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Schedule 

Week Date Lecture (W: 12:05-1:50, 50-N201) 

1 29-Jul Introduction 

2 5-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 12-Aug Robot Kinematics Review (& Ekka Day) 

4 19-Aug Robot Dynamics 

5 26-Aug Robot Sensing: Perception  

6 2-Sep Robot Sensing: Multiple View Geometry 

7 9-Sep Robot Sensing: Feature Detection (as Linear Observers) 

8 16-Sep Probabalistic Robotics: Localization 

9 23-Sep Quiz & Guest Lecture (SLAM?) 

  30-Sep Study break 

10 7-Oct Motion Planning 

11 14-Oct State-Space Modelling 

12 21-Oct Shaping the Dynamic Response 

13 28-Oct LQR + Course Review 

9 September 2015 

Camera matrix calibration 

• Advantages: 

– very simple to formulate and solve 

– can recover K [R | t] from M using  

QR decomposition [Golub & VanLoan 96] 

 

• Disadvantages: 

– doesn't compute internal parameters 

– more unknowns than true degrees of freedom 

– need a separate camera matrix for each new view 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://szeliski.org/Book/
http://szeliski.org/Book/
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Multi-plane calibration 

• Use several images of planar target held at unknown 

orientations [Zhang 99] 

– Compute plane homographies 

 

 

– Solve for K-TK-1 from Hk’s 

• 1plane if only f unknown 

• 2 planes if (f,uc,vc) unknown 

• 3+ planes for full K 

– Code available from Zhang and OpenCV 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

 

“Fundamental”  

Multi-View Geometry 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
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Fun With Vanishing Points 

 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Vanishing Points (2D) 

 

image plane 

camera 
center 

line on ground plane 

vanishing point 

9 September 2015 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Vanishing Points 

• Properties 

– Any two parallel lines have the same vanishing point 

– The ray from C through v point is parallel to the lines 

– An image may have more than one vanishing point 

image plane 

camera 
center 

C 

line on ground plane 

vanishing point V 

line on ground plane 

9 September 2015 

Vanishing Lines 

• Multiple Vanishing Points 

– Any set of parallel lines on the plane define a vanishing point 

– The union of all of these vanishing points is the horizon line 

v1 v2 

9 September 2015 
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Stereo: epipolar geometry 

• for two images (or images with collinear camera centers), 

can find epipolar lines 

• epipolar lines are the projection of the pencil of planes 

passing through the centers 

 

• Rectification:  warping the input images (perspective 

transformation) so that epipolar lines are horizontal 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Two-View Geometry: Epipolar Plane 

• Epipole: The point of intersection of the line joining the camera centres (the baseline) with the image plane. 
Equivalently, the epipole is the image in one view of the camera centre of the other view.  

 

• Epipolar plane is a plane containing the baseline.  
There is a one-parameter family (a pencil) of epipolar planes  

 

• Epipolar line is the intersection of an epipolar plane with the image plane. All epipolar lines intersect at the 
epipole. An epipolar plane intersects the left and right image planes in epipolar lines, and defines the 
correspondence between the lines.  

9 September 2015 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Two-frame methods 

• Two main variants: 

• Calibrated: “Essential matrix” E 

  use ray directions (xi, xi’ ) 

• Uncalibrated: “Fundamental matrix” F 

 

• [Hartley & Zisserman 2000] 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Essential matrix 

• Co-planarity constraint: 

–     x’ ≈  R x + t 

–  [t] x’ ≈ [t] R x 

–  x’ [t] x’ ≈ x’ [t] R x 

–  x’ E x = 0  with E =[t] R 

 

• Solve for E using least squares (SVD) 

• t is the least singular vector of E 

• R obtained from the other two s.v.s 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Stereo: Epipolar geometry 

• Match features along epipolar lines 

viewing ray epipolar plane 

epipolar line 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Fundamental Matrix 

• The fundamental matrix is the algebraic representation of 

epipolar geometry. 

 

9 September 2015 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Fundamental matrix 

• Camera calibrations are unknown 

•  x’ F x = 0 with F  = [e] H = K’[t] R K-1 

• Solve for F using least squares (SVD) 

– re-scale (xi, xi’ ) so that |xi|≈1/2  [Hartley] 

• e (epipole) is still the least singular vector of F 

• H obtained from the other two s.v.s 

• “plane + parallax” (projective) reconstruction 

• use self-calibration to determine K [Pollefeys] 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Fundamental Matrix Example 

• Suppose the camera matrices are those of a calibrated 

stereo rig with the world origin at the first camera 

 

• Then: 

 

 

• Epipoles are at: 

 

∴ 

 

9 September 2015 

http://szeliski.org/Book/
http://szeliski.org/Book/
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Summary of fundamental matrix properties 

 

9 September 2015 

Fundamental Matrix & Motion 

• Under a pure translational camera motion, 3D points appear to slide 

along parallel rails. The images of these parallel lines intersect in a 

vanishing point corresponding to the translation direction. The 

epipole e is the vanishing point. 

 
9 September 2015 
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Finding correspondences 

• Apply feature matching criterion (e.g., correlation or 

Lucas-Kanade) at all pixels simultaneously 

• Search only over epipolar lines (many fewer candidate 

positions) 

 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Matching criteria 

• Raw pixel values (correlation) 

• Band-pass filtered images [Jones & Malik 92] 

• “Corner” like features [Zhang, …] 

• Edges [many people…] 

• Gradients [Seitz 89;  Scharstein 94] 

• Rank statistics [Zabih & Woodfill 94] 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
http://research.microsoft.com/~szeliski
http://szeliski.org/Book/
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Feature Detection 

 

“A Rose By Any Other Name? 

 

 3 8 1 7 6 7 4 7 8 3 5 9 5 3 6 3 7 4 4 6 9 3 8 7 9 0 3 6 3 2 6 6 5 6 0 3 4 2 6 8 3 8 1… 

 7 6 7 4 7 8 3 5 9 5 3 6 3 7 4 4 6 9 3 8 7 9 0 3 6 3 2 6 6 5 6 0 3 4 2 6 8 

 
– SIFT 
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Why extract features? 

• Object detection  

• Robot Navigation  

• Scene Recognition 

 

 

 

 

 

 

• Steps: 

– Extract Features 

– Match Features Adopted drom   S. Lazebnik, Gang Hua (CS 558) 

9 September 2015 

Why extract features? [2] 

• Panorama stitching… 

Step 3: Align images   

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

9 September 2015 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Characteristics of good features 

• Repeatability 

– The same feature can be found in several images despite 

geometric and photometric transformations  

• Saliency 

– Each feature is distinctive 

• Compactness and efficiency 

– Many fewer features than image pixels 

• Locality 

– A feature occupies a relatively small area of the image; robust to 

clutter and occlusion 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

9 September 2015 

Finding Corners 

• Key property: in the region around a corner, image 

gradient has two or more dominant directions 

• Corners are repeatable and distinctive 

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.   

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

9 September 2015 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Corner Detection: Basic Idea 

• Look through a window 

• Shifting a window in any direction should give a large 

change in intensity 

“edge”: 

no change along 

the edge direction 

“corner”: 

significant change 

in all directions 

“flat” region: 

no change in 

all directions 

Source: A. Efros 

9 September 2015 

Corner Detection: Mathematics 

 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

Change in appearance of window w(x,y)  

for the shift [u,v]: 

I(x, y) 
E(u, v) 

E(3,2) 

w(x, y) 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

9 September 2015 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Corner Detection: Mathematics 

 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

I(x, y) 
E(u, v) 

E(0,0) 

w(x, y) 

Change in appearance of window w(x,y)  

for the shift [u,v]: 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

9 September 2015 

Corner Detection: Mathematics 

 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

Intensity Shifted 
intensity 

Window 
function 

or Window function w(x,y) = 

Gaussian 1 in window, 0 outside 

Source: R. Szeliski 

Change in appearance of window w(x,y)  

for the shift [u,v]: 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

9 September 2015 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Corner Detection: Mathematics 

 

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

We want to find out how this function behaves for small shifts 

Change in appearance of window w(x,y)  

for the shift [u,v]: 

E(u, v) 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

9 September 2015 

Corner Detection: Mathematics 
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Local quadratic approximation of E(u,v) in the neighborhood of 

(0,0) is given by the second-order Taylor expansion: 

We want to find out how this function behaves for small shifts 

Change in appearance of window w(x,y)  

for the shift [u,v]: 

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

9 September 2015 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Corner Detection: Mathematics 
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Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

9 September 2015 

Corner Detection: Mathematics 
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Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

9 September 2015 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Harris detector: Steps 

• Compute Gaussian derivatives at each pixel 

• Compute second moment matrix M in a Gaussian window 

around each pixel  

• Compute corner response function R 

• Threshold R 

• Find local maxima of response function (nonmaximum 

suppression) 

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.   

Adopted from    

S. Lazebnik,  

Gang Hua (CS 558) 

9 September 2015 

Harris Detector: Steps 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Harris Detector: Steps 

Compute corner response R 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

Harris Detector: Steps 

Find points with large corner response: R>threshold 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Harris Detector: Steps 

Take only the points of local maxima of R 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

Harris Detector: Steps 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://www.cs.stevens.edu/~ghua/ghweb/CS558/
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Invariance and covariance 

• We want corner locations to be invariant to photometric 

transformations and covariant to geometric 

transformations 

– Invariance: image is transformed and corner locations do not 

change 

– Covariance: if we have two transformed versions of the same 

image, features should be detected in corresponding locations 

Adopted from   S. Lazebnik, Gang Hua (CS 558) 

9 September 2015 

RANdom SAmple Consensus 

1. Repeatedly select a small (minimal) subset of 

correspondences 

2. Estimate a solution (in this case a the line) 

3. Count the number of “inliers”, |e|<Θ 

(for LMS, estimate med(|e|) 

4. Pick the best subset of inliers 

5. Find a complete least-squares solution 
 

• Related to least median squares 

• See also:  

MAPSAC (Maximum A Posteriori SAmple Consensus) 

 

 

 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://www.cs.stevens.edu/~ghua/ghweb/CS558/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Basic idea: 

• Take 16x16 square window around detected feature 

• Compute edge orientation (angle of the gradient - 90) for each pixel 

• Throw out weak edges (threshold gradient magnitude) 

• Create histogram of surviving edge orientations 

Scale Invariant Feature Transform 

Adapted from slide by David Lowe 

0 2 
angle histogram 

9 September 2015 

SIFT descriptor 

Full version 
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below) 

• Compute an orientation histogram for each cell 

• 16 cells * 8 orientations = 128 dimensional descriptor 

 

 

Adapted from slide by David Lowe 

9 September 2015 
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Properties of SIFT 
• Extraordinarily robust matching technique 

– Can handle changes in viewpoint 

• Up to about 60 degree out of plane rotation 

– Can handle significant changes in illumination 

• Sometimes even day vs. night (below) 

– Fast and efficient—can run in real time 

– Lots of code available 
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT  

From David Lowe and Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Feature matching 

• Given a feature in I1, how to find the best match in I2? 

1. Define distance function that compares two descriptors 

2. Test all the features in I2, find the one with min distance 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Feature distance 

• How to define the difference between two features 

f1, f2? 

– Simple approach is SSD(f1, f2)  

• sum of square differences between entries of the two descriptors 

• can give good scores to very ambiguous (bad) matches  

I1 I2 

f1 f2 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Feature distance 

• How to define the difference between two features f1, f2? 

– Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’) 

• f2         is  best SSD match to f1 in I2 

• f2’        is  2nd   best SSD match to f1 in I2 

• gives small values for ambiguous matches 

I1 I2 

f1 f2 f2
' 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Evaluating the results 

• How can we measure the performance of a feature matcher? 

50 

75 

200 

feature distance 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

True/false positives 

 

 

 

 

 

 

 

 

 

• The distance threshold affects performance 

– True positives = # of detected matches that are correct 

• Suppose we want to maximize these—how to choose threshold? 

– False positives = # of detected matches that are incorrect 

• Suppose we want to minimize these—how to choose threshold? 

50 

75 

200 

feature distance 

false match 

true match 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Levenberg-Marquardt 

• Iterative non-linear least squares [Press’92] 

– Linearize measurement equations 

 

 

 

 

 

– Substitute into log-likelihood equation:   

quadratic cost function in Dm 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Levenberg-Marquardt 

• What if it doesn’t converge? 

– Multiply diagonal by (1 + l), increase l until it does 

– Halve the step size Dm (my favorite) 

– Use line search 

– Other ideas? 

• Uncertainty analysis:  covariance S = A-1 

• Is maximum likelihood the best idea? 

• How to start in vicinity of global minimum? 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Feature Based Stereo 

 

Feature-based stereo 

• Match “corner” (interest) points 

 

 

 

 

 

 

 

• Interpolate complete solution 

Slide from Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://research.microsoft.com/~szeliski
http://szeliski.org/Book/


29 

SFM: Structure from Motion  

(& Cool Robotics Share (this week)) 

9 September 2015 

Structure [from] Motion 

• Given a set of feature tracks, 

estimate the 3D structure and 3D (camera) motion. 

 

• Assumption: orthographic projection 

 

• Tracks:  (ufp,vfp), f: frame, p: point 

• Subtract out mean 2D position… 

   if: rotation,  sp: position 

   

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

../../Videos/PhotoTourismFull.wmv
http://szeliski.org/Book/
http://szeliski.org/Book/
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Structure from motion 

• How many points do we need to match? 

• 2 frames: 

– (R,t): 5 dof + 3n point locations  

– 4n point measurements   

– n  5 

• k frames: 

– 6(k–1)-1 + 3n  2kn 

• always want to use many more 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Measurement equations 

• Measurement equations 

 ufp = if
T sp   if: rotation,  sp: position 

 vfp = jf
T sp 

 

 

• Stack them up… 

 W = R S 

 R = (i1,…,iF, j1,…,jF)T 

 S = (s1,…,sP) 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Factorization 

 W = R2F3 S3P 

SVD 

 W = U Λ V  Λ must be rank 3 

 W’ = (U Λ 1/2)(Λ1/2 V)  = U’ V’ 

Make R orthogonal 

 R = QU’ ,  S = Q-1V’ 

 if
TQTQif = 1 … 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

Results  

• Look at paper figures… 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Bundle Adjustment 

• What makes this non-linear minimization hard? 

– many more parameters: potentially slow 

– poorer conditioning (high correlation) 

– potentially lots of outliers 

– gauge (coordinate) freedom 

From  Szeliski, Computer Vision: Algorithms and Applications 

9 September 2015 

More Cool Robotics Share! 

http://szeliski.org/Book/
http://szeliski.org/Book/
file:///D:/RAPID/Temp/CoolRoboticsShare DTTP/PhotoTourismFull.wmv

