

	Date	Lecture (W: 12:05-1:50, 50-N201)	
1	29-Jul	Introduction	
2	5-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)	
3	12-Aug	Robot Kinematics Review (& Ekka Day)	
4	19-Aug	Robot Dynamics	
5	26-Aug	Robot Sensing: Perception	
6	2-Sep	Robot Sensing: Multiple View Geometry	
7	9-Sep	Robot Sensing: Feature Detection (as Linear Observers)	
8	16-Sep	Probabalistic Robotics: Localization	
9	23-Sep	Quiz & Guest Lecture (SLAM?)	
	30-Sep	Study break	
		Motion Planning	
10	7-Oct	Motion Planning	
10 11	7-Oct 14-Oct	Motion Planning State-Space Modelling	
10 11 12	7-Oct 14-Oct 21-Oct	Motion Planning State-Space Modelling Shaping the Dynamic Response	

Announcements!

- Reading for Next Week:
 - <u>Computer Vision: Algorithms and Applications</u> [UQ]
 - The Condensation Paper!
 - M. Isard and A. Blake. "Condensation—conditional density propagation for visual tracking." *International Journal of Computer Vision* 29(1):5-28, 1998.

26 August 2015 - 3

- Lab 2:
 - Hand Tracking
 - Almost at hand!
- Lab 1:
 - Thanks!
 - Please see the Platypus "solution" for tips on FK/IK.

METR 4202: Robotics

Reference Material COMPUTER VISION A MODERN APPROACH **Multiple View** Geometrv TEXTS IN COMPUTER SCIENCE **Computer Vision** FORSYTH I PONCE Richard Hartley and Andrew Zisserman **UQ Library UQ Library** (Hardcopy) (ePDF) UQ Library/SpringerLink X METR 4202: Robotics 26 August 2015 -

Calibration

See: Camera Calibration Toolbox for Matlab. (http://www.vision.caltech.edu/bouguetj/calib_doc/) Intrinsic: Internal Parameters Focal length: The focal length in pixels. Principal point: The principal point Skew coefficient me skew coefficient defining the angle between the x and y pixel axes. Distortions: The image distortion coefficients (radial and tangential distortions) (typically two quadratic functions) Extrinsics: Where the Camera (image plane) is placed: Rotations: A set of 3x3 rotation matrices for each image Translations: A set of 3x1 translation vectors for each image

Camera calibration

- Determine camera parameters from known 3D points or calibration object(s)
- internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
- external or extrinsic (pose) parameters: where is the camera?
- How can we do this?

From Szeliski, Computer Vision: Algorithms and Applications

26 August 2015 - 3

METR 4202: Robotics

Subtractive (CMY	K) & Uniform (L*ab) Color Spaces
 C = W - R M = W - G Y = W - B 	• A Uniform color space is one in which the distance in coordinate space is a fair guide to the significance of the difference between the two colors
• $K = -W \odot$	• Start with RGB → CIE XYZ (Under <u>Illuminant D65</u>)
	$L^{\star} = 116(Y/Y_n)^{(1/3)} - 16$ $a^{\star} = 500 \left[(X/X_n)^{(1/3)} - (Y/Y_n)^{(1/3)} \right]$ $b^{\star} = 200 \left[(Y/Y_n)^{(1/3)} - (Z/Z_n)^{(1/3)} \right]$
METR 4202: Robotics	26 August 2015 -37