

Week	Date	Lecture (W: 12:05-1:50, 50-N201)
1	29-Jul	Introduction
2	5-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)
3	12-Aug	Robot Kinematics Review (& Ekka Day)
4	19-Aug	Robot Dynamics
5	26-Aug	Robot Sensing: Perception
6	2-Sep	Robot Sensing: Multiple View Geometry
7	9-Sep	Robot Sensing: Feature Detection (as Linear Observers)
8	16-Sep	Probabilistic Robotics: Localization
9	23-Sep	Quiz & Guest Lecture (SLAM?)
	30-Sep	Study break
10	7-Oct	Motion Planning
11	14-Oct	State-Space Modelling
12	21-Oct	Shaping the Dynamic Response
13	28-Oct	LOR + Course Review

SLAM! (Better than SMAL!)

METR 4202: Robotics

16 September 2015 - 21

What is SLAM? SLAM asks the following question: • Is it possible for an autonomous vehicle to start at an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute vehicle location? SLAM has many indoor, outdoor, in-air and underwater applications for ٠ both manned and autonomous vehicles. Examples ٠ - Explore and return to starting point (Newman) - Learn trained paths to different goal locations Traverse a region with complete coverage (eg, mine fields, lawns, reef monitoring) X METR 4202: Robotics 16 September 2015 - 22

Components of SLAM

- Localisation
 - Determine pose given a priori map
- Mapping
 - Generate map when pose is accurately known from auxiliary source.
- SLAM
 - Define some arbitrary coordinate origin
 - Generate a map from on-board sensors
 - Compute pose from this map
 - Errors in map and in pose estimate are dependent.

METR 4202: Robotics

History of SLAM

- It all started about 20 years ago at ICRA86 in San Francisco.
 - Probabilistic methods were new to robotics and AI
 - Several researchers were looking at applying estimation-theoretic methods to mapping and localisation problems
- They saw that:
 - Consistent probabilistic mapping was a fundamental problem
 - Major conceptual and computational issues needed to be addressed
- Key papers were written on geometric uncertainty (Smith and Cheeseman, HDW).
 - They showed that estimates exhibit a high degree of correlation between geometric features (ie, landmark locations in a map).

METR 4202: Robotics

16 September 2015 - 24

SLAM Convergence

- An observation acts like a displacement to a spring system
 - Effect is greatest in a close neighbourhood
 - Effect on other landmarks diminishes with distance
 - Propagation depends on local stiffness (correlation) properties
- With each new observation the springs become increasingly (and monotonically) stiffer.
- In the limit, a rigid map of landmarks is obtained.
 - A perfect *relative* map of the environment
- The location accuracy of the robot is bounded by
 - The current quality of the map
 - The relative sensor measurement

METR 4202: Robotics

Marginalisation:

Removing past poses and obsolete landmarks

• Augmenting with new pose and marginalising the old pose gives the classical SLAM prediction step

$$p(\mathbf{x}_{v_k}, \mathbf{m}_1, \dots, \mathbf{m}_N) = \int p(\mathbf{x}_{v_k}, \mathbf{x}_{v_{k-1}}, \mathbf{m}_1, \dots, \mathbf{m}_N) d\mathbf{x}_{v_{k-1}}$$

16 September 2015 - 50

METR 4202: Robotics

Fusion: Incorporating observation information • Conditional PDF according to observation model $p(\mathbf{z}_{i_k}|\mathbf{x}_k) = \int p(\mathbf{z}_{i_k}|\mathbf{x}_{v_k}, \mathbf{m}_i, \mathbf{r}_k) p(\mathbf{r}_k) d\mathbf{r}_k$ $= \int \delta(\mathbf{z}_{i_k} - \mathbf{h}(\mathbf{x}_{v_k}, \mathbf{m}_i, \mathbf{r}_k)) p(\mathbf{r}_k) d\mathbf{r}_k$ • Bayes update: proportional to product of likelihood and prior $p(\mathbf{x}_k | \mathbf{Z}_{0:k}) = \frac{p(\mathbf{z}_{i_k} = \mathbf{z}_0 | \mathbf{x}_k) p(\mathbf{x}_k | \mathbf{Z}_{0:k-1})}{p(\mathbf{z}_{i_k} = \mathbf{z}_0)}$

EKF SLAM

- The complicated Bayesian equations for augmentation, marginalisation, and fusion have simple and efficient closed form solutions for linear Gaussian systems
- For non-linear systems, just linearise
 - EKF, EIF: Jacobians
 - UKF: use deterministic samples

METR 4202: Robotics

Kalman Implementation

- So can we just plug the process and observation models into the standard EKF equations and turn the crank?
- Several additional issues:
 - Structure of the SLAM problem permits more efficient implementation than naïve EKF.
 - Data association.
 - Feature initialisation.

METR 4202: Robotics

Structure of SLAM • Key property of stochastic SLAM - Largely a *parameter* estimation problem Since the map is stationary ٠ - No process model, no process noise For Gaussian SLAM • - Uncertainty in each landmark reduces monotonically after landmark initialisation - Map converges Examine computational consequences of this structure in next ٠ session. × METR 4202: Robotics 16 September 2015 - 55

New Features

