State-Space Modelling

“Vectors and matrices are the very language of state-space methods”
— Friedland
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Schedule

Week | Date Lecture (W: 12:05-1:50, 50-N201)

1 29-Jul (Introduction
Representing Position & Orientation & State
(Frames, Transformation Matrices & Affine Transformations)
12-Aug [Robot Kinematics Review (& Ekka Day)
19-Aug [Robot Dynamics
26-Aug |Robot Sensing: Perception

2-Sep [Robot Sensing: Multiple View Geometry

9-Sep |Robot Sensing: Feature Detection (as Linear Observers)
16-Sep [Probabilistic Robotics: Localization

23-Sep |Quiz

30-Sep Study break

7-Oct [Motion Planning

14-Oct [State-Space Modelling

21-Oct [Shaping the Dynamic Response

28-Oct |LQR + Course Review

5-Aug
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State-Space Modelling

(from 2013 — Sorry!)

(“Hear Ye! It be stated”)

Affairs of state

« Introductory brain-teaser:

— If you have a dynamic system model with history (ie.
integration) how do you represent the instantaneous state of the
plant?

Eg. how would you setup a simulation of a step response, mid-step?




Introduction to state-space

« Linear systems can be written as networks of simple
dynamic elements:

st2 2 -1
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Introduction to state-space

« We can identify the nodes in the system

— These nodes contain the integrated time-history values of the
system response

— We call them “states”

1
Xy Xy %
u % > 2 y
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Linear system equations

« We can represent the dynamic relationship between the
states with a linear system:

.X:l = _7X1 - 12x2 + u

.X:Z = X1 + OxZ + Ou

y = x1+ 2x,+0u
@ METR 4202: Robotics 14 October 2015~ 7
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State-space representation

« We can write linear systems in matrix form:
. [-7 12 1
2 e E R W
y =[1 2]x+0u

Or, more generally: “State-space
x =Ax + Bu

equations”

y =Cx+ Du
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State-space representation

« State-space matrices are not necessarily a unique
representation of a system
— There are two common forms

« Control canonical form

— Each node — each entry in x — represents a state of the system
(each order of s maps to a state)

« Modal form

— Diagonals of the state matrix A are the poles (“modes”) of the
transfer function
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State variable transformation

 Important note!

— The states of a control canonical form system are not the same as
the modal states

— They represent the same dynamics, and give the same output, but
the vector values are different!

» However we can convert between them:
— Consider state representations, x and g where

x=Tq

T is a “transformation matrix”
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State variable transformation

« Two homologous representations:
x = Ax + Bu and q=Fq+ Gu
y=Cx+ Du y=Hq+Ju

We can write:
x=Tq=ATz+ Bu
qg=T ATz + T 1Bu

Therefore, F = T"1ATand G = T 1B

Similarly, C=HTand D =]
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Controllability matrix

« To convert an arbitrary state representation in F, G, H and
J to control canonical form A, B, C and D, the
“controllability matrix”

C=[G FG F2G - F"1g]
must be nonsingular.

Had +lha <

‘v‘v’h_y st called the “contr Uﬂabﬂity” matrix?
ETR
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Example:

(Back To) Robot Arms

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control”

Remembering the Motion Models:

+ Recall from Dynamics, the Required Joint Torque is:

7 = D; (q) ;i + C; (q,4;) + h (q) + b (q;)
1 \

Dynamical
Manipulator
Inertial Tensor —

Gravitational
Effects

a function of
position and
acceleration
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Lets simplify the model

« This torque model is a 2" order one (in position) lets look
at it as a velocity model rather than positional one then it
becomes a system of highly coupled 1%t order differential
equations

« We will then isolate Acceleration terms (acceleration is
the 15t derivative of velocity)

a=1v=q=D;(q)(r; — Ci(g,d) — h(q) — b(d1))
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Considering Control:

» Each Link’s torque is influenced by each other links motion
— We say that the links are highly coupled

« Solution then suggests that control should come from a
simultaneous solution of these torques

» We will model the solution as a “State Space” design and try to
balance the torque-in with positional control-out — the most
common way it is done!

— But we could also use ‘force control’ to solve the control problem!
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The State-Space Control Model:

Inertial Coupling

1/s }4@1—

. Friction b
L
Coriolis
+ Centrifugal c
B Effects
Gravitation h
Effects
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Setting up a Real Control

« We will (start) by using positional error to drive our

torque devices

State Space Model,
Generalized

Feedback, Q,

e TOFCJUE Needeu_>

Jgint Dri%e

 This simple model is called a PE (proportional error)

controller
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PE Controller:

« To a 1t approximation, T = K *1

 Torque is proportional to motor current

* And the Torque required is a function of ‘Inertial’
(Acceleration) and ‘Friction’ (velocity) effects as suggested by
our L-E models

- Which can be approximated as:

Kmlm = Jeq(j + Feqq
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Setting up a “Control Law”

« We will use the positional error (as drawn in the state
model) to develop our torque control

« We say then for PE control:

T X kpe(gd — 9(1)

* Here, ky is a “gain” term that guarantees sufficient current
will be generated to develop appropriate torque based on
observed positional error
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Using this Control Type:

* Itis arepresentation of the physical system of a mass on a
spring!
» We say after setting our target as a ‘zero goal’ that:

—kpe *x 0 = JO + FO

the solution of which is:

0, is a function of
the servo

feedback as a
function of time!
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21

State Space Model of PD:

+ State Space Model, Ifint Drive
_Qd + Ermr—’{ K, 'y > Generalized frm TOIqUE Needled e j\\ Q
A
Kd

dQ/dt

Feedback, Q,

q@ METR 4202: Robotics
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PID State Space Model:

State Space Model,

+
—Q + Error—»{ K, ’y » Generalized
_A
Kd
dQ/dt:
Feedback, Q,
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Kinematic/
Kinetic Models
- == Physical
| Parameters
|
A 4
i Robot Sys. —_
Q, + + Error=py! Controller w/ Adj. Control Input——p|  TraNSfer —fmmm——prive Pcsll\oanorque_HAgoU:‘
Parameters Functions Fos
A T
) Calc. Drive
Modifications
Desired Drive
T Performance Actual Drive using
Index | e Seeparratte Feedback
Decision Measure sersere
Logic
7y
Feedback, Q,
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Controllability

Controllability matrix

« If you can write it in CCF, then the system equations must
be linearly independent.

« Transformation by any nonsingular matrix preserves the
controllability of the system.

 Thus, a nonsingular controllability matrix means x can be
driven to any value.
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State evolution

 Consider the system matrix relation:
x=Fx+ Gu
y=Hx+Ju

The time solution of this system is:
t

x(t) = eFt-t0) x(ty) + f = eFt=) Gu(r)dr
to

If you didn’t know, the matrix exponential is:

1 1
ekt =1+ Kt +§K2t2 +§K3t3 + -
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Stability

« We can solve for the natural response
to initial conditions x:

x(t) = ePilx,
~ x(t) = p;ePitx, = FePitx,

Clearly, a system will be stable provided
eig(F) < 0

qp METR 4202: Robotics 14 October 2015 - 28
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Characteristic polynomial

» From this, we can see Fx, = p;x,
or, (pil —F)xy =0
which is true only when det(p;1 — F)x, = 0
Aka. the characteristic equation!

» We can reconstruct the CP in s by writing:
det(s = F)xg =0

q@? METR 4202: Robotics 14 October 2015 -
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Great, so how about control?

* Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F-GK) <0

 In fact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

qp METR 4202: Robotics 14 October 2015 -
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Example: PID control
« Consider a system parameterised by three states:

- X1,X2,X3
— where Xy = 56'1 and X3 = 56'2

1
x= 1
-2

y=1[0 1 0]x+0u

x—Ku

X, 1S the output state of the system;
x41s the value of the integral;
x5 IS the velocity.

§@? METR 4202: Robotics 14 October 2015 - 31

« We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
—2— K,
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

qp METR 4202: Robotics 14 October 2015 - 32
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Just scratching the surface

» There is a lot of stuff to state-space control

» One lecture (or even two) can’t possibly cover it all in
depth

Go play with Matlab and check it out!
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State-space control design

« Design for discrete state-space systems is just like
the continuous case.

— Apply linear state-variable feedback:
u=—Kx
such that det(zl — ® +T'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[T &r o&o?r ... on1r] to be full-rank.

Q, METR 4202: Robotics 14 October 2015 - 34
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Solving State Space (optional notes) ...

Time-invariant dynamics The simplest form of the general differential equation
of the form (3.1) is the “homogeneous,” i.e., unforced equation

X = Ax (3.2)
where A is a constant k by k matrix. The solution to (3.2) can be expressed as
x(1) = e (3.3)
where ' is the matrix exponential function
t? I
e"':1+A:+A25+A3;+~~ (3.4)

and ¢ is a suitably chosen constant vector. To verify (3.3) calculate the
derivative of x(t)

dx(r) __i At
T—d[(e )L‘ (35)

and, from the defining series (3.4),
i(e“')~A+A’1+A3'—2+--»*A(I+A1+A2£+~- ) =AM
di B 21 B 2! -

Thus (3.5) becomes

dx(f) _

& Ae?e = Ax(1)

§? METR 4202: Robotics 14 October 2015 -
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Solving State Space (optional notes)

which was to be shown. To evaluate the constant ¢ suppose that at some time 7
the state x(r) is given. Then, from (3.3),

x{r) = e™c (3.6)
Multiplying both sides of (3.6) by the inverse of e”” we find that
c=(e") 'x(7)
Thus the general solution to (3.2) for the state x(¢) at time ¢, given the state x(7)
at time 7, is
x(1) = e () x(7) (3.7

The following property of the matrix exponential can readily be established by
a variety of methods—the easiest perhaps being the use of the series definition
(34)—

et = oAt (3.8)

for any t, and t,. From this property it follows that

(eAr)—I = C"Ar (39)
and hence that (3.7) can be written
x(1) = e x(1) (3.10)
METR 4202: Robotics 14 October 2015 - 36
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Solving State Space (optional notes)

The matrix e

subsequently.

We now turn to the problem of finding a “particular™ solution to the
nonhomogeneous, or ““forced,” differential equation (3.1) with A and B being
constant matrices. Using the “method of the variation of the constant,”[1] we
seek a solution to (3.1) of the form

x(1) = e™e(t) (3.11)

is a special form of the state-transition matrix to be discussed

where c(f) is a function of time to be determined. Take the time derivative of
x(t) given by (3.11) and substitute it into (3.1) to obtain:

Aee(t) + eMé(1) = Ae™elt) + Bult)
or, upon cancelling the terms A e*c(s) and premultiplying the remainder by
e—Al,
é(t) = e ™Bu(t) (3.12)

Thus the desired function ¢{(¢) can be obtained by simple integration {the
mathematician would say “by a quadrature”)

!
c(t) = J e “*Bu(A) dA
-
The lower limit T on this integral cannot as yet be specified, because we will
need to put the particular solution together with the solution to the

§? METR 4202: Robotics 14 October 2015 - 37

Solving State Space (optional notes)

homogeneous cquation to obtain the complete (general) solution. For the
present, let T be undefined. Then the particular solution, by (3.11), is

1 ¢
x(t) = e™ J e MBu(A) da = J AN BR (L) dr (3.13)
T T

In obtaining the second integral in (3.13), the exponential e™, which does not
depend on the variable of integration A, was moved under the integral, and
property (3.8) was invoked to write eMg A = gAY

The complete solution to (3.1) is obtained by adding the *complementary
solution™ (3.10) to the particular solution (3.13). The result is

t

x(t) = e* x(1) %I e M Bu(A) di (3.14)

T
We can now determine the proper value for lower limit T on the integral. At
t = 7 (3.14) becomes

x(7) = x(r) + JTeA“’“Bu(A) dx (3.15)
.

Thus, the integral in (3.15) must be zero for any u(r), and this is possible only
if T = 7. Thus, finally we have the complete solution to (3.1) when A and B are
constant matrices

x(1) = e 0x(r) + I MM Bu(r) dA (3.16)

T
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Solving State Space (optional notes)

This important relation will be used many times in the remainder of the book.
It is worthwhile dwelling upon it. We note, first of all, that the solution is the
sum of two terms: the first is due to the “initial” state x(r) and the second—
the integral—is due to the input u(7) in the time interval r = A = ¢ between the
“initial” time r and the “‘present” time ({ The terms initial and present are
enclosed in quotes to denote the fact that these are simply convenient defini-
tions. There is no requirement that ¢ Z 7. The relationship is perfectly valid even
when t = 7.

Another fact worth noting is that the integral term, due to the input, is a
“convolution integral”’: the contribution to the state x(r) due to the input u is
the convolution of u with e™B. Thus the function e™B has the role of the
impulse response[ 1] of the system whose output is x(f) and whose input is u(f).

If the output y of the system is not the state x itself but is defined by the
observation equation

y=0Cx

then this output is expressed by

1

(1) = Ce"f'"‘)x(r)+J— Ce* "M Bu()) da (3.17)

=
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Solving State Space (optional notes)

and the impulse response of the system with y regarded as the output is
CEA“_A}B_

The development leading to (3.16) and (3.17) did not really require that B
and C be constant matrices. By retracing the steps in the development it is
readily seen that when B and C' are time-varying, (3.16) and (3.17) generalize to

x(£) = e x(r) + j eAUTNBA ) ulA) dA (3.18)
and
y() = C(1) eA“*’)t(THJ C(1) e MBA)u(A) dr (3.19)
METR 4202: Robotics 14 October 2015 - 40
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Example:

Inverted Pendulum

Digital Control

)

s 1,
L= 3Mu} 4 5me3 —mgteosd

2
where V1 is the velocity of the cart and U s the velocity of the point mass 772. U1 and Uy can be
exprossed in terms of x and () by witing the velocity as the first dervtive of the position

=i
1

vl = (%(rfmum) + (%{% rm‘/‘!)
Simpiing ths expression for U leads to:

02 = i% — 2if cosh + (20
The Lagrangian i now gven by

1 1o
(M +m)&* — meif cost + Zme*6* —mglcost

and the equations of motion are

doL_oL
dtoz 9z
doL _dL
dtgs 00

substituting 7, n these equatons and smplying leads t the equatons tha describe the mation o
(M +m) & — mlf cosf + ml6*sinf = F
6 — gsinf = i cost

7 8
£ /
/ 6
80 /
70 4
Wikipedia, ® :
Cart and pole 7 .
H
/
-2
) -
'
20
6
o 8
02 04 06 08 a 12 14 05 1 15 2 25
tls) t[s]
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Inverted Pendulum

1 1
L= =Muv} + ~mv} —mgfcosf
2 2
S— where U1 is the velocity of the cart and U is the velocity of the point mass 112. ¥y and Uz can be
expressed in terms of x and § by writing the velocity as the first derivative of the position;

Velocity pick-off

2 .2
v =@

d P ofd ’
vé = (E(I — fsin 6‘)) + (E(ﬂ casﬁ‘))
Simplifying the expression for Vg leads to:
v2 = % — 203 cos + £26°

The Lagrangian is now given by:

1 . 1,
L == (M+m)i? — mbifcosh + §m£’26‘2 — mglcosf

2
and the equations of motion are:
4oL aL
dt oz~ gr
daL aL
dtgé — a6

substituting [ in these equations and simplifying leads to the equations that describe the motion o
(M +m)i — méfcosf + méd?sind = F
{8 — gsinfl = & cosf
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Inverted Pendulum — Equations of Motion

« The equations of motion of an inverted pendulum (under a
small angle approximation) may be linearized as:
6 =w
@ =60=0Q0%0 +Pu

2 M+m
1
P—m.

Where:

If we further assume unity Ml (Ml = 1),thenP = 1

ﬁﬂ METR 4202: Robotics 14 October 2015 - 44
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Inverted Pendulum —State Space
» We then select a state-vector as:

X = [z] hence x = [S)] = [Z]

» Hence giving a state-space model as:

-l o=

« The resolvent of which is:

—-1771 1 1
o) = 1 =7 =] S] T 52— 0 S]

« And a state-transition matrix as:

h ot sinh Qt ]

CcosS

d(t) = Q
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Stability




Fast sampling revisited
« Forsmall T:

T2
z:esT:1+sT+('52) 4.~ 14T

z—1

—zrl4sT 5= —r

z + s s T

* Hence, the unit circle under the map from z to s-plane becomes:
Im(z — 1)

U Re(z — 1)

14 October 2015 - 47
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Specification bounds

 Recall in the continuous domain, response performance
metrics map to the s-plane:

] Img(s) Img(s) Img(s)
wy =|s
e 0
,/
4
£ X X
1
:7 > F—»
9 Re(s) Re(s) Re(s)
\\ X X
\\
s=0
. 4.6
|S|=$ S=t_ 6 =sin™1¢
T S
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Cool Robotics Share

Universal Gripper

U. Chicago, Cornell, iRobot

@ METR 4202: Robotics
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