 
cross-correlation between current and previous vehicle states is maintained. With 
this approach improved data association is possible by combining data form 
various points 

– J. J. Leonard and R. J. Rikoski. Incorporation of delayed decision making into 
stochastic mapping  

– Stephan Williams, PhD Thesis, 2001, University of Sydney 

 

• Advantages: 

– No Loss of Information 

– Well suited to low frequency external sensors ( ratio between vehicle velocity and 
feature rate information ) 

– Absolutely necessary for some sensor modalities (eg, range-only, bearing-only) 

 

• Disadvantages: 

– Cost of augmenting state with past poses 

– The implementation is more complicated 

• APPROACH 2 

Incorporation of New Features 
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Incorporation of New Features 

• Approach 1 
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• Easy to understand and 

implement 

 

• Very large values of A 

may introduce numerical 

problems 

Analytical Approach 
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• We can also evaluate the 

analytical expressions of 

the new terms 
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Constrained Local Submap Filter 

CLSF Registration 
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CLSF Global Estimate 


