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Schedule
Week [ Date Lecture (W: 12:05-1:50, 50-N201)
1 29-Jul (Introduction
2 5-Aug Representing P(_)sition _ & _ Orientation _ & State
(Frames, Transformation Matrices & Affine Transformations)
3 12-Aug [Robot Kinematics Review (& Ekka Day)
4 |19-Aug |Robot Dynamics
5 |26-Aug|Robot Sensing: Perception
6 2-Sep [Robot Sensing: Multiple View Geometry
7 9-Sep |Robot Sensing: Feature Detection (as Linear Observers)
8 |[16-Sep |Probabilistic Robotics: Localization
9 23-Sep |Quiz & Guest Lecture (SLAM?)
30-Sep Study break

10 7-Oct [Motion Planning
11 | 14-Oct |State-Space Modelling
12 | 21-Oct [Shaping the Dynamic Response
13 | 28-Oct [LQR + Course Review
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Quiz Next Week: Two Example Problems

1. Is the following 3x3
rotation matrix (within
practical numerical limits)
a valid rotation matrix?

0 0 1
R3 =10.8660 0.5000 0
0.5000 0.8660 0

A: No. The determinant is 0.5.
Note that (3,1) should be -0.5.

2. Where does the Scale-

Invariant in SIFT Comes
From?

A: Scale-Space/
The Scale Pyramid

Low Resolution
(Gaussian Blur;

)
A
.‘/ - -~
e —
o —
T .l

High Resolution
(No/Little Blur)
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» ACFR View:
— Treat as joint estimation problem

» [New] Oxford View:
— Treat as (feature) placement optimization problem
— Bundle Adjustment (borrow from computer vision)

q@? METR 4202: Robotics 16 September 2015- 5

Perfect World: Deterministic

 Exact pose from motion model

* Global localisation by triangulation

— Even if range-only or bearing-only sensors, can localise
given enough measurements

— Solve simultaneous equations: N equations for N unknowns
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Real World: Uncertain

« All measurements have errors

* In SLAM, measurement errors induce dependencies
in the landmark and vehicle pose estimates
— Everything is correlated
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How to quantify uncertainty ?
Probability to the rescue... Introduction to Probability.

Bertsekas & Tsitsiklis,

FATHER(F): Nurse, what is the probability that the drug will work?
NURSE (N): I hope it works, we’ll know tomorrow.

F: Yes, but what is the probability that it will?

N: Each case is different, we have to wait.

F: But let’s see, out of a hundred patients that are treated under similar
conditions, how many times would you expect it to work?

N (somewhat annoyed): | told you, every person is different, for some it
works, for some it doesn’t.

F (insisting): Then tell me, if you had to bet whether it will work or not,
which side of the bet would you take?

N (cheering up for a moment): I’d bet it will work.

F (somewhat relieved): OK, now, would you be willing to lose two dollars
if it doesn’t work, and gain one dollar if it does?

N (exasperated): What a sick thought! You are wasting my time!
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Probability review 1/4: Probabilistic Modeling

* View:
— Experiments with random outcome.
— Quantifiable properties of the outcome.
« Three components:
— Sample space: Set of all possible outcomes.
— Events: Subsets of sample space.
— Probability: Quantify how likely an event occurs.
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Probability review 2/4: Probability

« Probability: A function that maps events to real numbers
satisfying these axioms:
1. Non-negativity: P(E) >0, where E is an event.
2. Normalization: P(S) =1, where S is the sample space.
3. Additivity of finite / countably infinite events.

w©/n ®/n
P( U Ei) ~ %P(Ei)

where E . are disjoint / mutually exclusive, i: natural number.
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Probability review 3/4: Random Variables

* Interest is on numerical values associated w. samples, e.g.:

— Sample 50 students enrolled in METR4202, what's the major of
most of the students.

— Roll a fair dice, get $5 if the outcome is even, & loose $5 if the
outcome is odd.

« Random variable X is a function X :.S —Num.
— Num: countable set (e.g., integer) - discrete random variable.
— Num: uncountable set (e.g., real) > continuous random variable.
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Probability review 4/4: Characterizing Random Variables

« Cumulative distribution function (cdf)

Fy(x)=P(X<x)= P({S|X(S) <x,s € S})
« Discrete: Probability mass function (pmf)
fX[x] :P(X:x)

« Continuous: Probability density function/probability
distribution function (pdf)

£ @=L pacx<ny= [ 1 (oas
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Brief Overview of Probability Theory

* Probability density function (PDF) over N-D state
space x< X is denoted »(x)

* Properties of a PDF
RV - R

p(x) >0, ¥Yxek

/ p(x)dx =1
JX
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Brief Overview of Probability Theory

State vector _ { . ]

X3

Joint PDF is P (X1, X2, X3)

Conditional PDF of x; given X, and X,

P (Xl ‘X2~, XS)

Conditional independence: if X, is independent of x,
given X, then

indep

p(xi|x2,x3) =" p(xi|x3)
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Two Essential Rules for Manipulating Probabilities

e Sum rule p(x1|H) = /p(xl,xﬂH) dxa

* Product rule p(x1,%x2/H) £ p(x1|x2. H) p(x2|H)
= p(xalx1. H) p (x1[H)
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Implications of the Product Rule

. R
« Conditionals P (x1|xa, H) = m

« Independence  »(x1.3%[H) "= p (xalH) p (o] H)
+ Markov Models  7(xi170) = [ p(xabes. 1) p ) d

oy pxalx H) p (x| H)
* Bayes theorem p(xilx2, H) = » G0l H)
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Marginalisation: Remove old states

* As per the sum rule
p(xy) = /p (x1,X2) dx2
= /p (x1|x2) p (x2) dxo

+ Marginal says: what is PDF of x; when we don’t care what
value x, takes; ie, p(x,) regardless of x,

« Important distinction: x, is still dependent on x,, but p(x,) is
not a function of x,
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Bayesian Update: Inverse probability

p(z]x) p(x)
Bayes theorem 72 ="—" =

Observation model z=h(xr)

Conditional probability
p(a) = [ plalxn) p () s
= '/5(th(x,r))p(r)dr

Likelihood function — A(x) =p(z = zx)
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Bayes Update

» Update p(xlz =2z9) = %
« Denominator term often seen as just a normalising
constant, but is important for saying how likely a

model or hypothesis is
— Used in FastSLAM for determining particle weights
— Used in multi-hypothesis data association
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Bayesian Estimation

« Standard theory for dealing with uncertain
information in a consistent manner
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SLAMI

(Better than SMAL!

What is SLAM?

+ SLAM asks the following question:

Is it possible for an autonomous vehicle to start at an unknown location in an
unknown environment and then to incrementally build a map of this
environment while simultaneously using this map to compute vehicle
location?

» SLAM has many indoor, outdoor, in-air and underwater applications for
both manned and autonomous vehicles.

« Examples
— Explore and return to starting point (Newman)
— Learn trained paths to different goal locations

— Traverse a region with complete coverage (eg, mine fields, lawns, reef
monitoring)

@ Y
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Components of SLAM

 Localisation
— Determine pose given a priori map
» Mapping
— Generate map when pose is accurately known from auxiliary
source.

« SLAM
— Define some arbitrary coordinate origin
— Generate a map from on-board sensors
— Compute pose from this map
— Errors in map and in pose estimate are dependent.
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History of SLAM

« It all started about 20 years ago at ICRA86 in San Francisco.
— Probabilistic methods were new to robotics and Al
— Several researchers were looking at applying estimation-theoretic methods to
mapping and localisation problems
» They saw that:
— Consistent probabilistic mapping was a fundamental problem
— Major conceptual and computational issues needed to be addressed
» Key papers were written on geometric uncertainty (Smith and
Cheeseman, HDW).

— They showed that estimates exhibit a high degree of correlation between
geometric features (ie, landmark locations in a map).
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History of SLAM

» Landmark paper by Smith, Self and Cheeseman
— Landmark estimates correlated via vehicle pose estimate
+ Important implication

— A consistent full solution requires a joint state composed of the vehicle pose
and every landmark position

— Many landmarks means huge state vector
— Estimate to be updated following each landmark observation

» At the time, estimation meant Kalman filters

— Computation and storage costs scale quadratically with the number of
landmarks
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History of SLAM

Researchers initially thought SLAM would not converge

— Assumed estimated map errors would exhibit a random walk behaviour

— Unbounded map uncertainty

— Leonard (1991): Simultaneous mapping and localisation, which came
first, the chicken or the egg ?

Researchers tried to minimise correlations between landmarks

— Applied approximations to minimise or eliminate correlations, or simply
assumed they were zero

- ]Bleduced the full filter to a series of decoupled landmark to vehicle
ilters.
Theoretical work on SLAM came to a temporary halt
— Work focused on either mapping or localisation as separate problems.

L]

ME
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Basic SLAM Operation

[
Feature

Feature

Features

Logal Map Qrigen
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Basic SLAM Operation
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Basic SLAM Operation

-20 [

_25 1 1
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Basic SLAM Operation

25 L L L
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Basic SLAM Operation

10
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Dependent Errors

A
iy

[EN)

(b

§®? METR 4202: Robotics

16 September 2015 - 34

Correlated Estimates

Landmark

Estimated

True

»*
3
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SLAM Convergence

» An observation acts like a displacement to a spring system
— Effect is greatest in a close neighbourhood
— Effect on other landmarks diminishes with distance
— Propagation depends on local stiffness (correlation) properties
With each new observation the springs become increasingly (and
monotonically) stiffer.
* In the limit, a rigid map of landmarks is obtained.
— A perfect relative map of the environment
» The location accuracy of the robot is bounded by
— The current quality of the map
— The relative sensor measurement
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Spring Analogy

D Estimated robot
¥ Estimated landmark

@ Correlations
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Monotonic Convergence

251

« With each new
observation, the
determinant
decreases over
the map and for
any submatrix in
the map.
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Models

world.

vehicle pose, stationary landmarks)

» Two essential model types:
— Vehicle motion
— Sensing of external objects

» Models are central to creating a representation of the

» Must have a mapping between sensed data (eg, laser,
cameras, odometry) and the states of interest (eg,
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An Example System

|

|

|

v
LASER Objects Detection

- Data Association Observation

Wheel
speed

MODEL

Steering

angle

Gyro
(INS)

ﬁ> Estimator

MAP states

! Vehicle pose

Comparison
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States, Controls, Observations

Joint state with
momentary pose SN
Uy
Xop, Xop
mj
Xk = X = X’UO
mg
my
[ my

Ugr = {ur,ug, -+, ur} = {Upp_1,ug}

Zoy = {2z1.20.---. 2} = {Zog—1.21}
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Vehicle Motion Model

» Ackerman
steered vehicles:
Bicycle model

» Discrete time

model: l

Ty T VkAT COS(O‘(»‘k—l + Ap‘k)
Koy = f’u (Xvk,I . uk‘) = Yoy _4 + Vvk'AT Sjn(owl‘-71 + A,'k)

Ouey + BT sin(oy)
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SLAM Motion Model

Top_y + VAT cos(@uy_, + Vi)
Ko = f’u (XU;C,I-, uk‘) = Yop 1 + VVk'AT Sin(owk71 + A,'k)

Doy + BT sin(y)

« Joint state: Landmarks are assumed stationary

o (X _ > k)
Xy,
£ (X, 0w e
m;
X = . Xip = Xug
my
my
my
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Observation Model

» Range-bearing measurement

1 ( ) \/(-'-i — Ly )2 + lt.”l — Huy )2
z;, = h; (x)) = Vi—Yo
k i\ arctan 2 f -

I
i

— Py,
k

|
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Applying Bayes to SLAM: Available Information

« States X (Hidden or inferred values)
— Vehicle poses

— Map; typically composed of discrete parts called landmarks or
features

e Controls Uy..
— Velocity
— Steering angle
« Observations Z.;
— Range-bearing measurements
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Augmentation: Adding new poses and landmarks

[ £ (%, up) ]

Xvg_1

« Add new pose xp = -

m;

my

+ Conditional probability is a Markov Model
P (X, [Xpm1) = /P (X, [Xp—1. ug) p (ug) duy,

= /5 (Xm- —f, (xq,kfl, uk)) p (ug) duy,

=p (erk, ‘Xn_l)
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Augmentation

P (Ruelxpr) = / P (o [xp 1. ) p () duy

) (Xm‘. —f, (xq,k_iv uk)) p (ug) duy,

=p (Xsz ‘X1r;\-71>

* Product rule to create joint PDF p(x,)

» Same method applies to adding new landmark states
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Marginalisation:
Removing past poses and obsolete landmarks

» Augmenting with new pose and marginalising the old pose
gives the classical SLAM prediction step

p(Xp,,my. ..., my) = /p (xl,k‘xl,kfl. mi...., m,.\') dxy,
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Fusion: Incorporating observation information
» Conditional PDF according to observation model

P (ZJ;.- |xic) = 'y (Zi; ‘x!';.- m;, ry) p(rg) dry,

= / 0 (zi, —h(Xy,.my, 1)) p(rg) dry

« Bayes update:
proportional to product of likelihood and prior

p(zi, = zo|xk) p (Xk|Zo:k—1)

p (Zz'k = Zo)

p (x| Zos) =

qp METR 4202: Robotics 16 September 2015 - 5
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Implementing Probabilistic SLAM

« The problem is that Bayesian operations are intractable in
general.

— General equations are good for analytical derivations, not good
for implementation

» We need approximations
— Linearised Gaussian systems (EKF, UKF, EIF, SAM)

— Monte Carlo sampling methods (Rao-Blackwellised particle
filters)
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EKF SLAM

« The complicated Bayesian equations for augmentation,
marginalisation, and fusion have simple and efficient
closed form solutions for linear Gaussian systems

 For non-linear systems, just linearise
— EKEF, EIF: Jacobians
— UKEF: use deterministic samples
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Kalman Implementation

 So can we just plug the process and observation models
into the standard EKF equations and turn the crank?

« Several additional issues:

— Structure of the SLAM problem permits more efficient
implementation than naive EKF.

— Data association.
— Feature initialisation.
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Structure of SLAM

» Key property of stochastic SLAM
— Largely a parameter estimation problem

« Since the map is stationary
— No process model, no process noise

+ For Gaussian SLAM
— Uncertainty in each landmark reduces monotonically after landmark
initialisation
— Map converges

+ Examine computational consequences of this structure in next
session.
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Data Association

 Before the Update Stage we need to determine if the
feature we are observing is:
— An old feature
— A new feature

« If there isa match with only one known feature, the
Update stage is run with this feature information.

p(k)=z(k)—h(R(k 7k -1)) S(k) =Vh (K)P(k/k -D)Vh! (k) +R

a=p" (K)ST(K) (k) < Zios
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Validation Gating
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New Features

« If there is no match then a potential new feature has been detected

» We do not want to incorporate a spurious observation as a new
feature

— It will not be observed again and will consume computational time and
memory

— It will add clutter, increasing risk of future mis-associations

— The features are assumed to be static. We don’t not want to accept
dynamic objects as features: cars, people etc.
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Acceptance of New Features

» Get the feature in a list of potential features
+ Incorporate the feature once it has been observed for a number of times

» Advantages:
— Simple to implement
— Appropriate for High Frequency external sensor

» Disadvantages:
— Loss of information

— Potentially a problem with sensor with small field of view: a feature may
only be seen very few times
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Acceptance of New Features

» The state vector is extended with past vehicle positions and the estimation of the
cross-correlation between current and previous vehicle states is maintained. With
this approach improved data association is possible by combining data form
various points

» Advantages:
— No Loss of Information

— Well suited to low frequency external sensors ( ratio between vehicle velocity and
feature rate information )

— Absolutely necessary for some sensor modalities (eg, range-only, bearing-only)

» Disadvantages:
— Cost of augmenting state with past poses
— The implementation is more complicated

§, METR 4202: Robotics 16 Septemnber 2015 - 60

Incorporation of New Features

* We have the vehicle states and previous map

PO 0 )
We observed a new feature and the v,V v,m :

covariance and cross-covariance |:>1 —| P° p°
m,v

terms need to be evaluated m.m
? ? ?

A/ 4202: Robotics 6 September 2015 - 6
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» Approach 1

« Easy to understand and
implement

* Very large values of A
may introduce numerical
problems

Incorporation of New Features

Pe Pm O
P=|PS P O .
0 8“ m With A very large

W (k) = P(k/k 1) Vh! (k)S (k)
S(k) = Vh, (k)P(k/k ~)Vh! (k) + R

P(k/K) = P(k /K —1) W (k)S (K)WT (k)

a
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Analytical Approach

* We can also evaluate the
analytical expressions of
the new terms

0 0
Pv R 7
| po 0
I:)1_ I:)m,v I:)m,m
? ? ?
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Constrained Local Submap Filter

(a)Global map (b)Local map
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CLSF Registration
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CLSF Global Estimate
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More Cool Robotics Share!
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