

Robot Dynamics (& Control)

METR 4202: Advanced Control & Robotics

Dr Surya Singh -- Lecture # 4

August 19, 2015

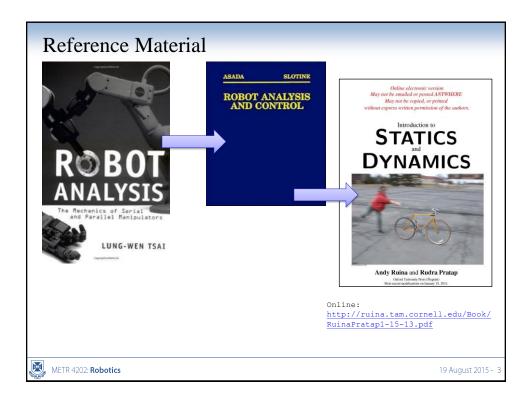
metr4202@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~metr4202/

Schedule

Week	Date	Lecture (W: 12:05-1:50, 50-N201)		
1	29-Jul	Introduction		
2	5-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)		
3	12-Aug	Robot Kinematics Review (& Ekka Day)		
4	19-Aug	Robot Dynamics		
5	26-Aug	Robot Sensing: Perception		
6	2-Sep	Robot Sensing: Multiple View Geometry		
7		Robot Sensing: Feature Detection (as Linear Observers)		
8	16-Sep	Probabilistic Robotics: Localization		
9	23-Sep	Quiz & Guest Lecture (SLAM?)		
	30-Sep	Study break		
10	7-Oct	Motion Planning		
11	14-Oct	State-Space Modelling		
12	21-Oct	Shaping the Dynamic Response		
13	28-Oct	LQR + Course Review		

METR 4202: Robotics



Announcements!

- Lab 1:
 - Demos Tomorrow!
- Lab 2:
 - Hand Tracking
- Reading for Next Week:
 - Corke: §10.2 + Ch. 11 + § 12.1-12.2

METR 4202: Robotics

Outline

- Review:
 - Denavit Hartenberg Notation
 - Parallel Robots
- Jacobians & Differential Motion
- Multibody Dynamics Refresher
- Newton-Euler Formulation
- Lagrange Formulation

DH: Where to place frame?

- 1. Align an axis along principal motion
 - 1. Rotary (\mathbf{R}): align rotation axis along the $\underline{\mathbf{z}}$ axis
 - 2. Prismatic (\mathbf{P}): align slider travel along \mathbf{x} axis
- 2. Orient so as to position x axis towards next frame
- 3. $\theta_{(rot z)} \rightarrow d_{(trans z)} \rightarrow a_{(trans x)} \rightarrow \alpha_{(rot x)}$

METR 4202: Robotics

19 August 2015 -

Denavit-Hartenberg → Rotation Matrix

• Each transformation is a product of 4 "basic" transformations (instead of 6)

$$\begin{split} &i^{-1}A_i = &Rot_{z,\theta_i}Trans_{z,d_i}Trans_{x,a_i}Rot_{x,\alpha_i} \\ &= \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdots \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_ic_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \end{bmatrix}$$

METR 4202: Robotics

DH Example [1]: RRR Link Manipulator

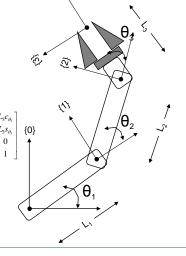
- 1. Assign the frames at the joints ...
- 2. Fill DH Table ...

Link	a _i	α_{i}	d _i	θί
1	L ₁	0	0	θ ₁
2	L ₂	0	0	$\boldsymbol{\theta}_2$
3	L ₃	0	0	Θ_3

$${}^{0}A_{1} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & L_{1}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & L_{1}s_{\theta_{i}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}A_{2} = \begin{bmatrix} c_{\theta_{2}} & -s_{\theta_{2}} & 0 & L_{2}c_{\theta_{2}} \\ s_{\theta_{2}} & c_{\theta_{2}} & 0 & L_{2}s_{\theta_{2}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}A_{3} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & L_{3}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & L_{3}s_{\theta_{i}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} ^{0}T_{3} &= {^{0}}A_{1}{^{1}}A_{2}{^{2}}A_{3} \\ &= \begin{bmatrix} c_{\theta_{123}} & -s_{\theta_{123}} & 0 & L_{1}c_{\theta_{1}} + L_{2}c_{\theta_{12}} + L_{3}c_{\theta_{123}} \\ s_{\theta_{123}} & c_{\theta_{123}} & 0 & L_{1}s_{\theta_{1}} + L_{2}s_{\theta_{12}} + L_{3}s_{\theta_{123}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

METR 4202: Robotics



19 August 2015 - 9

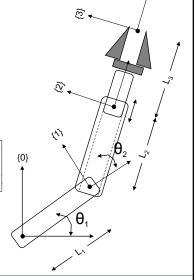
DH Example [2]: RRP Link Manipulator

- 1. Assign the frames at the joints ...
- 2. Fill DH Table ...

Link	a _i	α_{i}	d _i	θί
1	L ₁	0	0	Θ ₁
2	L_2	0	0	θ ₂
3	L ₃	0	0	0

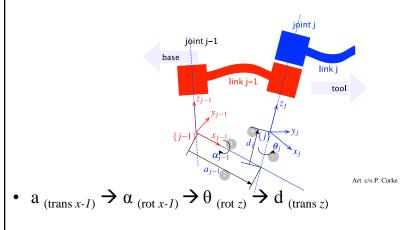
$${}^{0}A_{1} = \begin{bmatrix} c_{i_{1}} & -s_{i_{1}} & 0 & L_{1}c_{i_{2}} \\ s_{i_{1}} & c_{i_{1}} & 0 & L_{1}s_{i_{1}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{1}A_{2} = \begin{bmatrix} c_{i_{2}} & -s_{i_{1}} & 0 & L_{2}c_{i_{2}} \\ s_{i_{2}} & c_{i_{2}} & 0 & L_{2}s_{i_{2}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{2}A_{3} = \begin{bmatrix} 1 & 0 & 0 & L_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{0}T_{2} = {}^{0}A_{1}{}^{1}A_{3}{}^{2}A_{3},$$

METR 4202: Robotics



Modified DH

- Made "popular" by Craig's Intro. to Robotics book
- Link coordinates attached to the near by joint



METR 4202: Robotics

19 August 2015 - 11

Modified DH [2]

• Gives a similar result (but it's not commutative)

$$\Rightarrow^{i-1} A_i = R_x (\alpha_{i-1}) T_x (a_{i-1}) R_z (\theta_i) T_x (d_i)$$

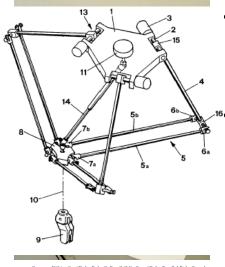
• Refactoring Standard → to Modified

$$\underbrace{\left\{R_{z}\left(\theta_{1}\right)T_{z}\left(d_{1}\right)T_{x}\left(a_{1}\right)R_{x}\left(\alpha_{1}\right)\right\}}_{\mathsf{DH}_{1}}\cdot\underbrace{\left\{R_{z}\left(\theta_{2}\right)T_{z}\left(d_{2}\right)T_{x}\left(a_{2}\right)R_{x}\left(\alpha_{2}\right)\right\}}_{\mathsf{DH}_{2}}\cdot\underbrace{\left\{R_{z}\left(\theta_{3}\right)T_{z}\left(d_{3}\right)\right\}}_{\mathsf{End}\ \mathsf{Effector}}$$

$$=\underbrace{\left\{R_{z}\left(\theta_{1}\right)T_{z}\left(d_{1}\right)\right\}}_{\mathsf{Base}}\cdot\underbrace{\left\{T_{x}\left(a_{1}\right)R_{x}\left(\alpha_{1}\right)R_{z}\left(\theta_{2}\right)T_{z}\left(d_{2}\right)\right\}}_{\mathsf{MDH}_{1}}\cdot\underbrace{\left\{T_{x}\left(a_{2}\right)R_{x}\left(\alpha_{2}\right)R_{z}\left(\theta_{3}\right)T_{z}\left(d_{3}\right)\right\}}_{\mathsf{MDH}_{2}}$$

METR 4202: Robotics

Parallel Manipulators



Sources: Wikipedia, "Delta Robot", ParallelMic.Org, "Delta Parallel Robot", an

<u>US Patent 4,976.58:</u>

- The "central" Kinematic structure is made up of closed-loop chain(s)
 - Compared to Serial Mechanisms:
 - + Higher Stiffness
 - + Higher Payload
 - + Less Inertia
 - Smaller Workspace
 - Coordinated Drive System
 - More Complex & \$\$\$

оте сотрых се ффф

19 August 2015 - 13

Symmetrical Parallel Manipulator

A sub-class of Parallel Manipulator:

- \circ # Limbs (m) =# DOF (F)
- o The joints are arranged in an identical pattern
- The # and location of actuated joints are the same

Thus:

METR 4202: Robotics

 $\circ\,$ Number of Loops (L): One less than # of limbs

$$L = m - 1 = F - 1$$

 \circ Connectivity (C_k)

$$\sum_{k=1}^{m} C_k = (\lambda + 1) F - \lambda$$

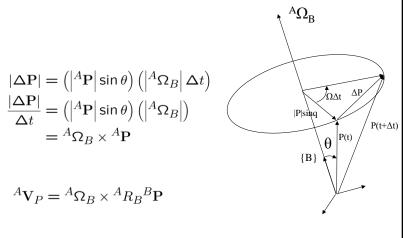
Where: λ : The DOF of the space that the system is in (e.g., λ =6 for 3D space).

METR 4202: Robotics

Robot Dynamics METR 4202. Robotics 19 August 2015-15

Angular Velocity

• If we look at a small timeslice as a frame rotates with a moving point, we find



19 August 2015 - 17

Velocity

• Recall that we can specify a point in one frame relative to another as

$$^{A}\mathbf{P} = ^{A}\mathbf{P}_{B} + ^{A}_{B}\mathbf{R}^{B}\mathbf{P}$$

• Differentiating w/r/t to t we find

$$\begin{split} {}^{A}\mathbf{V}_{P} &= \frac{d}{dt}{}^{A}\mathbf{P} = \lim_{\Delta t \to 0} \frac{{}^{A}\mathbf{P}(t + \Delta t) - {}^{A}\mathbf{P}(t)}{\Delta t} \\ &= {}^{A}\dot{\mathbf{P}}_{B} + {}^{A}_{B}\mathbf{R}^{B}\dot{\mathbf{P}} + {}^{A}_{B}\dot{\mathbf{R}}^{B}\mathbf{P} \end{split}$$

• This can be rewritten as

$$^{A}\mathbf{V}_{P} = {}^{A}\mathbf{V}_{BORG} + {}^{A}\mathbf{R}_{B}{}^{B}\mathbf{V}_{P} + {}^{A}\Omega_{B} \times {}^{A}\mathbf{R}_{B}{}^{B}\mathbf{P}$$

METR 4202: Robotics

Skew – Symmetric Matrix

$$V = \omega \times r$$

$$\Omega = \left[egin{array}{cccc} 0 & -\omega_z & \omega_y \ \omega_z & 0 & -\omega_x \ -\omega_y & \omega_x & 0 \end{array}
ight]$$

$$\rightarrow \mathbf{V} = \Omega \mathbf{r}$$

METR 4202: Robotics

19 August 2015 - 19

Velocity Representations

- Euler Angles
 - For Z-Y-X (α,β,γ) :

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{pmatrix} = \begin{pmatrix} -S\beta & 0 & 1 \\ C\beta S\gamma & C\gamma & 0 \\ C\beta C\gamma & -S\beta & 0 \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

• Quaternions

$$\begin{pmatrix} \dot{\varepsilon}_0 \\ \dot{\varepsilon}_1 \\ \dot{\varepsilon}_2 \\ \dot{\varepsilon}_3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \varepsilon_1 & -\varepsilon_2 & -\varepsilon_3 \\ \varepsilon_0 & \varepsilon_3 & -\varepsilon_2 \\ -\varepsilon_3 & \varepsilon_0 & \varepsilon_1 \\ \varepsilon_2 & -\varepsilon_1 & \varepsilon_0 \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

METR 4202: Robotics

Manipulator Velocities

 Consider again the schematic of the planar manipulator shown. We found that the end effector position is given by

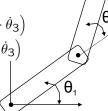
$$x = L_1 \cos \theta_1 + L_2 \cos (\theta_1 + \theta_2) + L_3 \cos (\theta_1 + \theta_2 + \theta_3)$$

$$y = L_1 \sin \theta_1 + L_2 \sin (\theta_1 + \theta_2) + L_3 \sin (\theta_1 + \theta_2 + \theta_3)$$

• Differentiating w/r/t to t

$$\dot{x} = -L_1 \,\mathsf{s}_1 \,\dot{\theta}_1 - L_2 \,\mathsf{s}_{12} \left(\dot{\theta}_1 + \dot{\theta}_2\right) - L_3 \,\mathsf{s}_{123} \left(\dot{\theta}_1 + \dot{\theta}_2 + \dot{\theta}_3\right)$$
$$\dot{y} = L_1 \,\mathsf{c}_1 \,\dot{\theta}_1 + L_2 \,\mathsf{c}_{12} \left(\dot{\theta}_1 + \dot{\theta}_2\right) + L_3 \,\mathsf{c}_{123} \left(\dot{\theta}_1 + \dot{\theta}_2 + \dot{\theta}_3\right)$$

 This gives the end effector velocity as a function of pose and joint velocities



METR 4202: Robotics

19 August 2015 - 21

Manipulator Velocities [2]

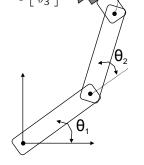
Rearranging, we can recast this relation in matrix form

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -L_1 \, \mathsf{s}_1 - L_2 \, \mathsf{s}_{12} - L_3 \, \mathsf{s}_{123} & -L_2 \, \mathsf{s}_{12} - L_3 \, \mathsf{s}_{123} & -L_3 \, \mathsf{s}_{123} \\ L_1 \, \mathsf{c}_1 + L_2 \, \mathsf{c}_{12} + L_3 \, \mathsf{c}_{123} & L_2 \, \mathsf{c}_{12} + L_3 \, \mathsf{c}_{123} & L_3 \, \mathsf{c}_{123} \end{bmatrix}$$

Or

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} & \frac{\partial x}{\partial \theta_3} \\ \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} & \frac{\partial y}{\partial \theta_3} \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{bmatrix}$$

The resulting matrix is called the Jacobian and provides us with a mapping from Joint Space to Cartesian Space.



METR 4202: Robotics

Moving On...Differential Motion

- Transformations also encode differential relationships
- Consider a manipulator (say 2DOF, RR) $x(\theta_1, \theta_2) = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)$ $y(\theta_1, \theta_2) = l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)$
- Differentiating with respect to the **angles** gives:

$$dx = \frac{\partial x (\theta_1, \theta_2)}{\partial \theta_1} d\theta_1 + \frac{\partial x (\theta_1, \theta_2)}{\partial \theta_2} d\theta_2$$
$$dy = \frac{\partial y (\theta_1, \theta_2)}{\partial \theta_1} d\theta_1 + \frac{\partial y (\theta_1, \theta_2)}{\partial \theta_2} d\theta_2$$

19 August 2015 - 23

Differential Motion [2]

• Viewing this as a matrix \rightarrow Jacobian $d\mathbf{x} = Jd\theta$

$$J = \begin{bmatrix} -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 + \theta_2) & -l_2 \sin(\theta_1 + \theta_2) \\ l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) & l_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$$

$$J = \begin{bmatrix} [J_1] & [J_2] \end{bmatrix}$$
$$v = J_1 \dot{\theta}_1 + J_2 \dot{\theta}_2$$

Infinitesimal Rotations

• $\cos(d\phi) = 1$, $\sin(d\phi) = d\phi$

$$\mathbf{R}_x(d\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cd\phi & -sd\phi \\ 0 & sd\phi & cd\phi \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -d\phi_x \\ 0 & d\phi_x & 1 \end{bmatrix}$$

$$\mathbf{R}_{y} (d\phi) = \begin{bmatrix} cd\phi & 0 & sd\phi \\ 0 & 1 & 0 \\ -sd\phi & 0 & cd\phi \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & d\phi_{y} \\ 0 & 1 & 0 \\ -d\phi_{y} & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{z}\left(d\phi\right) = \begin{bmatrix} cd\phi & -sd\phi & 0\\ sd\phi & cd\phi & 0\\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & -d\phi_{z} & 0\\ d\phi_{z} & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

• Note that:

$$R_x(d\varphi)R_y(d\varphi) = R_y(d\varphi)R_x(d\varphi)$$

→ Therefore ... they **commute**

19 August 2015 - 25

The Jacobian

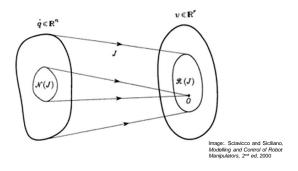
• In general, the Jacobian takes the form (for example, **j_joints** and in **i_operational space**)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_i \end{bmatrix} = \begin{bmatrix} \frac{\partial x_1}{\partial \theta_1} & \frac{\partial x_1}{\partial \theta_2} & \cdots & \frac{\partial x_1}{\partial \theta_j} \\ \frac{\partial x_2}{\partial \theta_1} & \frac{\partial x_2}{\partial \theta_2} & \cdots & \frac{\partial x_2}{\partial \theta_j} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_i}{\partial \theta_1} & \frac{\partial x_i}{\partial \theta_2} & \cdots & \frac{\partial x_i}{\partial \theta_j} \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \vdots \\ \dot{\theta}_j \end{bmatrix}$$

• Or more succinctly

$$\dot{\mathbf{X}} = \mathbf{J}(\theta)\dot{\theta}$$

Jacobian [2]



 Jacobian can be viewed as a mapping from Joint velocity space () to Operational velocity space (v)

19 August 2015 - 27

Revisiting The Jacobian

• I told you:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_i \end{bmatrix} = \begin{bmatrix} \frac{\partial x_1}{\partial \theta_1} & \frac{\partial x_1}{\partial \theta_2} & \cdots & \frac{\partial x_1}{\partial \theta_j} \\ \frac{\partial x_2}{\partial \theta_1} & \frac{\partial x_2}{\partial \theta_2} & \cdots & \frac{\partial x_2}{\partial \theta_j} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_i}{\partial \theta_1} & \frac{\partial x_i}{\partial \theta_2} & \cdots & \frac{\partial x_i}{\partial \theta_j} \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \vdots \\ \dot{\theta}_j \end{bmatrix}$$

• True, but we can be more "explicit"

Jacobian: Explicit Form

- For a serial chain (robot): The velocity of a link with respect to the proceeding link is dependent on the type of link that connects them
- If the joint is **prismatic** (ϵ =1), then $\mathbf{v}_i = \frac{dz}{dt}$
- If the joint is **revolute** (ϵ =0), then $\omega = \frac{d\theta}{dt}$ (in the \hat{k} direction)

• Combining them (with $\mathbf{v}=(\Delta \mathbf{x}, \Delta \theta)$)

$$J = \begin{bmatrix} J_v \\ J_\omega \end{bmatrix}$$

METR 4202: Robotics

19 August 2015 - 29

Jacobian: Explicit Form [2]

• The overall Jacobian takes the form
$$J = \begin{bmatrix} \frac{\partial x_p}{\partial q_1} & \cdots & \frac{\partial x_p}{\partial q_n} \\ \overline{\varepsilon}_1 z_1 & \cdots & \overline{\varepsilon}_1 z_n \end{bmatrix}$$

• The Jacobian for a particular frame (F) can be expressed:

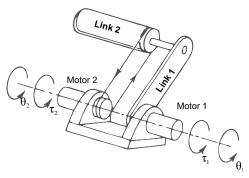
$${}^{F}J = \begin{bmatrix} {}^{F}J_{v} \\ {}^{F}J_{\omega} \end{bmatrix} = \begin{bmatrix} \frac{\partial^{F}x_{p}}{\partial q_{1}} & \cdots & \frac{\partial^{F}x_{p}}{\partial q_{n}} \\ \overline{\varepsilon}_{1}{}^{F}z_{1} & \cdots & \overline{\varepsilon}_{1}{}^{F}z_{n} \end{bmatrix}$$

Where: ${}^{F}\mathbf{z}_{i} = {}^{F}_{i}R^{i}\mathbf{z}_{i}$ & ${}^{i}\mathbf{z}_{i} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$

METR 4202: Robotics

Motivating Example:

Remotely Driven 2DOF Manipulator



- Introduce $Q_1 = \tau_1 + \tau_2$ and $Q_2 = \tau_2$
- Derivation posted to website

Graphic based on Asada & Slotine p. 112

19 August 2015 - 31

Dynamics

- We can also consider the forces that are required to achieve a particular motion of a manipulator or other body
- Understanding the way in which motion arises from torques applied by the actuators or from external forces allows us to control these motions
- There are a number of methods for formulating these equations, including
 - Newton-Euler Dynamics
 - Langrangian Mechanics

Dynamics of Serial Manipulators

- Systems that keep on manipulating (the system)
- Direct Dynamics:
 - Find the response of a robot arm with torques/forces applied
- Inverse Dynamics:
 - Find the (actuator) torques/forces required to generate a desired trajectory of the manipulator

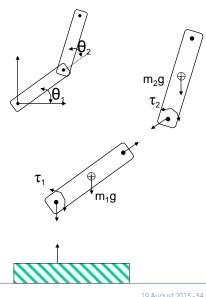
19 August 2015 - 33

Dynamics – Newton-Euler

In general, we could analyse the dynamics of robotic systems using classical Newtonian mechanics

$$\sum_{i} F = m\ddot{x}$$
$$\sum_{i} T = J\ddot{\theta}$$

- This can entail iteratively calculating velocities and accelerations for each link and then computing force and moment balances in the system
- Alternatively, closed form solutions may exist for simple configurations



METR 4202: Robotics

Dynamics

• For Manipulators, the general form is

$$\tau = M(\Theta)\ddot{\Theta} + V(\Theta, \dot{\Theta}) + G(\Theta)$$

where

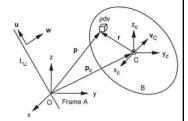
- τ is a vector of joint torques
- Θ is the nx1 vector of joint angles
- $M(\Theta)$ is the nxn mass matrix
- $V(\Theta, \Theta)$ is the nx1 vector of centrifugal and Coriolis terms
- $G(\Theta)$ is an nx1 vector of gravity terms
- Notice that all of these terms depend on Θ so the dynamics varies as the manipulator move

19 August 2015 - 35

Dynamics: Inertia

The moment of inertia (second moment) of a rigid body B relative to a line L that passes through a reference point O and is parallel to a unit vector **u** is given by:

$$I_u^O = \int_V p \times (u \times p) \rho dV$$
$$= \int_V \left[p^2 u - (p^T u) p \right] \rho dV$$



The scalar product of I_{u}^{o} with a second axis (w) is called the product of inertia

$$I_{uw}^{O} = I_{u}^{O} \cdot w = \int_{V} \left[\left(u^{T} w \right) p^{2} - \left(p^{T} u \right) \left(p^{T} w \right) \right] \rho dV$$

If u=w, then we get the moment of inertia:
$$I_{uu} = \int_V \left[p^2 - \left(p^T u \right)^2 \right] \rho dV = m r_g^2$$
 Where: $\mathbf{r_g}$: radius of gyration of B w/r/t to L

$$r_g = p^2 - (p^T u)^2 = (u \times p)^2$$

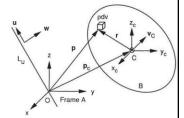
Dynamics: Mass Matrix & Inertia Matrix

• This can be written in a Matrix form as:

$$\mathbf{I}_u^O = I_B^O \mathbf{u}$$

• Where I^O_B is the inertial matrix or inertial tensor of the body B about a reference point O

$$I_B^O = \left[\begin{array}{ccc} I_{xx} & I_{xy} & I_{xz} \\ I_{yz} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{array} \right]$$



• Where to get I_{xx} , etc? \rightarrow Parallel Axis Theorem

If CM is the center of mass, then:

$$I_{xx}^{O} = I_{xx}^{CM} + m \left(y_c^2 + z_c^2 \right) \qquad I_{xy}^{O} = I_{xx}^{CM} + m x_c y_c$$

$$I_{yy}^{O} = I_{yy}^{CM} + m \left(x_c^2 + z_c^2 \right) \qquad I_{yz}^{O} = I_{xx}^{CM} + m x_c y_c$$

$$I_{zz}^{O} = I_{zz}^{CM} + m \left(x_c^2 + z_c^2 \right) \qquad I_{zx}^{O} = I_{xx}^{CM} + m y_c z_c$$

$$I_{zz}^{O} = I_{zx}^{CM} + m \left(x_c^2 + y_c^2 \right) \qquad I_{zx}^{O} = I_{xx}^{CM} + m z_c x_c$$

19 August 2015 - 37

Dynamics: Mass Matrix

• The Mass Matrix: Determining via the Jacobian!

$$K_{i} = \frac{1}{2} \left(m_{i} v_{C_{i}}^{T} v_{C_{i}} + \omega_{i}^{T} I_{C_{i}} \omega_{i} \right)$$

$$v_{C_{i}} = \mathbf{J}_{v_{i}} \dot{\theta} \quad \mathbf{J}_{v_{i}} = \begin{bmatrix} \frac{\partial \mathbf{p}_{C_{1}}}{\partial \theta_{1}} & \cdots & \frac{\partial \mathbf{p}_{C_{i}}}{\partial \theta_{i}} & \underbrace{\mathbf{0}}_{i+1} & \cdots & \underbrace{\mathbf{0}}_{n} \end{bmatrix}$$

$$\omega_{i} = J_{\omega_{i}} \dot{\theta} \quad J_{\omega_{i}} = \begin{bmatrix} \bar{\varepsilon}_{1} Z_{1} & \cdots & \bar{\varepsilon}_{i} Z_{i} & \underbrace{\mathbf{0}}_{i+1} & \cdots & \underbrace{\mathbf{0}}_{n} \end{bmatrix}$$

$$\therefore M = \sum_{i=1}^{N} \left(m_{i} \mathbf{J}_{v_{i}}^{T} \mathbf{J}_{v_{i}} + J_{\omega_{i}}^{T} I_{C_{i}} J_{\omega_{i}} \right)$$

! M is symmetric, positive definite $: m_{ij} = m_{ji}, \dot{\boldsymbol{\theta}}^T M \dot{\boldsymbol{\theta}} > 0$

Dynamics – Langrangian Mechanics

- Alternatively, we can use Langrangian Mechanics to compute the dynamics of a manipulator (or other robotic system)
- The Langrangian is defined as the difference between the Kinetic and Potential energy in the system

$$L = K - P$$

- Using this formulation and the concept of virtual work we can find the forces and torques acting on the system.
- This may seem more involved but is often easier to formulate for complex systems

Dynamics – Langrangian Mechanics [2]

 $L = K - P, \dot{\theta}$: Generalized Velocities, M: Mass Matrix

$$\boldsymbol{\tau} = \sum_{i=1}^{N} \tau_{i} = \frac{d}{dt} \left(\frac{\partial K}{\partial \dot{\boldsymbol{\theta}}} \right) - \frac{\partial K}{\partial \boldsymbol{\theta}} + \frac{\partial P}{\partial \boldsymbol{\theta}}$$
$$K = \frac{1}{2} \dot{\boldsymbol{\theta}}^{T} M \left(\boldsymbol{\theta} \right) \dot{\boldsymbol{\theta}}$$

$$K = \frac{1}{2}\dot{\theta}^T M(\theta) \,\dot{\theta}$$

$$\frac{d}{dt} \left(\frac{\partial K}{\partial \dot{\theta}} \right) = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{\theta}} \left(\frac{1}{2} \dot{\theta}^T M \left(\theta \right) \dot{\theta} \right) \right) = \frac{d}{dt} \left(M \dot{\theta} \right) = M \ddot{\theta} + \dot{M} \dot{\theta}$$

$$\frac{dt}{dt} \left(\frac{\partial K}{\partial \dot{\theta}} \right) - \frac{\partial K}{\partial \theta} = \left[M \ddot{\theta} + \dot{M} \dot{\theta} \right] - \left[\frac{1}{2} \dot{\theta}^T M \left(\theta \right) \dot{\theta} \right] = M \ddot{\theta} + \left\{ \dot{M} \dot{\theta} - \frac{1}{2} \begin{bmatrix} \dot{\theta}^T \frac{\partial M}{\partial \theta_1} \dot{\theta} \\ \vdots \\ \dot{\theta}^T \frac{\partial M}{\partial \theta_n} \dot{\theta} \end{bmatrix} \right\} \\
\mathbf{v} \left(\theta, \dot{\theta} \right) = C \left(\theta \right) \left[\dot{\theta}^2 \right] + B \left(\theta \right) \left[\dot{\theta} \dot{\theta} \right] \qquad \mathbf{v} \left(\theta, \dot{\theta} \right)$$

$$\mathbf{v}\left(\theta,\dot{\theta}\right) = \underbrace{C\left(\theta\right)\left[\dot{\theta}^{2}\right]}_{\mathsf{Centrifugal}} + \underbrace{B\left(\theta\right)\left[\dot{\theta}\dot{\theta}\right]}_{\mathsf{Coriolis}}$$

$$\Rightarrow \mathbf{\tau} = M(\theta)\ddot{\mathbf{\theta}} + \mathbf{v}(\mathbf{\theta},\dot{\mathbf{\theta}}) + \mathbf{g}(\mathbf{\theta})$$

Dynamics – Langrangian Mechanics [3]

• The Mass Matrix: Determining via the Jacobian!

$$K = \sum_{i=1}^{N} K_i$$

$$K = \frac{1}{N} \left(\frac{1}{N} \right)$$

$$K_{i} = \frac{1}{2} \left(m_{i} v_{C_{i}}^{T} v_{C_{i}} + \omega_{i}^{T} I_{C_{i}} \omega_{i} \right)$$

$$v_{C_{i}} = \mathbf{J}_{v_{i}} \dot{\theta} \quad \mathbf{J}_{v_{i}} = \begin{bmatrix} \frac{\partial \mathbf{p}_{C_{1}}}{\partial \theta_{1}} & \cdots & \frac{\partial \mathbf{p}_{C_{i}}}{\partial \theta_{i}} & \underbrace{\mathbf{0}}_{i+1} & \cdots & \underbrace{\mathbf{0}}_{n} \end{bmatrix}$$

$$\omega_i = J_{\omega_i} \dot{\theta} \qquad J_{\omega_i} = \begin{bmatrix} \bar{\varepsilon}_1 Z_1 & \cdots & \bar{\varepsilon}_i Z_i & \underbrace{0}_{i+1} & \cdots & \underbrace{0}_{n} \end{bmatrix}$$

$$\therefore M = \sum_{i=1}^{N} \left(m_i \mathbf{J}_{v_i}^T \mathbf{J}_{v_i} + J_{\omega_i}^T I_{C_i} J_{\omega_i} \right)$$

! M is symmetric, positive definite $: m_{ij} = m_{ji}, \dot{\boldsymbol{\theta}}^T M \dot{\boldsymbol{\theta}} > 0$

10 August 2015 /

Generalized Coordinates

- A significant feature of the Lagrangian Formulation is that any convenient coordinates can be used to derive the system.
- Go from Joint → Generalized

- Define **p**:
$$d\mathbf{p} = \mathbf{J}d\mathbf{q}$$

 $\mathbf{q} = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix} \rightarrow \mathbf{p} = \begin{bmatrix} p_1 & \dots & p_n \end{bmatrix}$

→ Thus: the kinetic energy and gravity terms become

$$KE = \frac{1}{2}\dot{\mathbf{p}}^T\mathbf{H}^*\dot{\mathbf{p}}$$
 $\mathbf{G}^* = (\mathbf{J}^{-1})^T\mathbf{G}$

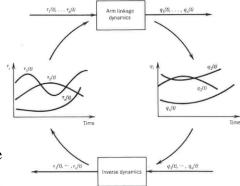
where:
$$\mathbf{H}^* = (\mathbf{J}^{-1})^T \mathbf{H} \mathbf{J}^{-1}$$

Inverse Dynamics

- Forward dynamics governs the dynamic responses of a manipulator arm to the input torques generated by the actuators.
- The inverse problem:
 - Going from joint angles to torques
 - Inputs are desired trajectories described as functions of time

$$\mathbf{q} = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix} \rightarrow \begin{bmatrix} \theta_1(t) & \theta_2(t) & \theta_3(t) \end{bmatrix}$$

- Outputs are joint torques to be applied at each instance $\tau = [\tau_1 \dots \tau_n]$



• Computation "big" (6DOF arm: 66,271 multiplications), but not scary (4.5 ms on PDP11/45)

Graphic from Asada & Slotine p. 119

19 August 2015 -43

Also: Inverse Jacobian

• In many instances, we are also interested in computing the set of joint velocities that will yield a particular velocity at the end effector

$$\dot{\theta} = \mathbf{J}(\theta)^{-1} \dot{\mathbf{X}}$$

- We must be aware, however, that the inverse of the Jacobian may be undefined or singular. The points in the workspace at which the Jacobian is undefined are the *singularities* of the mechanism.
- Singularities typically occur at the workspace boundaries or at interior points where degrees of freedom are lost

Inverse Jacobian Example

For a simple two link RR manipulator:

$$x = L_1 \cos \theta_1 + L_2 \cos (\theta_1 + \theta_2)$$

$$y = L_1 \sin \theta_1 + L_2 \sin (\theta_1 + \theta_2)$$

The Jacobian for this is

$$\left[\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right] = \left[\begin{array}{ccc} -L_1\,\mathsf{s}_1 - L_2\,\mathsf{s}_{12} & -L_2\,\mathsf{s}_{12}\\ L_1\,\mathsf{c}_1 + L_2\,\mathsf{c}_{12} & L_2\,\mathsf{c}_{12} \end{array}\right] \left[\begin{array}{c} \dot{\theta}_1\\ \dot{\theta}_2 \end{array}\right]$$

Taking the inverse of the Jacobian yields

$$\left[\begin{array}{c} \dot{\theta}_1 \\ \dot{\theta}_2 \end{array} \right] = \frac{1}{L_1 L_2 s_2} \left[\begin{array}{ccc} L_2 \, \mathsf{c}_{12} & L_2 \, \mathsf{s}_{12} \\ -L_1 \, \mathsf{c}_1 - L_2 \, \mathsf{c}_{12} & -L_1 \, \mathsf{s}_1 - L_2 \, \mathsf{s}_{12} \end{array} \right] \left[\begin{array}{c} \dot{x} \\ \dot{y} \end{array} \right]$$

Clearly, as θ_2 approaches 0 or π this manipulator becomes singular

19 August 2015 -45

Static Forces

- We can also use the Jacobian to compute the joint torques required to maintain a particular force at the end effector
- Consider the concept of virtual work

$$F \cdot \delta \mathbf{X} = \tau \cdot \delta \theta$$

Or

$$F^T \delta \mathbf{X} = \tau^T \delta \theta$$

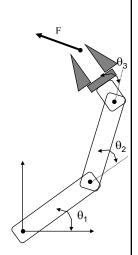
• Earlier we saw that

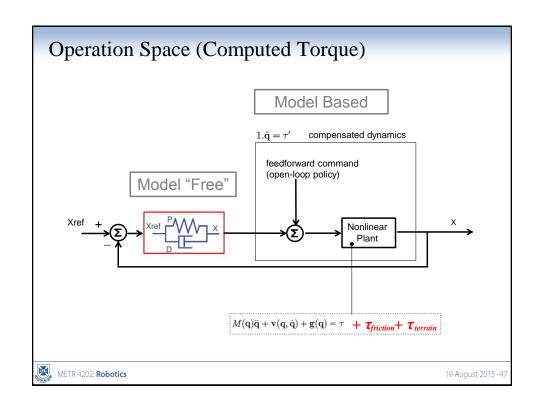
$$\delta \mathbf{X} = \mathbf{J} \delta \theta$$

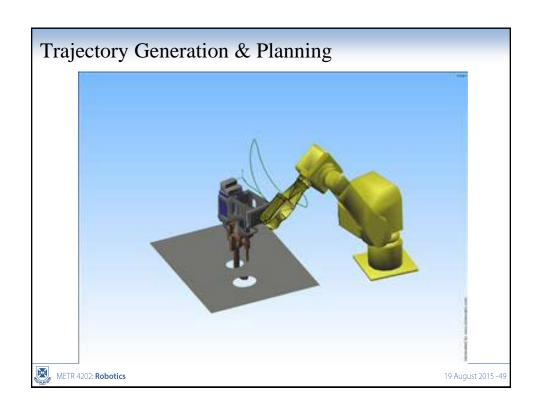
So that

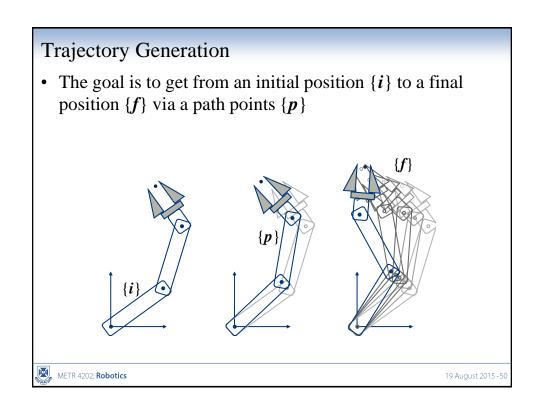
$$F^T \mathbf{J} = \tau^T$$

$$\tau = \mathbf{J}^T F$$





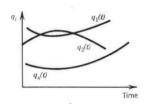




Joint Space

Consider only the **joint positions** as a function of time

- + Since we control the joints, this is more direct
- -- If we want to follow a particular trajectory, not easy
 - at best lots of intermediate points
 - No guarantee that you can solve the Inverse Kinematics for all path points

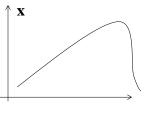


19 August 2015 - 51

Cartesian Workspace

Consider the **Cartesian positions** as a function of time

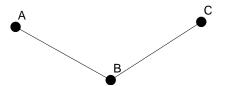
- + Can track shapes exactly
- -- We need to solve the inverse kinematics and dynamics



Time

Polynomial Trajectories

- Straight line Trajectories
- Polynomial Trajectories



A B B

 $u(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$ Simpler

- Parabolic blends are smoother
- Use "pseudo via points"

19 August 2015 -53

Summary

- Kinematics is the study of motion without regard to the forces that create it
- Kinematics is important in many instances in Robotics
- The study of dynamics allows us to understand the forces and torques which act on a system and result in motion
- Understanding these motions, and the required forces, is essential for designing these systems

METR 4202: Robotics

