

WEEK	Date	Lecture (W: 12:05-1:50, 50-N201)		
1	29-Jul	Introduction		
2	5-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)		
3	12-Aug	Robot Kinematics Review (& Ekka Day)		
4	19-Aug	Robot Dynamics		
5	26-Aug	Robot Sensing: Perception		
6	2-Sep	Robot Sensing: Multiple View Geometry		
7	9-Sep	Robot Sensing: Feature Detection (as Linear Observers)		
8	16-Sep	Probabalistic Robotics: Localization		
9	23-Sep	Quiz & Guest Lecture (SLAM?)		
	30-Sep	Study break		
10	7-Oct	Motion Planning		
11	14-Oct	State-Space Modelling		
	21-Oct	Shaping the Dynamic Response		
12				

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

Hough Transform: Algorithm

1. Quantize the parameter space appropriately.

2. Assume that each cell in the parameter space is an accumulator. Initialize all cells to zero.

3. For each point (x,y) in the (visual & range) image space, increment by 1 each of the accumulators that satisfy the equation.

2 September 2015 - 15

4. Maxima in the accumulator array correspond to the parameters of model instances.

METR 4202: Robotics

Multiple View Geometry

Image Formation – Single View Geometry [II]
$$\Rightarrow$$
 Camera Projection Matrix $\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \\ 1 \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$ $K = Image point$ $K = Image point$ $K = Camera Calibration Matrix$ $K = Camera Calibration Matrix$ $K = K[I | 0]X_{cam}$ $Perspective Camera as: where: P is 3×4 and of rank 3$ $P = K[R | t]$

2-D Transformations

 \Rightarrow x' = point in the **new** (or 2nd) image

 \rightarrow x = point in the old image

•	Translation	$\mathbf{x'} = \mathbf{x} + \mathbf{t}$
---	-------------	---

- Rotation x' = R x + t
- Similarity x' = sR x + t
- Affine x' = A x
- Projective x' = A x

here, x is an inhomogeneous pt (2-vector)

x' is a homogeneous point

METR 4202: Robotics

2 September 2015 - 27

2-D Transformations						
	Name	Matrix	# D.O.F.	Preserves:	Icon	
	translation	$\left[egin{array}{c c} I & t \end{array} ight]_{2 imes 3}$	2	orientation $+\cdots$		
	rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond	
	similarity	$\left[\begin{array}{c c} sR & t \end{array} \right]_{2 \times 3}$	4	angles $+\cdots$	\Diamond	
	affine	$\left[egin{array}{c} A \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	\square	
	projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	\square	
METR 4202: Robotics 2 September 2015 - 2					015 - 28	

3D Transformations					
	Name	Matrix	# D.O.F.	Preserves:	Icon
	translation	$\left[egin{array}{c c} I & t \end{array} ight]_{3 imes 4}$	3	orientation $+\cdots$	
	rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{3 imes 4}$	6	lengths $+\cdots$	\diamond
	similarity	$\left[\left. sR \right t ight]_{3 imes 4}$	7	angles $+\cdots$	\diamond
	affine	$\left[egin{array}{c} A \end{array} ight]_{3 imes 4}$	12	parallelism $+\cdots$	\square
	projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{4 imes 4}$	15	straight lines	
Slide from Szeliski, Computer Vision: Algorithms and Applications					
METR 4202: Robotics				2 September 2015 -2	

Properties of Projection	
 Preserves Lines and conics Incidence Invariants (cross-ratio) 	
 Does not preserve – Lengths – Angles – Parallelism 	
METR 4202: Robotics 2 September 2	2015 - 31

Fundamental matrix

- Camera calibrations are unknown
- x' F x = 0 with F = $[e] \times H = K'[t] \times R K-1$
- Solve for F using least squares (SVD) - re-scale (xi, xi') so that |xi|≈1/2 [Hartley]
- e (epipole) is still the least singular vector of F
- H obtained from the other two s.v.s
- "plane + parallax" (projective) reconstruction
- use self-calibration to determine K [Pollefeys]

2 September 2015 - 5

Stereo: epipolar geometry for two images (or images with collinear camera centers), can find epipolar lines epipolar lines are the projection of the pencil of planes passing through the centers Rectification: warping the input images (perspective transformation) so that epipolar lines are horizontal

• The fundamental matrix is the algebraic representation of epipolar geometry.

He	ow to get Matching Points? Features	
•	Colour	
•	Corners	
•	Edges	
•	Lines	
•	Statistics on Edges: SIFT, SURF, ORB In OpenCV: The following detector types are supported: - "FAST" - FastFeatureDetector - "STAR" - StarFeatureDetector - "SIFT" - SIFT (nonfree module) - "SURF" - SURF (nonfree module) - "ORB" - ORB - "BRISK" - BRISK - "GFTT" - GoodFeaturesToTrackDetector - "HARRIS" - GoodFeaturesToTrackDetector with Harris detector enabled - "Dense" - DenseFeatureDetector - "BipleBlobDetector	
🗵 I	AETR 4202: Robotics	2 September 2015 - 61

Structure [from] Motion

- Given a set of feature tracks, estimate the 3D structure and 3D (camera) motion.
- Assumption: orthographic projection
- Tracks: (u_{fp}, v_{fp}) , f: frame, p: point
- Subtract out mean 2D position...

 \mathbf{i}_{f} : rotation, \mathbf{s}_{p} : position

$$u_{fp} = i_f^T s_p, v_{fp} = j_f^T s_p$$

From Szeliski, <u>Computer Vision: Algorithms and Applications</u> METR 4202: Robotics

2 September 2015 -64

Measurement equations • Measurement equations $u_{fp} = i_f^T s_p$ i_f : rotation, s_p : position $v_{fp} = j_f^T s_p$ • Stack them up... W = R S $R = (i_1, ..., i_F, j_1, ..., j_F)^T$ $S = (s_1, ..., s_P)$ From Szeliski, Computer Vision: Algorithms and Applications W = R 2 M = R S $R = (i_1, ..., i_F, j_1, ..., j_F)^T$ $S = (s_1, ..., s_P)$

- many more parameters: potentially slow
- poorer conditioning (high correlation)
- potentially lots of outliers
- gauge (coordinate) freedom

$$\hat{u}_{ij} = f(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

$$\hat{v}_{ij} = g(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

2 September 2015 - 69

From Szeliski, <u>Computer Vision: Algorithms and Applications</u> METR 4202: Robotics

