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Schedule of Events

Week | Date | Lecture (W: 12:05-1:50, 50-N201)
1 | 29-Jul |Introduction
Representing Position & Orientation & State
2 |5-Aug [(Frames, Transformation Matrices & Affine
[Transformations)
3 |12-Aug|Robot Kinematics Review (& Ekka Day)
4 [19-Aug|Robot Dynamics & Control
5 [26-Aug|Robot Motion
6 2-Sep |Robot Sensing: Perception & Multiple View Geometry
7 9-Sep |Robot Sensing: Features & Detection using Computer Vision
8 |16-Sep|Navigation & Localization
9 |23-Sep|Localization & Quiz
30-Sep Study break
10 | 7-Oct [Motion Planning
11 |14-Oct [State-Space Modelling
12 | 21-Oct [Shaping the Dynamic Response
13 |28-Oct [Linear Observers & LQR + Course Review
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Today’s Lecture is about:
Frames & Their Mathematics

« Make one (online):

— SpnS Template
A7z T
N
1.y | ,
Vniten — Peter Corke’s template
yaw
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Don’t Confuse a Frame with a Point
e Points

— Position Only —
Doesn’t Encode Orientation

* Frame

— Encodes both position
and orientation

— Has a “handedness”

§, METR 4202: Robotics
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Kinematics Definition

« Kinematics: The study of motion in space
(without regard to the forces which cause it)

« Assume:

— Points with right-hand Erames

— Rigid-bodies in 3D-space (6-dof)

— 1-dof joints: Rotary (R) or Prismatic (P) (5 constraints)

N links

M joints

->DOF = 6N-5M

=> If N=M, then DOF=N.

N

The ground is also a link

§;, METR 4202: Robotics
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Kinematics

+ Kinematic modelling is one of the most important analytical tools of
robotics.

» Used for modelling mechanisms, actuators and sensors
 Used for on-line control and off-line programming and simulation
* In mobile robots kinematic models are used for:

steering (control, simulation)

perception (image formation)

sensor head and communication antenna pointing
world modelling (maps, object models)

terrain following (control feedforward)

gait control of legged vehicles

q@? METR 4202: Robotics 5 August 2015 -

Basic Terminology

1y Coordinate
System

point

axis

v
X

origin
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Coordinate System

» The position and orientation as specified only make sense with respect to
some coordinate system

q@p METR 4202: Robotics 5 August 2015 - 9

Frames of Reference

« A frame of reference defines a coordinate system relative
to some point in space

« It can be specified by a position and orientation relative to
other frames

« The inertial frame is taken to be a point that is assumed to
be fixed in space

« Two types of motion:
— Translation
— Rotation

qp METR 4202: Robotics 5 August 2015 -10




Translation

« A motion in which a straight line with in the body keeps
the same direction during the

— Rectilinear Translation: Along straight lines
— Curvilinear Translation: Along curved lines

q@? METR 4202: Robotics

Rotation

 The particles forming the rigid body move in parallel
planes along circles centered around the same fixed axis
(called the axis of rotation).

« Points on the axis of rotation have zero velocity and
acceleration

qp METR 4202: Robotics




Rotation: Representations

* Orientation are not “Cartesian”
— Non-commutative
— Multiple representations

« Some representations:
— Rotation Matrices: Homegenous Coordinates
— Euler Angles: 3-sets of rotations in sequence
— Quaternions: a 4-paramameter representation
that exploits %2 angle properties
— Screw-vectors (from Charles Theorem) : a canonical
representation, its reciprocal is a “wrench” (forces)

q@? METR 4202: Robotics

Position and Orientation [1]

» A position vectors specifies the
location of a point in 3D (Cartesian) space

Pz

Pz

B A

Px Px
= pr - Apy
sz Apz

» BUT we also concerned with its orientation in 3D space.
This is specified as a matrix based on each frame’s unit vectors

qp METR 4202: Robotics 5 August 2015 -14




Position and Orientation [2]

Orientation in 3D space:
This is specified as a matrix based on each frame’s unit vectors

Describes {B} relative to {A}
-> The orientation of frame {B} relative to coordinate frame {A}
+  Written “from {A} to {B}” or “given {A} getting to {B}”
A _Ap __ - A= AT
Rp =R =|4ip 455 kg |

Columns are {B} written in {A}

q@p METR 4202: Robotics 5 August 2015 -

Position and Orientation [3] *

» The rotations can be analysed based on the unit components ...

» That is: the components of the orientation matrix are the unit vectors
projected onto the unit directions of the reference frame

11 T12 T13

A
BR =1 ro1 700 1023
r31 T32 T33

SR (b2)ip (by)ip (b:)kp

(az)ia iB-iA JB-tA kp-ia

(ay)jaA iB-JA JB'JA kB-jaA

(az) ka ip-ka Jjp-ka kp-ka

qp METR 4202: Robotics 5 August 2015 -16




Position and Orientation [4]
+ Rotation is orthonormal

AR (b)ip (by)jp (b2)kp
(az)ia FB'{A jB-ia kp-ia

(ay) ja i-ja JjB-ja kp-ja
(az) ka iB-ka jp-ka kp-ka

« The of a rotation matrix inverse = the transpose
R- Rl =1

- thus, the rows are {A} written in {B}
BR =4RT = 4R

q@p METR 4202: Robotics 5 August 2015 -

Position and Orientation [5]: A note on orientations

« Orientations, as defined earlier, are represented by three
orthonormal vectors

 Only three of these values are unique and we often wish to
define a particular rotation using three values (it’s easier
than specifying 9 orthonormal values)

« There isn’t a unique method of specifying the angles that
define these transformations

qp METR 4202: Robotics 5 August 2015 -18




Position and Orientation [7]
 Shortcut Notation:

COS (0g) = cBy = ca
Sin (9@) — Sea = Sa

COS (0q + 0,) = cup

. Sgh —

q@? METR 4202: Robotics
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Position and Orientation [8]
» Rotation Formula about the 3 Principal Axes by 0
1 0 0 ]

X: R;= | 0 cos(f) —sin(6)
| 0 sin(#) cos(0) |

[ cos(#) O sin(6) |
Y. Ry = 0 1 0
| —sin(#) 0 cos () |

7 [ cos(8) —sin(6) O]
R.= | sin(0) cos(#) O
0 0o 1|

qp METR 4202: Robotics
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Euler Angles

» Minimal representation of orientation (o,f3,y)

Represent a rotation about an axis of a moving coordinate
frame
- R : Moving frame B w/r/t fixed A
The location of the axis of each successive rotation
depends on the previous one! ...
So, Order Matters (12 combinations, why?)
Often Z-Y-X:
— a: rotation about the z axis
— PB: rotation about the rotated y axis
— v: rotation about the twice rotated X axis

Has singularities! ... (e.g., pB=%90°)

q@p METR 4202: Robotics 5 August 2015 -21

Fixed Angles

» Represent a rotation about an axis of a fixed coordinate frame.
+ Again 12 different orders

* Interestingly:
3 rotations about 3 axes of a fixed frame define the same orientation as the
same 3 rotations taken in the opposite order of the moving frame

+ For X-Y-Z:
— : rotation about X, (sometimes called “yaw”)
— 0O: rotation about y, (sometimes called “pitch”)
— @: rotation about z, (sometimes called “roll”)

qp METR 4202: Robotics 5 August 2015 -22
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Roll — Pitch — Yaw

* In many Kinematics

References: * , In many Engineering
Applications:
A7z
|z S
N
roll \ /‘
roll
e
pitch =
yaw
X yaw vz
- Be careful:
This name is given to other conventions too!
METR 4202: Robotics 5 August 2015 -23
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Euler Angles [I]7 X-Y-Z Fixed Angles
(Roll-Pitch-Yaw)
» One method of describing the orientation of a Frame {B} is:

— Start with the frame coincident with a known reference {A}. Rotate
{B} first about X, by an angle v, then about Y , by an angle § and
finally about Z, by an angle .

ARpxyz(7,B,0) = Rz(a) Ry (B) Rx (%)

-Ca —8a O cs 0 sg 1 O 0 |
= [8aa Ca O O 1 0] |0 ¢y —sy
0 0O 1 —$3 0 cs 0 sy cy |

CaCB CaSgsy — SaCy CasSgty + Sasy
= |SaC3 SaSgsy + cacy SaSgCy — CaSy
_—Sﬁ CﬁS'Y Cﬁc'y

% METR 4202: Robotics 5 August 2015 -24
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Euler Angles [2:
Z-Y-X Euler Angles
» Another method of describing the orientation of {B} is:

— Start with the frame coincident with a known reference {A}. Rotate
{B} first about Z; by an angle a, then about Yg by an angle 3 and
finally about Xg by an angle y.

ARy sryixi (v, 8,@) = Rz(a)Ry (B)Rx (v)

—Ca —Sa 0] Cﬁ 0 SIS 1 O 0
= |Sa ¢ca O 0 1 0|0 ¢y —sy
0 O 1 _S,B O CB O

[cacs Caspsy — SaCy casgey + Sasy
= |SaC3 Sasgsy + cacy SasSgcy — CaSy
_—Sﬁ CﬁSr‘}/ CﬁC7

% METR 4202: Robotics 5 August 2015 -25
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Position and Orientation [6]:

“Proof” of Principal Rotation Matrix Terms
» Geometric:

Y X
R, =
cos(0) —sin(@) O o
sin(@) cos(#) O y
0 0 1 5 X

X
a==xcosf, b=ysind
c=ycosf, d==xsind
Thus:

' =xcos® + ysing
y = —zsin@ + ycosd

qp METR 4202: Robotics 5 August 2015 -26
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Unit Quaternion (€, €,, €,, €3) [1]
» Does not suffer from singularities
€ =¢eg+ (eli + e0j + €3k)
» Uses a “4-number” to represent orientation
ii=jj=kk=—1
ij =k, jk=1iki=jji=—kkj=—1,ik=—j

 Product:
ab = (agbg — a1by — azby + azb3)

+ (agby + a1bg + asbz — azbo)
+ (apbo 4 agbg + azby + a1b3) j
+ (agbs + azbg + a1bs — asby) k
« Conjugate: =0 —e11— €n] — e3k
ce=e3+ e+ 3+ €3

oy ME : Robotics 5 August 2015 -2
) e 4200 Roboti 5 A 5.2

Unit Quaternion [2]: Describing Orientation

* Seteyg=0 it o3 4k
Then p:(vapY’pz) 9 P = pal Py bz

« Then given €
the operation €Pe€ : rotates p about (€, €,, €3)

 Unit Quaternion - Rotation Matrix

1-2 (e% + 6%) 2(e1e0 —€ge3) 2(e1€3 — €pen)
R=| 2(e1en —€pe3) 1-—-2 (e% + e%) 2 (epez — €per)
2(e1e3 —egen) 2(epez —epge1) 1 —2 (e% + 6%)

qp METR 4202: Robotics 5 August 2015 -28
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Direction Cosine

 Uses the Direction Cosines (read dot products) of the
Coordinate Axes of the moving frame with respect to the
fixed frame 4

AV — ’Uq;i —I_ ’ij —l_ 'Uzk

e |t forms a rotation matrix!

BR - (a)ip ()i (b2) ks
(az)ia iB-iA JB A kp-ia
(ay)Jja ig-jA JB-JjA kp-ja
(az) ka ig-ka Jp-ka kp-ka

@ METR 4202: Robotics 5 August 2015 -2

Screw Displacements

« Comes from the notion that all motion
can be viewed as a rotation
(Rodrigues formula)

ROBOTS AND SCREW THEORY

- Define a vector along the axis of motion ~~~ i
(screw vector)
— Rotation (screw angle)
— Translation (pitch)
— Summations - via the screw triangle!

qp METR 4202: Robotics 5 August 2015 -3¢
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Generalizing

Special Orthogonal & Special Euclidean Lie Algebras
« SO(n): Rotations

S0(n)={ReR"™": RRT =] det R = +1}.

o ; DU DT
exp(@f) = % =T + 05 + E;‘) + Ewa

« SE(n): Transformations of EUCLIDEAN space

SE(n) :==R" % 50(n).

SEB3) ={(p.R):peB* Re 503} =R x S0(3).

§? METR 4202: Robotics 5 August 2015 -31

Projective Transformations ...

Group Matrix Distortion Invariant properties
Concurrency, collinearity, order of contact:
o hir his hiz ] S intersection (1 pt contact); tangency (2 pt con-
Projective : L - ; ’
8 dof hoy  has  hag tact); inflections
ao far has  fag i (3 pt contact with line); tangent discontinuities
[ and cusps. cross ratio (ratio of ratio of lengths).
a P [ Parallelism, ratio of areas, ratio of lengths on
Affine P'“ ”“'Z J R collinear or parallel lines (e.g. midpoints), lin-
6 dof S' ?jz 'y ear combinations of vectors (e.g. centroids).
. The line at infinity, 1.
i
C 8Ty STip fa = , _
Stmilarity o o . s Ratio of Iengths, angle. The circular points, I, J
- ST [ “ [ — . - 5
4 dof {i‘] U” j" (see section 2.7.3).
- T Tz tr .
I;lz]c][ldean { To1 Taa Ty L Length, area
- do Lo o 1
p.44, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision
EP METR 4202: Robotics 5 August 2015 =32
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Homogenous Coordinates

. T
P = | pPPx PPy PPz P ]
» pisascaling value
@ METR 4202: Robotics 5 August 2015 -33
Homogenous Transformation *
A A
Rp “'p
Y P

vy isa projective transformation

« The Homogenous Transformation is a linear operation
(even if projection is not)

qp METR 4202: Robotics 5 August 2015 -34
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Projective Transformations &
Other Transformations of 3D Space

Group Matrix Distortion Invariant properties

Intersection and tangency of sur-

Projective Aot i S F i
15 (-]!of T ow faces in contact. Sign of Gaussian
R curvature.

Parallelism of planes, volume ra-
tios, centroids. The plane at infin-

Affine [ At 1
ity, T, (See section 3.3).

12 dof

Similarity sit The absolute conic, Q...
7 dof o7 1 (see section 3.6).
Buclidean Rt | Vol
6 dof ot 1 olume.
p.78, R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision
§? METR 4202: Robotics 5 August 2015 =35

Coordinate Transformations [1]

+ Translation Again:

If {B} is translated with respect to {A} without rotation, then itis a
vector sum

Ap=4p+ PP 2

-
- i ”
A}
-7 B
Z, Ap-~ P
' ’,
-, - Y
-
7 ApB B
- ”
-
-
-
-7 XB
-
YA
XA
ﬁﬂ METR 4202: Robotics 5 August 2015 -36
e
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Coordinate Transformations [2]

* Rotation Again:

{B} is rotated with respect to {A} then
use rotation matrix to determine new components

. NOTE: AP = éRBP ® 0

Ze Za
— The Rotation matrix’s subscript

matches the position vector’s

. Bp
superscript Vs
YA
Ap = ¢ RIPIP
[B] ;
— This gives Point Positions of {B} ORIENTED fﬁB{A}
@ METR 4202: Robotics 5 August 2015 -37

Coordinate Transformations [3]

« Composite transformation:
{B} is moved with respect to {A}:

qp METR 4202: Robotics

5 August 2015 -38
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General Coordinate Transformations [1]

» A compact representation of the translation and rotation is known as the
Homogeneous Transformation

4R APp

Am _
T = 0 00 1

» This allows us to cast the rotation and translation of the general transform
in a single matrix form

Ap A T Bp
1 B 1
@ METR 4202: Robotics 5 August 2015 -39

General Coordinate Transformations [2]
+ Similarly, fundamental orthonormal transformations can be represented in

this form too: z ‘ x
//74’Z
e
100w 10 00
, _[0cB 60
Trans(u, v, w) = 010w Roix(8) =
001w 050 ¢cO6 0
4 0001 z 00 01
% //74?'
S a7
co 0590 ey —sy 0.0
_|sy cy 00
Roty(¢) = 0100 Rotz(y) 0 0 1o
DA 0 0 01
0001

qp METR 4202: Robotics 5 August 2015 -40
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General Coordinate Transformations [3] *

+ Multiple transformations compounded as a chain

bp = B1Cp ©

— AmpBmpC

= pTcT P Nc
= 4TOP

ARBR 4Py + 4RPP(
000 1

A
cT =

5 August 2015 -41

q@? METR 4202: Robotics

Inverse of a Homogeneous Transformation Matrix
{B}
{A}
FJ.'L‘\ORG -
/ﬁ;cs
« The inverse of the transform is not equal to its transpose
because this 4x4 matrix is not orthonormal (T~ # TT)

* Invert by parts to give:

AT = [ ﬁR ApBorg/OA}

B 000 1

Ap-1 _ B { sRT —%RT-APngrOA} _ { AR BPAorg/aB]
B 4 00 0 1 00 0 1

qp METR 4202: Robotics 5 August 2015 -42
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Tutorial Problem #
The origin of frame {B} is translated
to a position [0 3 1]

with respect to frame {A}.

We would like to find:

XA
1. The homogeneous transformation between the two
frames in the figure.

2. For apoint P defined as as [0 1 1] in frame {B}, we
would like to find the vector describing this point with
respect to frame {A}.

q@p METR 4202: Robotics 5 August 2015 -43

Tutorial Solution (74

« The matrix zT4 is formed as defined earlier:
10 0 0 (A2 2

|
—

« We find vector p in frame {A} using the relationship
A AmB
p=pg1"p

N RO
| S ———

qp METR 4202: Robotics 5 August 2015 -44
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Cool Robotics Share

R
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Part |l

&S

Inemat

Forward & Inverse K

. Forward Kinematics (6 = x)

1

(x—>0)

ics
3. Denavit Hartenberg [DH] Notation

Inemat

Inverse K

2.

Affine Transformations &
5. Theoretical (General) Kinematics

4.

5 August 2015 -46
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Forward Kinematics [1]
 Forward kinematics is the process of chaining
homogeneous transforms together. For example to:

— Find the articulations of a mechanism, or
— the fixed transformation between two frames which is known in

terms of linear and rotary parameters.

« Calculates the final position from
the machine (joint variables)

 Unique for an open kinematic chain (serial arm)
« “Complicated” (multiple solutions, etc.) for a closed
kinematic chain (parallel arm)

@ METR 4202: Robotics 5 August 2015 -47
Forward Kinematics [2]
 Can think of this as “spaces”:
— Workspace (X,y,z,0,8,y): -
The robot’s position & orientation X = (%
— Joint space (0, ... 0,):
A state-space vector of joint variables q1
i=| :
an
Worlspace
Joint Limits
METR 4202: Robotics 5 August 2015 -48
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Forward Kinematics [3]

+ Consider a planar RRR manipular
+ Given the joint angles and link lengths, we can determine the end effe

ctor
pose: ),
N
g ¢
@

x =L1cos01+ Locos (61 +602) + ... \/‘
Lz cos (01 + 02 + 03)

y=L1sinf; 4+ Losin (61 +62) + ...
Lysin (61 + 6> + 63)

+ This isn’t too difficult to determine
for a simple, planar manipulator. BUT ...

§? METR 4202: Robotics 5 August 2015 -49

Forward Kinematics [4]: The PUMA 560!
« What about a more complicated mechanism?

§) — sulsicsce + ousg)

3) + ciisicsca + cusa)

sg) — s1(—sucsse + cuce)

Sg) 4 c1(—sicsse + cucs)

si(da(cas

ds(caacs - o8

cp METR 4202: Robotics
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Inverse Kinematics

» Forward: angles = position

x =1(0)

Inverse: position = angles /
0 =f1(x)

Analytic Approach

Numerical Approaches:
ox

— Jacobian: 1
J=% = dgr J oz

— JT Approximation: q
— T . ~ T
« Slotine & Sheridan method T=J"F - AgrJ Az

— Cyclical Coordinate Descent

q@? METR 4202: Robotics 5 August 2015 -51

Inverse Kinematics

« Inverse Kinematics is the problem of finding the joint
parameters given only the values of the homogeneous
transforms which model the mechanism
(i.e., the pose of the end effector)

« Solves the problem of where to drive the joints in order to
get the hand of an arm or the foot of a leg in the right
place

* In general, this involves the solution of a set of
simultaneous, non-linear equations

« Hard for serial mechanisms, easy for parallel

qp METR 4202: Robotics 5 August 2015 -52
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Solution Methods

« Unlike with systems of linear equations, there are no
general algorithms that may be employed to solve a set of
nonlinear equation

e Closed-form and numerical methods exist

« Many exist: Most general solution to a 6R mechanism is
Raghavan and Roth (1990)

« Three methods of obtaining a solution are popular:
(1) geometric | (2) algebraic | (3) DH

% METR 4202: Robotics 5 August 2015 -53
S

Inverse Kinematics: Geometrical Approach

» We can also consider the geometric
relationships defined by the arm

qp METR 4202: Robotics 5 August 2015 -54
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Inverse Kinematics: Geometrical Approach [2]

» We can also consider the geometric
relationships defined by the arm

« Start with what is fixed, explore all
geometric possibilities from there

§@? METR 4202: Robotics 5 August 2015 -55

Inverse Kinematics: Algebraic Approach

»  We have a series of equations which define this system
+ Recall, from Forward Kinematics:

Co1p3 —S0103 O Licg, + Laco, + L3cy,,,

Oy = | %0123 “0123 O Lysg, + L2sg;, + L3654
0 0 1 0
0 0 0 1

» The end-effector pose is given by

¢y —S¢ 0 x
0 — | 8¢ Co 0 y
Ts 0 0 10
0O 0 01

+ Equating terms gives us a set of algebraic relationships

qp METR 4202: Robotics 5 August 2015 -56
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No Solution - Singularity

+ Singular positions:

y
i e
A

\

» An understanding of the workspace of the manipulator is importarpg’_’ / i

» There will be poses that are not achievable
» There will be poses where there is a loss of control

+ Singularities also occur when the
manipulator loses a DOF

— This typically happens
when joints are aligned
— det[Jacobian]=0

U

L

§@? METR 4202: Robotics
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Multiple Solutions

» There will often be multiple solutions
for a particular inverse kinematic
analysis

 Consider the three link manipulator
shown. Given a particular end effector
pose, two solutions are possible

» The choice of solution is a function of
proximity to the current pose, limits on
the joint angles and possible
obstructions in the workspace

qp METR 4202: Robotics
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Inverse Kinematics [More Generally]

Freudenstein (1973) referred to the inverse kinematics problem of the most
general 6R manipulator as the “Mount Everest” of kinematic problems.

Tslai and Morgan (1985) and Primrose (1986) proved that this has at most 16 real
solutions.

Duffy and Crane (1980) derived a closed-form solution for the general 7R single-
loop spatial mechanism.

— The solution was obtained in the form of a 16 x 16 delerminant in which every element is a
second-degree polynomial in one joint variable. The determinant, when expended, should
yield a 32nd-degree polynomial equation and hence confirms the upper limit predicted by
Roth et al. (1973).

Tsai and Morgan (1985) used the homotopy continuation method to solve the
inverse kinematics of the general 6R manipulator and found only 16 solutions

Raghavan and Roth (1989, 1990) used the dyalitic elimination method to derive a
16th-degree polynomial for the general 6R inverse kinematics problem.

q@? METR 4202: Robotics
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Example: FK/IK of a 3R Planar Arm

 Derived from Tsai (p. 63)

qp METR 4202: Robotics
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Example: 3R Planar Arm [2]

Position Analysis: 3-Planar 1-R Arm rotating about Z [@)]
0A3 = 01‘11 1A, * As

Substituting gives:
CO123 —S0123 0 a1C01 + a2CO12 + a3Cl123
86123 Cl1o3 0 a15601 + axS5012 + a350123

0 _
Az = 0 0 1 0
0 0 0 1
O
@ METR 4202: Robotics 5 August 2015 -61

Example: 3R Planar Arm [2]

Forward Kinematics
(solve for x given 6 > x =1 (0))

Fairly straight forward:

0 ClO123 —Sb0123 0O
Rz = | S0123 Cb123 O
0 0 1
a1C01 + axC012 + a3C8123
OP3 = | a1567 + a2S012 + a3S50123
0

qp METR 4202: Robotics 5 August 2015 -62
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Example: 3R Planar Arm [3]

Inverse Kinematics
(solve for 0 given x 2> x =1 (0))

« Start with orientation o:
CO123 = Cp, SO133 =S¢
$9123= 91"‘ 92"‘ 93=¢

» Get overall position q = [9x  9y]:
qx - a3C¢ == a1C91 + a2C912
qy - a35¢ = a1591 + a25912

q@p METR 4202: Robotics 5 August 2015 -63

Example: 3R Planar Arm [4]
* Introduce p = [Px Py] before “wrist” S
Dy = a1C91 + a2C912,py = a1591 + a25912
= p;% + pJZ, = a% + a% + 2a1a2C92

« Solve for 6,:

2_ .2
p,zc+p32,—a1—a2

0, =cos K k= (2 R roots if |k|<1)
2a1a2
« Solve for 6;:
px(ai+a,C0;)+pya,56; —PxA250,+py(a+a,C05)
€O, = 2.2 , 501 = 2.2
aj+as+2a1a,C0, aitas+2a,a,C0,

91 = atanZ(Sel, C@l)

qp METR 4202: Robotics 5 August 2015 -64




Advanced Concept: Tendon-Driven Manipulators

» Tendons may be modelled as a
transmission line

* in which the links are labeled " R tons
sequentially from 0 to n and the
pulleys are labeled fromjtoj+n-1

« Let 6;; denote the angular
displacement of link j with respect
to link i.

» We can write a circuit equation

B0 Pulleyj+1

. Pulley |
once for each pulley pair as follows:
Pivic1954i-10 = Hrjeil4ii fori=1,2:.:.. nw=1.
Opti—1,i = Oppi—r i1 — i fori=1,2,....n
Go=0ot(ry/rdby kG 1/7)60n
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Inverse Kinematics
« What about a more complicated mechanism?

» A sufficient condition for a serial manipulator to
yield a closed-form inverse kinematics solution is to
have any three consecutive joint axes intersecting at
a common point or any three consecutive joint axes
parallel to each other. (Pieper and Roth (1969) via
4x4 matrix method)

» Raghavan and Roth 1990
“Kinematic Analysis of the 6R Manipulator of
General Geometry”

% Tsai and Morgan 1985, “Solving the Kinematics of
/t%ﬂwost General Six and Five-Dcgree-of-Freedom
Sy Manipulators by Continuation Methods”
' lﬁf ~"(posted online)

z

X
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Inverse Kinematics
« What about a more complicated mechanism?

N, S: @ Pa

Nz Sz Oz Pr
Oy = 9T, ‘T, 2T, 5T, 3T, °T = Ty Sy Gy Py
o0 01

e1(eoa(cucnca — Su5a) — Sas85ca) — 51(5ucsca + 1)

s(c2a(cacsos — 548g) — S235s50e) + coL(Sucsts + casa)

—$23(cucscg — S48a) — C2385C8
o1 —caa(cucsse + S4ca) + S28586) — S1(—540556 + cuca)
s1(—C2a(cucsse + 540a) + 5238886 ) + c1(—540556 + caca)

S23(C4C55 + S40a) — C2355%

€1 (Co3CyS5 + 523C5) — 5,555

S51(CasCyss + 523Cs) + €15455

—S330485 + C2a0s)
cu(ds(cascass + s2cs) + s2ady + aaces + azcz) — sy(desyss + da)
s(dalcaacass + s2acs) + Soady + @acas + azcz) + culdasyss + da)

dalcaacs — Spacuss) + czady — azs2s — agss
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Denavit Hartenberg [DH] Notation

« J. Denavit and R. S. Hartenberg first proposed the use of homogeneous
transforms for articulated mechanisms

(But B. Roth, introduced it to robotics)

« A kinematics “short-cut” that reduced the number of parameters by adding
a structure to frame selection

 For two frames positioned in space, the first can be moved into
coincidence with the second by a sequence of 4 operations:
— rotate around the x;.; axis by an angle o
— translate along the x;; axis by a distance g
— translate along the new z axis by a distance d;
— rotate around the new z axis by an angle 6,

qp METR 4202: Robotics 5 August 2015 -68
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Denavit-Hartenberg Convention

« link length a; the offset distance between the z; ; and z; axes along the x;
axis;

+ link twist o; the angle from the z;_, axis to the z; axis about the x; axis;

; joint j+1
joint | qnd

base

Art c/oP. Corke

+ link offset d; the distance
from the origin of frame i-1
to the x; axis along the z; ;
axis;

0 + jointangle 0, the angle

' between the x;_; and x; axes

about the z; ; axis.
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DH: Where to place frame?

1. Align an axis along principal motion
1. Rotary (R): align rotation axis along the z axis
2. Prismatic (P): align slider travel along x axis

2. Orient so as to position x axis towards next frame

3. 6 (rot 2) > d (trans z) > a (trans x) 2 (rot x)

o METR 4202: Robotics 5 August 2015 -70
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Denavit-Hartenberg - Rotation Matrix

 Each transformation is a product of 4 “basic”
transformations (instead of 6)

=la; =Rot, g, Trans, g Transzq,Rotz,q,

_Cgi —59?: O O 1 O O O l 0
— |0, <o 0O 0|01 0 0|01
0 O 1 0/|0 0 14d;|0O0
| O O 0 1|/]0 0 0 1]]|0 0
1 O 0O 0
0 co Sa; O
0 sa; ca; O
0 O 0 1
[co, —so,ca; S0,50; aicy,
— 892. Cgngj _09;;_5'37; az'Sgi
0 Say Ca; d;
L O 0 0 1

O OO

—OOoOR

§®? METR 4202: Robotics
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DH Example [1]: RRR Link Manipulator

1. Assign the frames at the joints ...
2. Fill DH Table ...

Link | a Q d 6,
1 L, 0 0 0,
2 L, 0 0 0,
3 Ly 0 0 0,
Cy -S4 0 Lg, C, S5, 0 L, Cy —S, 0
o S, C 0 Ls,|, |5 © 0 Ls, |, _|Ss G 0
A%0 01 0™ 0 0 1 o |0 0 1
0 0 0 1 0 0 0 1 0 0 0
= AA A,
Can Say O LiCy+LiCy, + LGy,
|84 Ca O LSy tLoSg LSy,
0 0 1 0
0 0 0 1

qp METR 4202: Robotics
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DH Example [2]: RRP Link Manipulator

-
)

1. Assign the frames at the joints ...
2. Fill DH Table ...

Link | a q d 6,
1 L, 0 0 6,
2 L, 0 0 6,
3 L, 0 0 0
Cy =S4 0 Lgc, C, S, 0 Lg, 100
on _|Sa Ca 0 Lsy |, |5 G 0 Ly, |, 010
A 0 0 1 0 & 0 0 1 0 A 001
0 0 0 1 0 0 0 1 000
= AA A
G —Su, 0 Ly +(LtLo)ey,
_|Sa G O Ls+(L+l)s,
0 0 1 0
0 0 0 1

§®? METR 4202: Robotics
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DH Example [3]: Puma 560

» “Simple” 6R robot exercise for the reader ...

Link | g a d 6,
1 0 0 0 | e
2 o |-2| o | 6,
3| L | o | D | e
4 Ly |2 | D, | 6,
5 0 | m2| o | 6
6 0 | 2] 0 | 8

1
3Gy t0-Robot

4 —J- g
= 3¢ Ed., 2005
N\ METR 4202: Robotics
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DH Example [3]: Puma 560 [2]

c1 —s1 0 O co —s> 0 O
s1 ¢ 0O 14, — 0 0 1 do
0 0 10 2 —s5 —cp 1 0
0O 0 01 | O 0O 0 1 |
—S83 0 L2 [ caq —54 0 L3
cg 0 O 3. 0 0 1 dg
0 1 ds Ag = —s4 —ca 0 O
0O 0 1 0 0O 0 1 |
C4q —S85 0 L3 Ca —S6 0 L3 1
4 0 0O 1 dy |5, _ 0 O -1 0
As = —s5 —cg 0 O A = —sg —cg 0 O
0] 0O 0 1 0 0 o 1
DT6 = 0A11A22A33A44A55A6
METR 4202: Robotics 5 August 2015 =75
Modified DH
» Made “popular” by Craig’s Intro. to Robotics book
« Link coordinates attached to the near by joint
jint]
jointj-1 .
base
; link j
link j-1 p—
: Yj-1 K
TS \;é ¥i
v i &9, Xj
a (trans x-1) 2a (rot x-1) 20 (rot 2) ~>d (trans z)
METR 4202: Robotics 5 August 2015 -77
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Modified DH [2]

e Gives a similar result
but it’s not commutative Sy

= "t A; = Ry (04-1) T (ai—1) Rz (6;) T (dy)
 Refactoring Standard - to Modified

{Rz (01) Tz (d1) Tz (a1) R (a1)} - {R2 (02) T: (d2) T (a2) Rz (a2)} - { B2 (83) T: (d3)}
DHy DH»> End Effector

= {R2(01) Tz (d1)} - {Tx (a1) Rx (1) Rz (62) Tz (d2)} - {T (a2) Ra (a2) Rz (03) T2 (d3)}
Base MOH, MDHs

5 August 2015 -78
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Parallel Manipulators

* The “central” Kinematic
structure is made up of
closed-loop chain(s)

2y °e Compared to Serial
"~ Mechanisms:
+ Higher Stiffness
+ Higher Payload
+ Less Inertia
— Smaller Workspace
ow . e — Coordinated Drive System
U —— _ More Complex & $53

qp METR 4202: Robotics 5 August 2015 =79
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Symmetrical Parallel Manipulator

A sub-class of Parallel Manipulator:
o # Limbs (m) = # DOF (F)
o The joints are arranged in an identical pattern
o The # and location of actuated joints are the same

Thus:
o Number of Loops (L): One less than # of limbs
L=m-1=F-1

o Connectivity (C,)

m
N Cr=(O+1)F -
k=1

Where: A: The DOF of the space that the system is in (e.g., A=6 for 3D space).
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Mobile Platforms

 The preceding kinematic relationships are also important
in mobile applications

« When we have sensors mounted on a platform, we need
the ability to translate from the sensor frame into some
world frame in which the vehicle is operating

 Should we just treat this as a P(*) mechanism?

qp METR 4202: Robotics 5 August 2015 -8
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Mobile Platforms [2]

» We typically assign a frame to
the base of the vehicle

 Additional frames are assigned
to the sensors

« We will develop these
techniques in coming lectures

§? METR 4202: Robotics
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Summary

« Many ways to view a rotation
— Rotation matrix
— Euler angles
— Quaternions
— Direction Cosines
— Screw Vectors

« Homogenous transformations

— Based on homogeneous coordinates

cp METR 4202: Robotics
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Cool Robotics Share

Mobile Vison Platf@fm issused to |*)
identify the bin andfavigate to it

When Snapdragon Rover
encountersa type of toy for the
first time, it asks the;user which
bin it should be.placed"in.

a8

NNE m:‘ﬁvw@ .

httpsy//www.qualcomm.com/invention/research/projects/robotics
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