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Week | Date Lecture (W: 12:05-1:50, 50-N201)
1 29-Jul (Introduction
2 5-Aug Representing P(_)sition _ & _ Orientation _ & State
(Frames, Transformation Matrices & Affine Transformations)
3 |12-Aug|Robot Kinematics Review (& Ekka Day)
4 |19-Aug [Robot Dynamics
5 |26-Aug|Robot Sensing: Perception
6 2-Sep [Robot Sensing: Multiple View Geometry
7 9-Sep |Robot Sensing: Feature Detection (as Linear Observers)
8 | 16-Sep [Probabilistic Robotics: Localization
9 | 23-Sep |Quiz
30-Sep Study break
10 7-Oct [Motion Planning
11 | 14-Oct [State-Space Modelling
12 |21-Oct Shaping the Dynamic Response
13 | 28-Oct [LQR + Course Review

Qp METR 4202: Robotics 21 October 2015- 2



http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

Announcements: Lab 3 Extension????
e Lab 3: |

— Extension????
« Due Nov 3? Nov 13??
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ELEC3004 Flashback: Another way to see P 1|D

 Derivative * Integral

D provides: — Eliminates offsets
— High sensitivity (makes regulation ©)
— Responds to change — Leads to Oscillatory
— Adds “damping” & behaviour

- permits larger Kp — Adds an “order” but

i i instability

— Noise sensitive (Makes a 2" order system 3 order)
— Not used alone

( its on rate change
of error — by itself it
wouldn’t get there)

- “Diet Coke of control

- “Interesting cake of control”
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Seeing PID — No Free Lunch

« The energy (and sensitivity) moves around
(in this case in “frequency”)

Serious design

Log magnitude

v/
%

10 s 20
Frequency

« Sensitivity reduction at low frequency unavoidably leads
to sensitivity increase at higher frequencies.

Source: Gunter Stein's interpretation of the water bed effect — G. Stein, IEEE Control Systems Magazine, 2003.
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PID control
« Consider a system parameterised by three states:

- X1,X2,X3
— where Xy = 56'1 and X3 = 56'2

1
x= 1
-2

y=1[0 1 0]x+0u
X, 1S the output state of the system;
x41s the value of the integral;
x5 IS the velocity.

x—Ku
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PID control [2]

« We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
—2— K,
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.
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Implementation of Digital PID Controllers

We will consider the PID controller with an s-domain transfer function
U(s)
X(s)

K
Gus) = Kp + TI + Kps. (13.54)

We can determine a digital implementation of this controller by using a discrete
approximation for the derivative and integration. For the time derivative, we use
the backward difference rule

u(kT) = fi—f . %(x(kT) — x[(k — DTY). (13.55)

The z-transform of Equation (13.55) is then

-1

ﬁTz X(2) = z

Tz

() - Lx ().

The integration of x(f) can be represented by the forward-rectangular integration at
t = kT as

u(kT) = u[(k — 1)T] + Tx(kT), (13.56)

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1
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Implementation of Digital PID Controllers (2)
where u(kT) is the output of the integrator at t = kT The z-transform of Equation
(13.56) is
U(z) = 2 'U(2) + TX(2),
and the transfer function is then

U@ _ Tz

X@ z-1

Hence, the z-domain transfer function of the PID controller is

KTz z -1
+ Kp———
z—1 Tz

Glz) = Kp + (13.57)

The complete difference equation algorithm that provides the PID controller is
obtained by adding the three terms to obtain [we use x(k7) = x(k)]

u(k) = Kpx(k) + K [u(k — 1) + Tx(k)] + (Kp/T)[x(k) — x(k — 1)]
= |Kp + K, T + (Kp/T)|x(k) — KpTx(k — 1) + Kpu(k —1).  (13.58)

Equation (13.58) can be implemented using a digital computer or microprocessor.
Of course, we can obtain a PI or PD controller by setting an appropriate gain equal
to zero.

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1
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Let’s Generalize This: Shaping the Dynamic Response

« A method of designing a control system for a process in
which all the state variables are accessible for
Measurement

=>» This method is also known as pole-placement

« Theory:

—  We will find that in a controllable system, with all the state variables
accessible for measurement, it is possible to place the closed-loop poles
anywhere we wish in the complex s plane!

» Practice:

—  Unfortunately, however, what can be attained in principle may not be
attainable in practice. Speeding the response of a sluggish system requires
the use of large control signals which the actuator (or power supply) may not
be capable of delivering. And, control system gains are very sensitive to the
location of the open-loop poles

q@? METR 4202: Robotics 21 October 2015 - 11

Regulator Design

 Here the problem is to determine the gain matrix G in a
linear feedback law « = —Gx — Gyx,

— Where: X, is the vector of exogenous variables. The reason it is
necessary to separate the exogenous variables from the process
state X, rather than deal directly with the metastate «-[ ]
is that we must assume that the underlying process Is
controllable.

+ Since the exogenous variables are not true state variables, but additional
inputs that cannot be affected by the control action, they cannot be
included in the state vector when using a design method that requires
controllability.

« HOWEVER, they can be used in a process for Observability!
-~ when we are doing this as part of the sensing/mapping process!!

qp METR 4202: Robotics 21 October 2015- 12




Regulator Design

» The assumption that all the state variables are accessible to
measurement in the regulator means that the gain matrix G

In is permitted to be any function of the state x that the
design method requires

y=0Cx
u=-—Gyy
u=-0%

— Where: X is the state of an appropriate dynamic system known as
an "observer."
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SISO Regulator Design

« Design of a gain matrix

G=g'=[¢,92-.., 0l

for the single-input, single-output system

X =Ax+ Bu

b,
p=p=|?
by,

With the control law # = —Gx = —g'x (6.7) becomes

where

X =(A—bg')x

 Our objective is to find the matrix G = g' which places the
poles of the closed-loop dynamics matrix 4.4 s
at the locations desired.

qp METR 4202: Robotics 21 October 2015 -




SISO Regulator Design [2]

« One way of determining the gains would be to set up the
characteristic polynomial for Ac:

|sT — A =|sI —A+bg|=s*+as""'+ - - +a,

 The coefficients a,,a,, ...,a, of the powers of s in the
characteristic polynomial will be functions of the k
unknown gains. Equating these functions to the numerical
values desired for aj,a,, ...,a, will result in k simultaneous
equations the solution of which will yield the desired gains

Op -y Qg

21 October 2015 - 15
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SISO Regulator Design [3]

If the original system is in the companion form given in (3.90), the task is
particularly easy, because

=@y —a@, *** =@, —a
1 0 0 0
A 0 1 s are 0 0 (6.11)
0 0 | 0
| .
0 91 g2 e G
' 0 cae
bg'=| 0[g1, 2. 0] =| =~ 9 _______ O
0 0 0 0
Hence
—a,— g, a;— g, —a = gi
1 0 v 0
A.=A-bg' 0 1 0
0 0 0

The gains g,..., g are simply added to the coefficients of the open-loop A

q matrix to give the closed-loop matrix A. This is also evident from the
block-diagram representation of the closed-loop system as shown in Fig. 6.1.

Qp METR 4202: Robotics 21 October 2015- 16




SISO Regulator Design [4]

|
|
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SISO Regulator Design [4]
 But how to get this in companion form?

x=Tx (6.14)
Then, as shown in Chap. 3,
#=Ax+ bu (6.15)
where
A=TAT" and b=Tb

For the transformed system the gain matrix is
g=d—-a=d—a (6.16)

since @ = a (the characteristic equation being invariant under a change of state
variables). The desired control law in the original system is

5= -g'% (6.17)

u=—g'x=—-gT"

From (6.17) we see that
1

g=gT
Thus the gain in the original system is

g=Tg=T{d-a) (6.18)

!? METR 4202: Robotics 21 October 2015- 18




SISO Regulator Design [5]

In words, .the desired gain matrix for a general system is the difference
between the coefficient vectors of the desired and actual characteristic equation,
premultiplied by the inverse of the transpose of the matrix T that transforms the
general system into the companion form of (3.90), the A matrix of which has
the form (6.11).

The desired matrix T is obtained as the product of two matrices U and V:

T=VU (6.19)

The first of these matrices transforms the original system into an intermediate
system
X = AX (6.20)

in the second companion form (3.107) and the second transformation U
transforms the intermediate system into the first companion form.
Consider the intermediate system

%= Ax + bu (6.21)
with A and b in the form of (3.107). Then we must have

A= UAU™ and b= Ub (6.22)

§, METR 4202: Robotics
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SISO Regulator Design [6]

The desired matrix U is precisely the inverse of the controllability test
matrix Q of Sec. 5.4. To prove this fact, we must show that

U'A=AU"" (6.23)
or
QA= AQ (6.24)
Now, for a single-input system
Q=[b,Ab,..., A""'b]
Thus, with A given by (3.107), the left-hand side of (6.23) is
0 0 ++v —a

) 1 0 -+« —a._,
QA =[b Ab,...,A*'B]I|0 1 - —a._,
00 -a,
=[Ab, A%b,..., A" 'b, —ayb — ap_ Ab — - -+ — @, A" 'b] (6.25)
The last term in (6.25) is
(—aif —ap_ A=+ —a, A" )b (6.26)

qp METR 4202: Robotics
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SISO Regulator Design [7]

Now, by the Cayley-Hamilton theorem, (sce Appendix):
Af =g A -, A = =]
50 (6.26) is A*h. Thus the left-hand side of (6.24) as given by (6.25) is

Q:i =[Ab, A’b, ..., A*b]= A[b, Ab,... , A*'b] = AQ
which is the desired result.

If the system is not controllable, then Q™' does not exist and there is no
general method of transforming the original system into the intermediate system
(6.21); in fact it is not possible to place the closed-loop poles anywhere one

‘ desires. Thus, controllability is an essential requirement of system design by
pole placement. If the system is stabilizable (i.e., the uncontrollable part is
asymptotically stable, as discussed in Chap. 5) a stable closed-loop system can
be achieved by placing the poles of the controllable subsystem where one
wishes and accepting the pole locations of the uncontrollable subsystem. In
order to apply the formula of this section, it is necessary to first separate the
uncontrollable subsystem from the controllable subsystem.

The control matrix b of the intermediate system is given by

b=Ub (6.27)
We now show that
1
- 0
b=|. p (6.28)
0
METR 4202: Robotics 21 October 2015 - 21

SISO Regulator Design [8]

Multiply (6.28) by Q to obtain

. _ (
Qb =[b, Ab,..., A" 'b] .’ = b

which is the same as (6.27), since Q' = U,
The final step is to find the matrix V that transforms the intermediate
system (6.21) into the final system (6.15). We must have

%= Vi (6.29)
For the transformation (6.28) to hold, we must have
A=VAv"
ar

VA=AV (6.30)

qp METR 4202: Robotics 21 October 2015 - 22




SISO Regulator Design [9]

The matrix V™' that satisfies (6.30) is the transpose of the upper left-hand
k-by-k submatrix of the (triangular Toeplitz) matrix appearing in (3.103)

1 a -+ a.,

iy 0 1 == a._s )

V =W (6.31)
00 |

To prove this, we note that the left-hand side of (6.30) is

1 a Ay a, a; —day
VA= 0 1 dy_n 1 0 0
0 0 I fL o 0 0
00 0 -Gy
I a a0
=0 1 +«+« @a_, O (6.32)
00 | 0

(Note that the zeros in the first row of V7' A are the result of the difference of

§, METR 4202: Robotics 21 October 2015 - 23

SISO Regulator Design [10]

two terms a, — a,, a, — a,, etc.) and the right-hand side of (6.30) is

000 o —a 1 & - ae ]
1 0 <+« —g |0 1 -+ @,
Avi'i=]0 1 —a;_5||0 0 a3
Lo o “a, Jl0 0 1
"0 0 0 —ay
1 a, Ay—3 0
=0 1 a3 0
L0 0 1 0

which is the same as (6.32). Thus (6.30) is proved.
We also need

b=Vb
We will show that
b=6
Consider
b=v'h
with
1 a, @G- | 1 1
b=V 5= : o | P B
0 0 1 ]10 0

N M 4202: Robotics 21 October 2015 - 24
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SISO Regulator Design [11]

Thus b and b are the same.

The result of this calculation is that the transformation matrix T whose
transpose is needed in (6.18) is the inverse of the product of the controllability
test matrix and the triangular matrix (6.31).

The above results may be summarized as follows. The desired gain matrix
g, by (6.18) and (6.19), is given by
g=(vU)(a—a) (6.33)
where
V=w"' and U=0Q"'
Thus
VU =w'Q' = (Qw)™

§? METR 4202: Robotics
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How to Get the Gains?

Ackermann's Formula (FPW ﬁ 245) [ELEC3004]
« Gains maybe approximated with:

K=[0...0 [l &I &7T..2&" 'I| ()|

« Where: C = controllability matrix, n is the order of the
system (or number of state elements) and «:
C=[ @&r...]

ap(®) = " + ;B 1+ P2+ -+ ],
a(2) =21 —® +TK|=2"+a12" ' + - + an.

- a;: coefficients of the desired characteristic equation

ELEC 3004: Systems
i y
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Ackermann's Formula [2] (FPW p.246)

Example 6.2: Applying Ackermann’s formula to the satellite at-
titude-control system of Example 6.1, we find from (6.9) that

ap = —1.6, as = +0.70,

and therefore

=3 T]-sfs T]renly 8- (3 257)

Furthermore, we find that

_[T%2 3T%2
r <I>r17[ o4 J
and
It -1 _ 2 1 +3T/2
[T &' =1T [ o P

and finally

0.1 04T
~T/2

0 0.1
therefore
1
[K; K] = T—q[l'l.l 0.357)
=[10 3.5,

which is the same result as that obtained earlier.

=
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Viewing State-Space as

a Tool for Solving ODEs
Simultaneously




State Space as an ODE

 The basic mathematical model for an LTI system consists
of the state differential equation

X1 =Axm)+Bwry X1, =X,
v(t)=Cx(r)+ Dut)

» The solution is can be expressed as a sum of terms owing
to the initial state and to the input respectively:

i g
x(t)=e"x, + [D eObu(rydr (1) =ce"x, + Jv e Obu(T)d T+ du(r)
H—J ——

zero-input response  zero-state response

 This is a first-order solution similar to what we expect

q@? METR 4202: Robotics 21 October 2015 - 29

State Equation Solution: Matrix Exponential

Tt 'l
x(1) 4 e x [D e bu(r)dr y(t)=ce"x, + Jo ce®bu(T)d T + du(r)

 The first term can be handled via a Taylor Series

A :;%A"(r—fo)":I+A(r—r0]+%A2(r—rD]2+%A3(I—ID)3+...

—> This case is known as the matrix exponential function

- Also referred to as the state-transition matrix,
denoted by @ (t, t,):

X(1) = ®(1)x, + [ ®(-7)Bu(n)dr

» The state-transition matrix satisfies the homogeneous state
equation, thus, it represents the free response of the system. That is,
it governs the response that is excited by the initial conditions only

qp METR 4202: Robotics 21 October 2015 - 30
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Output Equation Solution

« Having the solution for the complete state response, a
solution for the complete output equation can be obtained
as:

V(1) =Ce'x, + [r Ce* Bu(r)dr+Du(r)
oy

'ﬁ_ﬁ
zero-input response: y,(t) Y5(t): zero-state response

q@? METR 4202: Robotics 21 October 2015 - 31

State Equation Solution
 Thus, the solution to the unforced system (u=0):

x () m@ - w10
x,(1) _ Gn(t) - B | x,(0)

J',,l(f) %(ﬂ ﬂ...“(?) -’f,,l(O)
Note: the term ¢;(t) can be interpreted as the response of the it" state variable
due to an initial condition on the jt state variable when there are zero initial
conditions on all other states.
 The solution of the state differential equation can also be

obtained using the Laplace transform:

C L]%(t) = Ax(t)+ Bu(1)] X(s5) = (sI- A)'x, +(sI- A)*BU(s)
Llifn)) = 1[Ax(t)]+ L[Busr)] / |
C sX(s5)—x, = AX(s) + BU(s) X(s) = D(s)x, +D(s)BU(s)

> I[@()]=®() =[sI-A]" —— @@ =L[sI-A]'

qp METR 4202: Robotics 21 October 2015 - 32
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Properties of the Matrix Exponential

 Note that eAtis just a notation used to represent a power series.

e #[e"] 0 0 00
« Example 1: Consider the following 4x4 matrix 4= ° | |
0 0 -10
Let's obtain the first terms of the power series:
0000 0 0 0 0] 0000
PRI .o oo . 0000 .
“t oo o0 “=lo 000 ‘=000 A4=0 vk24
0100 -1 000 0000

The power series contains only a finite number of nonzero terms:

[ 1 o o0 0 0 0 0 0
—t
" 1 25 1 334 -t 1 0o 0 at]_|€ 0 0 0
=I+AI+—AT +—A'fT = il A
¢ 2 6 i -t 1 0 [ ] 0 e 0 0
- - 1P 18 0 0 e 0
§®? METR 4202: Robotics 21 October 2015 - 33

Properties of the matrix exponential

» For any real nxn matrix A, the matrix exponential ¢ satisfies:

1. e is the unique matrix for which: %e"’ —Ae™ ‘;‘A!L:o =I(un)

2. Forany t, and t,; e*@™) =gtigth

As a consequence: e*@ =g =¥ o
Thus, ¢ is invertible for all t, being the inverse: {GAI]A e

3 For all t, A and e* commute with respect to matrix product: Ae* =e¥A
sForait [*f=e"
5 For any real nxn matrix B, etA~Bii=eateBt for all t if and only if AB=BA

6. Finally, a useful property of the matrix exponential is that it can be
reduced to a finite power series involving n scalar analytic functions e(t)

n-1
oA = Za}—(’)Ak
=0

Q? METR 4202: Robotics 21 October 2015 -
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Using this to Solve State Space Problems

» Example:
— Solve the following linear second-order ordinary differential
FO+Tv(O+12v(HD =u(?)

— Consider the input u(t) is a step of magnitude 3
and the initial conditions i(0)=005 y(0)=010

oy M : Robotics ctober 2015 -
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State-Space Exercise

» Solve the following linear second-order ordinary differential eq:
a. Using standard solution techniques . .
b. Using S-S solution techniques WO+ Ty(O)+12y(@) =u(r)
Consider the input u(t) is a step of magnitude 3
and the initial conditions: ¥(0)=0.05 v(0)=010

The first question can be solved by the students in order to review the l
techniques exposed in previous courses. =

To solve the second question, we first choose state variables using phase-

variable choice. /—\

_ R v M1 T 0 1
=) '?1—|= 0 L= - 0 u(r) A:{ —‘
Yn=y=% B (=12 -7] w1

X, =¥=u,—12x —7x, {\.1(0):|_{0.10:| ‘B l

-12 -7|

x,(0) 0.05 Powers of A are not nulls,
thus, obtaining the state
transition matrix as a powel
series is not practical

y@0=[ ol :1 +[0]-u(r)

3

G.Oliver, UIB \¢C \D

:p METR 4202: Robotics 21 October 2015 - 36
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State-Space Exercise

» The expression ®(1)=L'[sI-A]" is recommended:

s -1
.SI.%:|: _:| _5'+T l_
12 s+7 q)( S') — (.S'I—.—X)_l = 1 :

C .s‘+?.s-+l2'_—12 5|

det(sI—A) = |.s-I — A| =52 +T7s+12

» Thus, from X(s)=(sI-A)'x, +(sI- A)'BU(s)
+7 1]0.10] (s+7 1]0]3
X(s)= 1 [s }{ _ 1 s [ 13

=— +— =
s+ Ts+12(—-12 5 0.(_!5_‘ .s‘+7s-+l’_"_—l’_‘ .s-_' IJ.S'

0.15> +0.755+3 |
1 0.1s+0.75+2| | “gs+3)s+2) | _[Xi(®)]
TS +7s+12| 005s+1.8 | | 0055418 || X,(s)|
(s+3)(s+4) | _

0.1s+0.75s+3 025 055 04 . 0055+1.8 165 1.60
_Y](S-):i: - + A:(_g):71 = ——
S.U.+3)”.+_1) s s+3 s+ 4 {.S+:}(5’+-1—) s+3 s5s+4

@ METR 4202: Robotics
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Example
» Figure 18.1: Schematic diagram of two coupled tanks
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« Water flows into the first tank through pump 1 a rate fi(t)
that obviously affects the head of water in tank 1 (denoted
by h1(t)). Water flows out of tank 1 into tank 2 at a rate
f12(t), affecting both h1(t) and h2(t). Water than flows
out of tank 2 at a rate fe controlled by pump 2.

« Given this information, the challenge is to build a virtual
sensor (or observer) to estimate the height of liquid in tank
1 from measurements of the height of liquid in tank 2 and
the flows f1(t) and f2(t).

q@ METR 4202: Robotics 21 October 2015 - 40
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 Before we continue with the observer design, we first
make a model of the system. The height of liquid in tank
1 can be described by the equation

dh(t) 1
i Z(fz(t) — f12(t))

« Similarly, h2(t) is described by

dho(t) 1

i Z(le(t) — fe)

« The flow between the two tanks can be approximated by
the free-fall velocity for the difference in height between

the two tanks:

S12(t) = /2g(h (1) — ha(t))

q@? METR 4202: Robotics 21 October 2015 - 41

« We can linearize this model for a nominal steady-state
height difference (or operating point). Let

« This yields the following linear model:

hi(t) — ha(t) = AR(E) = H + hy(t)

e where
d {m(t)}{—k k} {hlu)%{l o} Sl — 5T
dt |ha(t) k —k| |ha(t) 0 —1] | f2(t) + sz/ﬁ
po K
WH
METR 4202: Robotics 21 October 2015 - 42
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« \We are assuming that h2(t) can be measured and h1(t)
cannot,sowe setC=[0 1] and D=[0 O0]. The
resulting system is both controllable and observable (as
you can easily verify). Now we wish to design an
observer

=13

* to estimate the value of h2(t). The characteristic
polynomial of the observer is readily seen to be
2+ (2k + J1)s + Jok + Jk

50 we can choose the observer poles; that choice gives us
values for J1 and J2.

%‘ METR 4202: Robotics 21 October 2015 - 43
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« If we assume that the operating point is H = 10%, then k =
0.0411. If we wanted polesat s =-0.9291and s =-
0.0531, then we would calculate that J1 = 0.3 and J2 =
0.9. If we wanted two poles at s = -2, then J2=3.9178
and J1=93.41.

qp METR 4202: Robotics 21 October 2015 - 44
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» The equation for the final observer is then

alif = [ 2B b S v

shown earlier
, Set ppint fo!' height in tank 2 (%)

Percent

H U1 O N
O O O OO
T

0 50 100 150 200 250 300 350 400
Time (sec)
Actual height in tank 2 (%)

~—

0 50 100 150__200 250 300 350 400
Time (sec)

Percent

AN 2 R el
[eNeNeNoN]

 The data below has been collected from the real system

qp METR 4202: Robotics 21 October 2015 -
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» The performance of the observer for tank height is
compared below with the true tank height which is
actually measured on this system.

85
80
75 Actual height in tank 1 (blue),

70 Observed height in tank 1 (red)
65
60
55
50
45

Percent

4‘OO 50 100 150 200 250 300 350 400
Time (sec)
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Pole Assignment by State Feedback

« We begin by examining the problem of closed-loop pole
assignment. For the moment, we make a simplifying
assumption that all of the system states are measured. We
will remove this assumption later. We will also assume
that the system is completely controllable. The following
result then shows that the closed-loop poles of the system
can be arbitrarily assigned by feeding back the state
through a suitably chosen constant-gain vector.
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State-Feedback Control Objectives

» Requlation: Force state x to equilibrium state (usually
0) with a desirable dynamic response.

» Tracking: Force the output of the system y to tracks a
given desired output y, with a desirable dynamic
response.

qp METR 4202: Robotics 21 October 2015 - 5
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Pole Placement Problem as an Eignenvalue Problem

Choose the state feedback gain to place the poles
of the closed-loop system, i.e.,

Eigenvalue s of G := G—HK

At specified locations /SunY
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State Feedback Control of a System in CCF

Consider a SISO system in CCF: X(k +1) = Gx(k) +H.u
) 1 0 - 0] [0]
0 0 1 - 0 0
G.=| i | M=
o 0 - 0 1
=8 — &, o T3 —a] L+

O(s)=|zl -G|=2"+a,z" " +-+a,_Z+a,
State Feedback Control

u=-Kx+r, K=[k1 knl]
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Closed-Loop CCF System

Closed loop A matrix:

[0 1 0 0 0
0 0 1 0 0
G=| : . -k,
0 o - 0 1
-, —-a,; - -a -3 |1]
[0 1
0 0
G=| :
0 0 0
|—-a, +k, —a,;+k,

1

- —a,+k L, —a +k |
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Choosing the Gain-CCF

Closed-loop Characteristic Equation

Desired Characteristic Equation:

Control Gains:

’Ki =ades a

n—-i+1

e =12,

des

n
D*(2) = H(z —k?es)z z"+a’z" - ral%z+al
i=1

D(z)=2"+(a, +k, 2"+ +(a,, +k, )z +(a, +k,)

des
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Transformation to CCF

Transform system x=Gx +Hu To CCF

+
Il
x>

N

Xy X
<
4
Il
x>
oS

X" =G X +H.u=
- . . .
X, =-a,X —a, X, ——aX, +u

Where x*(k)=x(k+1) (for simplicity)

First, find how new state z, is related to x
p,] (row vector)

X,=px, p=[p,

1 October 2015 - 55
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Transformed State Equations

Necessary Conditions for p:

=px " =pGx +Am4'u =

X,
, =pGx* pG x+p@I/-Iu—

—pGnz ’ pG”1x+p;3/Hu—
7

X

=pG" X" =pG"x +p
pH cH G"H]=[o 0 1]
\ector p can be found if the system is
controllable: p=e, M

qp METR 4202: Robotics
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State Transformation Invertibility

X, p
State transformation: )2.2 —Tx = p? X
X, pG"*
Matrix T is invertible since
p o - 0 1

G 0
il TNCT RS M
pG"™* 1 pG"H .- pG™™*H

By the Cayley-Hamilton theorem.
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Toeplitz Matrix

The Cayley-Hamilton theorem can further be used to

show that
n-1 1 1
an_2 ves 0
™ . . =|
1 0 0

Matrix on the right is called Toeplitz matrix
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State Transformation Formulas

Formula 1: p
G
T= p. , p=e,M*
pGn—l
Formula 2:
a,_, a, 1 -
Tolm@e 1 O
1 0 0]
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State Feedback Control Gain Selection

U=—KX+r, R=[age5-an- afes—al]
p
- G
u=-— Tx+r:>K=[aﬁeS—an— eoal —a p‘
=< :
pGn—l

n

By Cayley Hamilton: 3 |+a, _,G+---+a,G" ' =-G

K= p(Gn + acliean—l et aiTG + aies |) or

K=e, M'®"(G)

qp METR 4202: Robotics
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Bass-Gura Formula

U=—KX+r, R:[agES_an_ a{‘es—al]
_ -T — -1
a, —a* |( [a. a, 1
des
K = a,,—a; M a'n—2 1 0
des
| a,—a; | U L 1 0] 0
- T = =il
a(ljes - ( 1 a, a,_;
: 0O 1 a,
K= des M : . :
a L a,_; . :
a® —a, | [0 O 1
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Double Integrator-Matlab Solution

T=0.5;
lam=[0;0];
G=[1 T;0 1];
H=[T"2/2;T];
C=[1 0];

K=acker (G,H,lam) ;
Gcl=G-Hx*K;
clsys=ss(Gcl,H,C,0,T);
step(clsys);
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Flexible System Example

Consider the linear mass-spring system shown

below:
Xy Xy

r’ ) r’ Parameters:
u m;=m,=1Kg.
K=50 N/m

* Analyze PD controller based on a)x;, b)x,

» Design state feedback controller, place poles
at —20,—20,5V/2(-1£j)
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Collocated Control

G = Xas) _ s?+50
PoU(s) sz(sz+100)
PD Control: G, =K(s+a), a=20

Transfer Function:

1]
2
Root- S o
£
Locus E
-10 )
/
15 AN
-20 o
-25
-50 -40 -30 -20 -10 0
Real Axis
METR 4202: Robotics 21 October 2015 - 64
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Non-Collocated Control

g Xa(8) _ 50
Transfer Function: VIS Sz(sz +1OO)
PD Control: G, =K(s+a), a=20
10 \/

Root-Locu 5

Imag Axis

Unstable 5

1

-10

-15
-35 -30 -25 -20 -15 -10 -5 0 5

Real Axis
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Discrete Time State Model

X, 0 0 1 0ox,] [o

X, 0O 0 0 1fx,| |0

x,|7|-50 50 0 ofx, |||

X, 50 -50 0 Ofx,| |0

Discretized Model: x(k+1)=Gx(k)+Hu(k)

0.9975 0.0025 0.01 0 0
_| 0.0025 0.9975 0 0.01 10
—0.4992 0.4992 0.9975 0.0025] “lo.01
0.4992 0.4992 0.0025 0.9975 0
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Open-Loop System Information

Controllability matrix:

M=[H GH G(GH) G(c*H)]
O 0.0001 0.0002 0.0003
0 0 0 0
0.01 0.0099 0.0098 0.0097
O 0.001 0.0002 0.003

Characteristic equation:

zI-G|=(z-1)?(z?-1.99z+1)=24-3.997%+5.9872-3.992+6

21 October 2015 - 67
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State Feedback Controller

Characteristic Equations:
|zI-G|=(z-1)%(z2-1.99z+1)=24-3.9923+5.9872-3.992+6

@ (s) = (z - 0.8187)((z —0.9294) +0.0658)
@ (s) = 2* —3.49632° + 4.58222° —2.6675z + 0.5819

-1

—3.4963+3.997 1 -3.99 598 -3.99

| 4.5822-5.98 M 0 1 —3.99 5.98
—2.6675+3.99 o 0 1 —-3.99
0.5819-6 o 0 0 —-3.99

K =[757.00 —144.17 45.54 105.75]
U==757x,4+14417%x,=4554x_,—=10575% , +r
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Matlab Solution

%System Matrices

ml=1; m2=1; k=50; T=0.01;
syst=ss(A,B,C,D);

A=[0 0 1 0;0 0 0 1;-50 50 0 0;50 -50 0 0];
B=[0; 0; 1; 0];

C=[1 0 0 0;0 1 0 0]; D=zeros(2,1);
cplant=ss(A,B,C,D);

%Discrete-Time Plant
plant=c2d(cplant,T);
[G,H,C,D]=ssdata(plant);
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Matlab Solution

%Desired Close-Loop Poles
pc=[-20;-20;

~5xsqrt(2)*(1+j); S5*sqrt(2)*(1-j)1;
pd=exp (Txpc) ;

% State Feedback Controller
K=acker (G,H,pd) ;

%Closed-Loop System
clsys=ss(G-H*K,H,C,0,T);
grid

step(clsys,l)
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Time Respone

Step Response

From: U(1)

Amplitude

0 t
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

Time (sec.)
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Steady-State Gain

Closed-loop system: x(k+1)=Gx(k)+Hr(k), Y=Cx(k)
Y (2)=C(zI-G)*H R(2)
If r(k)=r.1(k) then y,=C(I-G,)H

Thus if the desired output is constant

r=yj/gain, gain= C(I-G,))*H
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Time Response

Step Response

Amplitude

Time (sec.)

§®? METR 4202: Robotics
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Integral Control

k-1
Control law: =—st—K|ze(j)+3:J_d
j=0

X y.
Z o C 1
””””””””””””””” G | plant
Integral | T
controller K, |s

Automatically generates reference input r!
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Closed-Loop Integral Control System

plant: Xk +1)=Gx(K)+Hu(k)
y(k)=Cx(k)

Control: u=r—-Kx-Kv(k),e=y, -y

Integral state: v(k +1) =v(k)—e(k)

Closed-loop system

rectalLe Bl <L

|

q@p METR 4202: Robotics 21 October 2015 - 75

Double Integrator-Matlab Solution

T=0.5;
lam=[0;0;0];
G=[1 T;0 1]; H=[T"r2/2;T]; C=[1 0];

Gbar=[G zeros(2,1);C 1];

Hbar=[H;0];

K=acker (Gbar,Hbar,lam) ;
Gcl=Gbar-Hbar*K;

yd=1; r=0;

clsys=ss(Gcl, [Hxr;-yd],[C 0;K],0,T);
step(clsys);
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Closed-Loop Step Response

Step Response

1 T T
08

=06

g

From: U(1

Amplitude

Time (sec.)
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« Lemma 18.1: Consider the state space nominal model
 Let r(t) denote an external signal.

i(t) = Aoa(t) + Bou(t)
y(t) = Cou(1)
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« Then, provided that the pair (A0, BO) is completely
controllable, there exists
u(t) =7 — Ka(t)
K 2 (ko ki, ... kn 1]
« such that the closed-loop characteristic polynomial is
A, (s), where A(s) is an arbitrary polynomial of degree n.
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 Note that state feedback does not introduce additional
dynamics in the loop, because the scheme is based only on
proportional feedback of certain system variables. We can
easily determine the overall transfer function from r(t)
to y(t). Itis given by

Y (s) 4 CoAdj{sI — A, + BoK}B,
Y Co(sI — Ao + BoK) B, =
(s (s 1+ BoK) 7(s)
« where
F(s) 2 det{sI — Ao + BoK}
« and Adj stands for adjoint matrices.
METR 4202: Robotics 21 October 2015 - 8C
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[Matrix inversion lemma]

» We can further simplify the expression given above. To
do this, we will need to use the following results from
Linear Algebra.

« (Matrix inversion lemma).

Consider three matrices A,B,C
Then, if A + BC is nonsingular, we have that

(A+BC) '=A '-A 'B(I+CA 'B) 'CA!

* Inthe case for whichB =g € En and CT =h € Eln, the
above result becomes

1 -1 gh" -1
(A+gn) <I—A m)A
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« Lemma 18.3: Given a matrix W € Enxn and a pair of
arbitrary vectors ¢1 € En and ¢2 € En, then provided
that W and are nonsingular,

W +¢147 |

« Proof: See the book.

Adj(W + ¢163)$1 = Adj (W)
¢3 Adj(W + ¢193) = ¢3 Adj (W)
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