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3. Establish the base coordinate system such that the zp-axis is aligned
with the first joint axis, the xp-axis is perpendicular to the zp-axis, and
the yp-axis is determined by the right-hand rule.

4. Establish the nth hand coordinate system such that the x,-axis is per-
pendicular to the last joint axis. The z,-axis is usually chosen in the
direction of approach of the end effector.

5. Attach a Cartesian coordinate system to the distal end of all the other
links as follows:

* The z;-axis is aligned with the (i + 1)th joint axis.

* The x;-axis is defined along the common normal between the ith
and (i 4 1)th joint axes, pointing from the ith to the (i 4 1)th joint
axis. If the joint axes are parallel, the x;-axis can be chosen any-
where perpendicular to the two joint axes. In the case of two inter-
secting joint axes, the x;-axis can be defined either in the direction
of the vector cross product z;_; x z; or in the opposite direction,
and the origin is located at the point of intersection.

* The y;-axis is defined according to the right-hand rule.
6. Determine the link parameters and joint variables, a;, o;, 6;, and d;.

There are n + 1 coordinate systems for an n-dof manipulator. However,
if additional reference coordinate systems are defined, they can be related
to one of the coordinate systems above by a transformation matrix. We note
that John Craig used a different convention; he attached the ith coordinate

system to the proximal end of link i, which results in a different homogeneous
transformation matrix.

2.3 DENAVIT-HARTENBERG HOMOGENEOUS
TRANSFORMATION MATRICES

Having established a coordinate system to each link of a manipulator, a 4 x
4 transformation matrix relating two successive coordinate systems can be
established. Observation of Fig. 2.2 reveals that the ith coordinate system
can be thought of as being displaced from the (i — 1)th coordinate system by
the following successive rotations and translations.

1. The (i — 1)th coordinate system is translated along the z;_-axis a dis-
tance d;. This brings the origin O;_, into coincidence with H;_,. The
corresponding transformation matrix is
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T(z,d) =
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2. The displaced (i — 1)th coordinate system is rotated about the z;_;-axis
an angle 6;, which brings the x;_;-axis into alignment with the x;-axis.
The corresponding transformation matrix is

cd; —s6; 0 0
s ¢4 0 0
T@O=|"79 o 1 o
O 0 0 1

3. The displaced (i — 1)th coordinate system is translated along the x;-axis
a distance a;. This brings the origin O;_, into coincidence with O;. The

corresponding transformation matrix is
1 0 a;
0

I'(x,a) =

o O -
—_ oo

0
0 0
0 1

—_
—

4. The displaced (i — 1)th coordinate system is rotated about the x;-axis
an angle ¢;, which brings the two coordinate systems into complete
coincident. The corresponding transformation matrix is

1 0 0 0
0 coy —so; O
T(xia) = 0 sy cof O
0 0 0 1

We may think of the transformations above as four basic transformations
about the moving coordinate axes. Therefore, the resulting transformation
matrix, {~1A;, is given by

A, =T, )Tz, 0T (x,a)T (x, a). (2.1)

Expanding Eq. (2.1), we obtain

¢y —ca;st;  sa;st;  aich

s6;  coycl; —sa;ch;  a;so;
0 soy; co; d;
0 0 0 1

A = (2.2)
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Equation (2.2) is called the Denavit-Hartenberg (D-H) transformation ma-
trix. The trailing subscript i and the leading superscript i — 1 denote that the
transformation takes place from the ith coordinate system to the (f — 1)th
coordinate system.

Let the homogeneous coordinates of the position vector of a point relative
to the ith coordinate system be denoted by 'p = [py, py. ps, 17, Also let
the homogeneous coordinates of a unit vector expressed in the ith coordinate
system be denoted by ‘u = [u,, Wy, Uz, 0]". Then the transformation of a
position vector and a unit vector from the ith to the (i — 1)th coordinate
system can be written as

i'—]p J'--]A;_ép. {2,’;)
‘._]I.l JIAI i'u' (2.4)

Note that the leading superscript is used to indicate the coordinate system
with respect to which a vector is expressed. Although the transformation ma-
trix A is not orthogonal, the inverse transformation exists and is given by

c6; s6; 0 —d;

ig gi=lg A=l _ —C(Y;SQ,' CCI’;‘CQ; SO; *(&SO&',‘

Ay =) = saist;  —sach; cap  —dico; (2.5)
0 0 0 ]

Example 2.3.1 Planar 3-DOF Manipulator  Figure 2.3 shows a 3-dof
planar manipulator constructed with three revolute joints located at points
Oy, A, and P, respectively. A coordinate system is attached to each link. The
(X0, Yo, zo) coordinate system is attached to the base with its origin located at
the first joint pivot and the x-axis pointing to the right. Since the joint axes
are all parallel to each other, all the twist angles «; and translational distances
d; are zero.

For the coordinate systems chosen, the link parameters are given in
Table 2.1. The D-H transformation matrices are obtained by substituting
the D-H link parameters into Eq. (2.2):

(59| —Sg| 0 (I|L:()|

0 - 59| C9| 0 G]SH]

Ai=lo o 1 o | (4:6)
0 0 0 1
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FIGURE 2.3. Planar 3-dof manipulator.

0 —da;
i Sap —disoy
% co;  —d;coy; (&.2)
0 ! [ ¢, —sth 0 axch, X
s _ | 62 cbh 0 ast 2.7
| Ay = 0 0 1 0 X (2.7)
Figure 2.3 shows a 3-dof 0 0 0 1
volute joints located at points | * "
m is attached to each link. The cfy —sf; 0 asch
: base with its origin located at 24 03 ¢f3 0 a3sh (2.8)
the right. Since the joint axes d 0 0 1 0
s o and translational distances - i, 0 0 0 I .

Example 2.3.2 SCARA Arm The SCARA arm is an important type of 4-
dof manipulator. It has been produced by several companies, including Adept

ink parameters are given in
are obtained by substituting

TABLE 2.1, D-H Parameters of a 3-DOF Manipulator

11¢6, Joint { a; uj d;

f;.‘iﬁ} = A (4]
. 2.6 1 g a

0 (2.6) 2 0 ay 0

l 3 0 a3 0
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FIGURE 2.4. Schematic diagram of a SCARA arm.

Technology, IBM, Seiko, and others. A SCARA arm is constructed with four

joint axes parallel to each other. The first two and the fourth are revolute
joints, and the third is a prismatic joint. Figure 2.4 shows a schematic diagram
of a SCARA arm. For the coordinate systems established in the figure, the
corresponding link parameters are listed in Table 2.2.

Substituting the D-H link parameters into Eq. (2.2), we obtain the D-H
transformation matrices:

¢y, —s6; 0 ayco

89] CG| 0 a) 56]
0 0 | d, ' (2.9)
0 0 0 1

-

TABLE 2.2. D-H Parameters of the SCARA Arm

Joint i o a; d; o;
1 0 aj d 8
2 T as 0 )
3 0 0 ds 0
4 0 0 dy B4

0

i clly
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¥ 0

| 0
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[ch, s, 0 axch,

| - 592 —092 0 agsﬁg

A2=l9 o0 -1 o0 | (2:10)
| 0 0 0 1
1 0 0 O

2, |0 1 0 0

B=1001 & | @1
[0 0 0 1
cfy —sB4 0 O

3 _ 894 094 0 0

" 0 0 { 4 (2.12)
0 0 0 1

In this robot, the joint variables are 0y, 6, d3, and 64. The first two joint vari-
ables control the x and y coordinates, the third joint variable controls the
z coordinate, and the fourth joint variable controls the orientation of the end
effector. Since the robot has only 4 degrees of freedom, the orientation of the
end effector cannot be specified arbitrarily. As a matter of fact, the z4-axis
must be always pointing in the negative z; direction. Although the SCARA
robot has only 4 degrees of freedom, it is very useful for assembling compo-
nents on a plane such as a PC board.

2.4 LOOP-CLOSURE EQUATIONS

In a study of the kinematics of robot manipulators, we are interested in deriv-
ing an algebraic equation relating the location of the end effector to the joint
variables. The location of the end effector can be specified by the following
4 x 4 homogeneous transformation matrix:

w=[35 7 1)

where the upper right 3 x [ submatrix describes the position of a reference
point Q and the upper left 3 x 3 submatrix describes the orientation of the
end effector. The orientation of the end effector can be specified in terms of
three Euler angles, or the direction cosines of the three end-effector coordi-
nate axes, u, v, and w. If the w—u—w Euler angles are used, for example, the
elements of the upper left 3 x 3 submatrix are given by

U, = cocyr — sepcsy,
uy = sPcyr + cochsy,

\\\
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u, = sfsy,
v, = —cpsy — sgpcley),
vy = —s@syr + cochcy,

v, = sfcy,

w, = s¢s0o,

w, = —ce¢so,

w, = co, (2.14)

If the direction cosines are used, u, v, and w represent three unit vectors
directed along the three coordinate axes of the hand coordinate system and
expressed in the base coordinate system.

From the geometry of the links, the transformation matrix “A,, above can be
thought of as the resultant of a series of coordinate transformations beginning
from the base coordinate system to the end-effector coordinate system. That
is,

%4,'4,%4, .. %14, =%U,. (2.15)

Equation (2.15) is called the loop-closure equation of a serial manipulator.
[t contains 16 scalar equations, four of which are trivial. Equating the up-
per right 3 x 1 submatrix results in three independent equations, representing
the position of the end effector. Equating the elements of the upper left 3 x 3
submatrix results in nine equations, representing the orientation of the end ef-
fector. However, only three of the nine orientation equations are independent
because of the orthogonal conditions.

The loop-closure equation, Eq. (2.15), can be used to solve both direct and
inverse kinematics problems. For direct kinematics, the joint variables are
given and the problem is to find where the end effector is with respect to the
base coordinate system. This can be accomplished by multiplying the D-H
matrices on the left-hand side of the equation. For the inverse kinematics, the
end-effector location (i.e., "A,,) is given and the problem is to find the joint
variables needed to bring the end effector to the desired location. The prob-
lem becomes very nonlinear. In what follows, we concentrate on the inverse
kinematics problem.

Example 2.4.1 Scorbot Robot Figure 2.5 shows a schematic diagram of
the Scorbot robot. In this diagram, the second, third, and fourth joint axes are
parallel to one another and point into the paper at points A, B, and P, respec-
tively. The first joint axis points up vertically, and the fifth joint axis intersects
the fourth perpendicularly. We wish to find the overall transformation matrix
for the robot.
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Base

FIGURE 2.5. Schematic diagram of the Scorbot robot.

Using the coordinate systems established in Fig. 2.5, the corresponding
link parameters are listed in Table 2.3. Substituting the D-H link parameters
into Eq. (2.2), we obtain the D-H transformation matrices:

C91 0 —59| a;cﬁ‘l
s 0 ch ash

0 -1 0 d, -
0 0 0 1

04, = (2.16)

TABLE 2.3. D-H Parameters of a 5-DOF Manipulator

Joint { o a; d; o;
] —n/2 aj d) (0
2 0 as 0 (o))
3 0 asz 0 04
4 - /2 0 0 G4
5 0 0 ds Os
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[~ cty —sB 0 axch;
| - Sl‘"}g 082 0 ags(}g
=19 0o 1 o |’ @A)
| 0 0 0 |
_L‘(.‘)'_ﬂ, -—-593 0 a3093
2 _ 893 063 0 agsﬁg
Ay = 0 0 1 0 : (2.18)
| 0 0 0 1
rCU.; 0 -—S04 0
3 !\'0;1 0 06'4 D
M=l =t 0 O £2:19)
| 0 0 0 1
rCﬂS -—-895 0 0
4, _ |95 cb5 0 0
=10 0 1 ds i)
| 0 0 0 1
Multiplying Egs. (2.17), (2.18), and (2.19) yields
Cha 0 —sbhas azchs + axch,
1 _ 59234 0 08234 a3 3923 + as 59;1
A=1"9" 0 0 2.21)
0 0 0 1

where cf;; = cos(6; + 6;), s6;; = sin(6; + 6;), ¢, = cos(6; +6; + 6;), and
Slguk = sin(6; + 9), + 6y).

Note that Eq. (2.21) provides a transformation from the fourth coordinate
system to the first coordinate system. We may treat 8,, 6,3, and 0,34 as new
variables. In this way, the orientation submatrix contains only one variable,
6234, while the position submatrix contains two variables, 6, and 6,3. This
important fact can be used for deriving a closed-form solution for any manip-
ulator with three consecutive parallel joint axes.

Multiplying Egs. (2.16), (2.21), and (2.20) yields the elements of the over-
all transformation matrix "As:

Uy = C91 C9234095 + 801595,
Uy = 89|09234095 = C9] 895.

U, = —8634¢0s,

Uy = —CQ] 09234895 + 59|l395,

Uy = —s6),
Uz = 8634
Wy = —cl
Wy, = —sf
W, = —cf
Gx = cOy(
gy = 6, (
4. = d, -
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vy = ‘—59109234595 - 091095,

v, = sf3480s,

wy = —C0,56234,
Wy = '—59] 59234,
w, = —CHy4,

gx = c0y(a; + a6 + asch — dsshaag),
gy = 86y (a1 + axc6) + aschys — dssbhas),

4 = d] = 02892 = (!38023 — d5C9334. (222]

Since this is a 5-dof manipulator, only five of the six parameters of the end
effector can be specified. Very often, the desired position of a point and the
direction of a line in the end effector (e.g., the position of point Q and the
direction of xs-axis) are specified. Five-dof manipulators are useful for spray
painting, spot welding, and sealant applications for which only the position
and direction of a line are essential.

2.5 OTHER COORDINATE SYSTEMS

In the preceding section, the zgp-axis of the base coordinate system was chosen
to be in line with the first joint axis, and the z,-axis of the hand coordinate
system was chosen to be in the direction of approach. If an additional coor-
dinate system is defined in the base with a transformation matrix refg,, and
another coordinate system is defined in the tool frame with a transformation
matrix " Ao, the overall loop-closure equation can be modified as

rcrA[ooi == rcr""‘i(] {}An ”Amol» (223)

where "4, and "A,. are constant transformation matrices.

2.6 DENAVIT-HARTENBERG METHOD

Although the loop-closure equation, Eq. (2.15), can be applied to solve the
inverse kinematics problem, in practice it is rarely solved in its present form.
In general, if there are three intersecting joint axes, we may work with the
position of the point of intersection first, thereby avoiding the joint variables
associated with the three intersecting axes. If there are three parallel joint
axes, we may combine the three joint variables as illustrated in the Scorbot
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robot example. We may also pre- or postmultiply the loop-closure equation
by the inverse of the matrix ‘~'A; to obtain alternative loop-closure equations,
such as

CA) %A, =4, %4, 714, (2.24)
(A 'CANT %A, =454, "', (2.25)
CA)7' (A CANT A, =4 YAs - A, (2.26)

One reason for rearranging the loop-closure equation is to redistribute the
unknown variables on both sides of the equation as evenly as possible. An-
other reason is to take advantage of some special conditions, such as three
consecutive intersecting joint axes or three consecutive parallel joint axes. In
many cases, the equation becomes decoupled and a closed-form solution can
be derived.

2.6.1 Position Analysis of a Planar 3-DOF Manipulator
For the planar 3-dof manipulator shown in Fig. 2.3, the overall transformation
matrix is given by

%45 = A; 'A2 %A, (2.27)
Substituting Egs. (2.6) through (2.8) into (2.27), we obtain

09]23 —59|23 0 ﬂ|{39| -+ ﬂ209|2 + 0339|23
s6i23  cbizz 0 a;sf) + ax8012 + azsfix
0 0 1 0
0 0 0 1

G (2.28)

(a) Direct Kinematics. The position vector of the origin Q expressed in
the end-effector coordinate system is given by 3q = [0, 0,0, 1]7. Let the
position vector of Q with respect to the base coordinate system be °q =
(P I 1]7. Then we can relate *q to °q by the following transformation:

qx 0 a1c6y + axcbip + azchin

ay | _ o 0 | @180, + azs6y; + a3sfi3

2 = "Aj 0= 0 ¢ (2.29)
] 1 1

Hence, given 6y, 6, and 03, the position of point (J can be computed by
Eq. (2.29). Similarly, the position vector of any other point in the end effector,

3g = [gu» 84» 0, 117, is given by

gx gﬂ gHCBu
g)“ . QA gU — gusglf

= 3 — 4
8 0

1 1
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equal to 6, + 6, + 6.
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3g - I_gh': gu‘ Og l-}Tq is gi\?en by

gx 8u 840123 — £u80123 + a;1¢0) + acfi3 + asclix
8 | = %,| 8 | = 8uS0123 + guCOi23 + a186) + az8617 + 356123
ge'lT T U 0

1 1 1
(2.30)

From Eq. (2.28), we conclude that the orientation angle of the end effector is
equal to 0; + 6, + 6.

(b) Inverse Kinematics. For the inverse kinematics problem, the location
of the end effector is given and the problem is to find the joint angles 6;, i =
1, 2, 3, necessary to bring the end effector to the desired location. For a planar
3-dof manipulator, the end effector can be specified in terms of the position
of point QO and an orientation angle ¢ of the end effector. Hence the overall
transformation matrix from the end-effector coordinate system to the base
coordinate system, “As, is given by

ch —s¢ 0 qx

o, _|s¢ cp 0 g

A3=109 o0 1 0| (2.31)
0 0 0 1

Inverse kinematics solutions can be obtained by equating the elements of
Eq. (2.28) to that of (2.31). To find the orientation of the end effector, we
equate the (1,1) and (2,1) elements of Eq. (2.28) to that of (2.31):

ci23 = co, (2.32)
59123 = "\Q:) (233)

Hence
Bi23 = 6) + 60, 4 63 = ¢. (2.34)

Next, we equate the (1,4) and (2,4) elements of Eq. (2.28) to that of (2.31):

Px = a;c6; + axchs, (2.35)
Py = a;50) + azsbys, (2.36)

where py, = g — asc¢ and p, = g, — a3s¢ denote the position vector of the
point P located at the third joint axis shown in Fig. 2.3, Note that by using




72 POSITION ANALYSIS OF SERIAL MANIPULATORS

this substitution, 65 disappears from Egs. (2.35) and (2.36). From Fig. 2.3 we
observe that the distance from point O to P is independent of #;. Hence we
can eliminate 6, by summing the squares of Egs. (2.35) and (2.36); that is,

pf ~+ pi = a,2 + a% + 2ayaycH,. (2.37)
Solving Eq. (2.37) for 8, we obtain |
6, = cos” !k, (2.38)
where

2 2 2 2
_ px+py_al —a;

2a|a2

Equation (2.38) yields (1) two real roots if |¢| < 1, (2) one double root if
lk| = 1, and (3) no real roots if |k| > 1. In general, if 6, = 65 is a solution,
6, = —0; is also a solution, where w > 6 > 0. We call 6, = 05 the elbow-
down solution and 6, = —6; the elbow-up solution. If (k| = 1, the arm is
in a fully stretched or folded configuration. If |«| > 1, the position is not
reachable.

Corresponding to each 0,, we can solve 6, by expanding Eqgs. (2.35) and
(2.36) as follows:

(a) + azcr)cl) — (ar502)80, = py, (2.39)
(azs6r)ch) + (a1 + axcbh)sb = p,. (2.40)
Solving Egs. (2.39) and (2.40) for c#, and s6, yields

_ px(ay +asc6;) + pyasst,

CH| ’
A

g, — —Pxa280 + py(ay + axch,)

sV = .
A

where A = a'f + a% + 2a,a,ch,. Hence, corresponding to each 6;, we obtain
a unique solution for 6;:

0, = Atan2(s@,, c@,). (2.41)

In a computer program we may use the function Atan2(x, y) to obtain a
unique solution for ,. However, the solution may be real or complex. A com-
plex solution corresponds to an end-effector location that is not reachable by
the manipulator. Once 6; and 6, are known, Eq. (2.34) yields a unique solu-
tion for 63. Hence, corresponding to a given end-effector location, there are
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End-effector

(Elbow up) A, 3

A; (Elbow down)

Og [OF > X,

FIGURE 2.6. Two possible inverse kinematics solutions.

generally two real inverse kinematics solutions, one being the reflection of
the other about 2 line connecting points O and P, as illustrated in Fig. 2.6.

Vector-Loop Method. Although the D-H method of analysis is a very pow-
erful tool, the inverse kinematics problem can often be solved by other meth-
ods, such as the vector-loop method. For example, the vector-loop method
becomes more efficient for analysis of the 3-dof planar manipulator shown in
Fig. 2.3. For convenience, the manipulator has been resketched as shown in
Fig. 2.7.

Using vector algebra, the position vector of the wrist center P can be re-
lated to the origin Q of the end effector by the equations

Px =4qx — agch)‘ (242}
Py = qy — a3s. (2.43)

From Fig. 2.7, we observe that the orientation angle ¢ is related to the joint
angles by

¢ =06, +6,+ 6. (2.44)

We now form a fictitious vector loop equation as follows:

OA+AP =0P. (2.45)
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FIGURE 2.7. Vector loop of the planar 3-dof manipulator,

Taking the x and y components of Eq. (2.45) yields

Px = aict) + axchs, (2.46)
Py = ay st + azsfy;. (2.47)

Note that using the vector-loop method, we have derived Eqgs. (2.35) and
(2.36) with very little effort.

2.6.2 Position Analysis of the Scorbot Robot

For the Scorbot robot shown in Fig. 2.5, the overall transformation matrix
is given by Eq. (2.22). We wish to solve the direct and inverse kinematics
problems.

(a) Direct Kinematics. For the direct kinematics problem, we simply
substitute the given joint angles into Eq. (2.22) to obtain the end-effector
position, (g, gy, g.), and the orientation in terms of the three unit vectors
(b, Uy, Uz), (Vx, Uy, V), and (wy, wy, w,).

(b) Inverse Kinematics. For the inverse kinematics problem, only 5 of the
12 parameters associated with the end-effector position vector and rotation
matrix can be specified at will. This is because the manipulator has only 5
degrees of freedom. It is obvious that the position vector q and the approach
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yector w cannot be specified simultaneously, due to the fact that q and w
together depend only on 4 degrees of freedom of the manipulator. For this
exercise we assume that q and u are specified and that the other two unit
vectors, v and w, are to be determined after the joint angles are found.

Although Eq. (2.22) can be used to solve the inverse kinematics, in what
follows we take a more straightforward approach by multiplying both sides
of the loop-closure equation by (°A))~'; that is,

(P4))~' %5 = 'A, %4574, 4s. (2.48)

Equating the first column of Eq. (2.48), we obtain

u,co + uyst?; = ¢Hr34C0s, (2.49)
—U, = $0234CHs, (2.50)
—uy 86 + uych) = —sbs. (2.51)

Similarly, equating the fourth column of Eq. (2.48), we obtain

qxcO) + qy86) — ay = axch; + aschrz — dssbra, (2.52)
—q; + d| = as6; + a3s63 + dscbrag, (2.53)
—g,86) + gyc6; = 0. (2.54)

The first joint angle, 6, is obtained immediately from Eq. (2.54):

6, = tan™"' 2-)’. (2.55)
X

There are two solutions; that is, if 6, = 6} is a solution, 8; = 7 46 is also a
solution. Once 6, is found, two solutions for s are obtained from Eq. (2.51):

Bs = sin~! (u,s6; — uychy). (2.56)
That is, if 65 = 65 is a solution, 65 = n — 65 is also a solution.
Corresponding to each solution set of (61,0s), Egs. (2.49) and (2.50) pro-

duce a unique solution of 6;34:

By34 = Atan2 [—uz/c()s, (1 ch + uyséh)/cé's]. (2.57)

Next, we solve Egs. (2.52) and (2.53) for 6, and 65, Equations (2.52) and
(2.53) can be written
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azc, + ascby = ky, (2.58)
@80, + azsty = kj. (2.59)

where k; = g c0; + qy58| — ay +dssbyq and ky = —q, + di — dscOray.
Summing the squares of Egs. (2.58) and (2.59) yields

a% + a§ + 2asasct; = kf + k%. (2.60)
Hence
.-'(2 kz . az — a2
PO il ok (2.61)
2(.12{13
and there are two solutions of 63; that is, if 63 = 67 is a solution, 63 = —67 is

also a solution.
Once 65 is known, we can solve 6, by expanding Eqgs. (2.58) and (2.59) as
follows:

(a2 + aschs)ct, — (assbs)sh, =k, (2.62)
(aasB3)cl; + (az + aschs)sby = k. (2.63)

Solving Egs. (2.62) and (2.63) for cf, and s, yields

_ ki(az + a3chs) + kpazs6s

- a% + a% + 2612(13(:93

- —kyass6y + ka(as + aszcts) .
af. =P ﬂg + 2azasch;

092

Hence, corresponding to each solution set of (6, 05, 65, 6534), we obtain a
unique solution of 6;:

6, = Atan2(st,, ct,). (2.64)
Finally, 0, is obtained by
64 = Gr34 — 6, — 0. (2.65)

We conclude that corresponding to each given end-effector location, there
are at most eight inverse kinematics solutions.

2.6.3 Position Analysis
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FIGURE 2.8. Fanuc S-900W
Rochester Hills, Michigan.)
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2.6.3 Position Analysis of the Fanuc S-900W Robot

Figure 2.8 shows a 6-dof manipulator manufactured by Fanuc. In this manip-
ulator, the first joint axis points up vertically along the zp-axis, the second
joint axis is perpendicular to the first joint axis with a small offset distance
a, = OA, the third joint axis is parallel to the second with an offset dis-
tance a; = AB, and the fourth joint axis is perpendicular to the third joint
axis with a small offset distance a3 = BC. In addition, the last three joint
axes intersect one another perpendicularly in sequence at a common point P,
which is d4 distance away from point C. This robot belongs to a special class
of manipulators where the last three joint axes intersect at the wrist center.
The kinematics problem for this type of manipulators can be partitioned into
two subchains: one associated with the first three moving links and the other
with the last three moving links. That is, in solving the inverse kinematics
problem, the position of the wrist center can be solved independently of the
orientation part, therefore reducing the complexity of the problem.

FIGURE 2.8. Fanuc S-900W robot, (Courtesy of Fanuc Robotics North America, Inc.,
Rochester Hills, Michigan.)
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TABLE 2.4. D-H Parameters of the Fanuc S-900W (

Manipulator
Joint i o a; d; 6;
1 /2 a, 0 a
2 0 0 ¢
3 ) 2; 0 92 The end-effector location is
4 —m/2 0 dy 64
5 7/2 0 0 65
6 0 0 dg Os
%A¢ =
We note that this manipulator employs a four-bar linkage to drive the third _
joint. The four-bar linkage simply transmits the motion of the third motor The loop-closure equation
mounted on the waist to the third joint. Otherwise, it has no effect on the Egs. (2.66), (2.67), and (2.68)
kinematics of the manipulator. In the following analysis we neglect the effect 04 = 04, 14,2
of the four-bar linkage and treat the manipulator as a serial manipulator. =AM
Using the coordinate systems established in Fig. 2.8, the corresponding cOicly 86,
link parameters are listed in Table 2.4. Substituting the D-H link parameters | sfichyz  —ch
into Eq. (2.2), we obtain the D-H transformation matrices: - 86023 0
0 0
091 0 891 CHCG;
0, _ | s 0 —cb ais6 Next, we multiply Egs. (2.69)
A= 0 1 0 0 , (2.66)
0 0 0 1 A6 = A4 A5 As
ey, —sB, 0 anch | cO4cOscl — $04564
| s6, chy 0 a8ty _ sOsclschg + cO4566
[0 0 0o 1 | | 0
[~ C93 0 393 613{393 ]
2 893 0 —093 03893 el forn
Ay = 0 1 0 0 ; (2.68) Hence the resulting trans
| 0 0 O 1]
[c6s 0 —s6, O .
3 qgi 0 0944 0 where “A4 describes the end
Ag = 0 0 dl° (2.69) Substituting Egs. (2.73) a
0 0 0 1 as follows:
acgj 0 s65 O iy == CQ;IC@B(CQdCHSCB(: —
As = Sgs ? _;95 3 (2.70) y = 56, [cOp3(cOsctscls — ¢
L0 0 0 1 | Uy = s053(cOachscs — s6aSt
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clg —sbg 0 0
T L @71)
0 0 0 1
The end-effector location is given by
Uy Uy Wy @y
o= % U Wy G 2.72)

U, v, wW; ¢,

0 0 0 1

The loop-closure equation is obtained in two steps. First, we multiply
Eqgs. (2.66), (2.67), and (2.68):

%4; = A, 'A, %A,

cl,cly 86, CQ] sty o) (a1 + axcty + aschsys)
sficlyy  —cB) sO18y3  sO)(a; + archy + aychy)
$6a5 0 —cbr as86; + azshxn
0 0 0 1

. (2.73)

Next, we multiply Egs. (2.69), (2.70), and (2.71):

As = A4 *As °Ag

cOyclscly — sO4860g —cOiclssbg — s4clg  cO4865 dgcl4505
862CO5¢cOs + cH480s  —SB4clsS0¢ + cO4cO¢ 504805  dgs8480s
—505c0q 0550 cOs  dy + dgcOs
0 0 0 1

(2.74)
Hence the resulting transformation matrix is given by
%As = "A3 As, (2.75)

where A4 describes the end effector location.

Substituting Egs. (2.73) and (2.74) into (2.75) yields the elements of 0A¢
as follows:
Uy = cB[cOa3(cOscO5¢0s — SO4506) — 8623505c0¢] + 56, (s84¢O5¢06 + cO456¢),
uy = 86 [cO3(chscOscls — 304566) — s623805¢0] — b, (s04¢cb5¢86 + c04506),

U, = 5923 (094095095 e, 594 396} + C923$95C9(,‘
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vy = €O [—Ba3(cO4cO5505 + s04¢0g) + 503505566 ]
+ 801 (—s84c605805 + cOschs),
vy = 860 [—cbp3(cOscO5565 + 804¢0s) + 80,3565506)
— 0, (—s64c0580¢ + cl4cbg),
v, = —863(cO4cO5560s + $04¢0q) — cHr3805565,
Wy = ¢ (cHy3¢0,4805 + s623¢05) + s6,50450s,
wy, = 86 (cHr3¢h4565 + 5623¢05) — B 864565,
W, = $0p3¢04805 — cl3cls,
gx = cO1[a) + aycl; + azcl + dasths + de(cOr3c04805 + s623¢65)]
+ dgs6, 504505,
qy = sB1[ar + axcts + azcOy; + disbaz + de(cOr3c04565 + 8053¢05)]
— dgcB,80,480s,
G, = @807 + a3sfys — dsclry + dg(8623¢04805 — chy3chs).
Although the equations above can be used to solve the inverse kinematics,
they are highly nonlinear and difficult to solve. In what follows we present

a more efficient method of solution by separating the wrist-center-position
problem from the orientation problem.

(a) Wrist Center Position. Note that the last three joint axes intersect at
the wrist center point P as shown in Fig. 2.8. Hence rotations of the last three
joints do not affect the position of P. Figure 2.9 shows the end-effector coor-
dinate system (xg, yg, 2¢), the wrist center P, and the vector relation between
them.

The wrist center position with respect to and expressed in the end-effector
coordinate system is

bp=0P =[0,0, —ds, 1]". (2.76)

The wrist center position with respect to and expressed in the base coordinate
system is

Px dx — dﬁwx

0 PP — Px = qx oWy .

Sedik P: q; — dgWw, @7h
1 ]

Z3

Wrist center

FIGURE 2.9, Hand ¢
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A_Q: Hand coordinate
system

Zg

X0

FIGURE 2.9. Hand coordinate system and wrist center position.

Hence, given the end-effector location, we can find the position of the wrist
center point P with respect to the base coordinate system. Furthermore, we
observe from Fig. 2.8 that the position of the wrist center P with respect to
the link 3 coordinate system is given by

3p=CP =10,0,ds, 1)". (2.78)
Transforming *p into the base coordinate system, we obtain
°p =4,°p. (2.79)

Equation (2.79) consists of three scalar equations in three unknowns. Hence
the position and orientation of the inverse kinematics problem are decoupled.

Theoretically, we can solve Eq. (2.79) for the three joint angles. In what
follows we take a simpler approach. Multiplying both sides Eq. (2.79) by the
inverse of YA, we obtain

CAn~' %p ="a5"p. (2.80)
Substituting Eqgs. (2.66) through (2.68) into (2.80) yields

pxcO) + p},sﬁ’; — ay = azchy + asclry + dasy, (2.81)

P2 = @803 + a3s6y3 — dyctys, (2.82)
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P86 — pych; =0, (2.83)

where py, py, and p, are given by Eq. (2.77).
A solution for 8; is found immediately by solving Eq. (2.83).

6, = tan~! 22, (2.84)

Px
Hence there are two solutions of €. Specifically, if §, = 6 is a solution,
6 = 6 + m is also a solution, where 7 > 67 = 0. We call 6; = 0 the

front-reach solution and 6, = 6] + & the back-reach solution. Because of the
four-bar linkage and other mechanical constraints, the back-reach solution is
physically impossible.

An observation of the kinematic structure reveals that the distance between
point A and the wrist center P is independent of 6, and 6,, which implies that
these two variables can be eliminated simultaneously. Summing the squares
of Egs. (2.81), (2.82), and (2.83), gives

K186 + K3 = K3, (2.85)

where k; = 2ayds, k2 = 2aya3, and k3 = p? + pi + p? — 2p.a;c; —
2pyaish) + at —al —aj —dj.

We can convert Eq. (2.85) into a polynomial by making use of the follow-
ing trigonometric identities:

1 —¢2 2t 6
= 32 and s6; = —-1—2, where f3 = tan 2
1+ 1414 2

093

Substituting the trigonometric identities above into Eq. (2.85) yields
(k3 + k)t — 2K113 + (k3 — k) = 0. (2.86)

Hence

lxlj:‘;xlz-l-x%—;c%

2.87
T (2.87)

63 .

5 = tan
Equation (2.86) yields (1) two real roots if Kf + K% — .tc32 > 0, (2) one dou-
ble root if k% + k7 — k3 = 0, and (3) no real roots if k7 + k7 — k7 < 0.
When Eq. (2.86) yields a double root, the arm is either in a fully stretched
or a folded-back configuration. On the other hand, if Eq. (2.86) yields no
real roots, the position is not reachable. Figure 2.10 shows two different arm
configurations, corresponding to the two solutions of 6.

FIGURE 2,
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X3
f Elbow up configuration
C’

Elbow down configuration
FIGURE 2.10. Two different arm configurations.

Once 6, and 64 are known, 6; can be obtained by back substitution. Ex-
panding Egs. (2.81) and (2.82), we obtain

wichs; + v186, = yi, (2.88)
W2l 4 vosth =y, (2.89)
where

K1 = ay + a3chy + dysbs,

V) = —assty + dychs,

Y1 = pxCO) + pysty —ay,

Wy = azsth — dachs,

V2 = ag + ascls + dysbs,

Y2 = Pq

Therefore, we can solve Egs. (2.88) and (2.89) for cf, and s65. Once s6, and
cf, are found, a unique value of 6, is obtained by taking

6, = Atan2(s6;, ;). (2.90)

We conclude that given the wrist center position, mathematically there are
at most four possible arm configurations, but due to the mechanical limits,
only two are physically possible.
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(b) End-Effector Orientation. Once 6, 0,, and 65 are solved, A5 is com-
pletely known. The remaining joint angles can be found by multiplying both
sides of Eq. (2.75) by ("A3)~":

346 = (PA3) 7! %A, (2.91)

We note that the elements on the right-hand side of Eq. (2.91) are known, and
only the rotation part of Eq. (2.91) is needed for computation of the last three
joint angles. The rotation matrices Ry and R are given by the upper 3 x 3
submatrices of Eqgs. (2.73) and (2.74), respectively.

Equating the 3 x 3 element of Eq. (2.91) yields

95 = COS_I ria, (292)

where r33 = wych;sfls + w,s0,86,3 — w,ch3. Hence, corresponding to each
solution set of 6y, 6, and 63, Eq. (2.92) yields (1) two real roots if |ri3| < 1,
and (2) 05 = 0 or & if |r33] = 1. When 65 = 0 or i, the sixth joint axis, zs,
is in line with the fourth joint axis, z3, and the wrist is said to be in a singular
configuration. The condition {ry3| > 1 cannot physically arise.

Assuming that s65s 7 0, we can solve 64 and 05 as follows. Equating the
1 x 3 element of Eq. (2.91) yields

wychychys + wyslchys + w,s023
595 '

chy = (2.93)

Equating the 2 x 3 element of Eq. (2.91) yields

wys6) — w,co,

sy =
* 895

(2.94)

Hence, corresponding to each solution set of 6y, 6,, 63, and 6s, Egs. (2.93) and
(2.94) yield a unique solution of 8y:

64 = Atan2(sy4, cby). (2.95)

Similarly, equating the 3 x 1 element of Eq. (2.91) yields

UyxCO186p3 + u 80,8623 — u,ch3

cbs = (2.96)
895
Equating the 3 x 2 element of Eq. (2.91) yields
05 — v, C018623 + vy80, 5623 — vzc(}x,. 2.97)

895
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)q. (2.91) yields

5923 5 u7_0923 (2 96)

|ds

723 — v,C003 2.97)
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Hence, corresponding to each solution set of 6y, 6,, 63, 64, and 65, Eqs. (2.96)
and (2.97) yield a unique solution of 6

6s = Atan2(sf, cbs). (2.98)

We conclude that corresponding to each solution set of the first three joint
angles, there are two possible wrist configurations. Since there are four possi-
ble upper arm configurations, a total of eight manipulator postures are possi-
ble. However, due to mechanical limits, fewer than eight manipulator postures
are physically realizable. When sf5 = 0, Egs. (2.93) through (2.98) degener-
ate. For such a singular condition, only the sum or difference of 64 and 8¢ can
be computed.

2.6.4 Tsai and Morgan’s Solution

In this section we outline a solution method developed by Tsai and Morgan
(1985), who reduced the problem to a system of four equations and then em-
ployed a numerical method, known as the homotopy method, to find all solu-
tions to the inverse kinematics of a general 6 R manipulator. They also derived
closed-form solutions for manipulators in which three consecutive joint axes
either intersect at a common point or are parallel to one another.

Figure 2.11 shows a general 6 R manipulator where point Q denotes the
origin and u, v, and w denote three orthogonal unit vectors of the end effec-
tor coordinate system. Using the Denavit-Hartenberg method, a loop-closure
equation can be written as

%4, A, %4434, %A °A¢ = %, (2.99)

For convenience, we introduce a position vector p of the origin and a unit
vector e of the zs-axis of the fifth coordinate system as shown in Fig. 2.11.
These two vectors can be expressed in the fifth coordinate system as °p =
[0,0,0,1]" and Se = [0, 0, 1, 0], or in the fixed coordinate system as p =
'p = [px, py, P2, 11" and e = e = [e,, ¢, €;, 0]". Since both the point P
and the vector e are attached to the end effector, p and e can be computed
from the given end-effector location as follows:

P 0 —Uxae — (UySttg + wycwg)de + gy

Py | 04, 64 0 —Hyag — (U}.SO!{, + wycaﬁ)d{: + qy
Pz 67510 —u a6 — (V806 + w,cag)ds + g,
| 1 1

Il

(2.100)
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End effector

Base

FIGURE 2.11. General 6 R manipulator.

€. 0 U, S0 + WeCag

ey | _o04 6 0 | vysag+ wycas

M A As 1| 7 | v.sag+ w,cag (2.101)
0 0 0

Equations (2.100) and (2.101) imply that once the end-effector location is
given, the point P and the direction of zs-axis can be found.

The transformation between >p and °p and between e and %e can be writ-
ten as

Op =4, 422434, %A55p, (2.102)
% =94, 14, %4534, *As e, (2.103)

To simplify the analysis, we multiply both sides of Egs. (2.102) and (2.103)
by (°A| 'A5)~'. The resulting equations can be written

p =?p, (2.104)
2e = 2¢/, (2.105)

where
2
P=

2pr i |

2e:_:

29‘r -
are the position vectors of P ap
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UrSQ6 + WyCarg

UySlg + WyCog

U, S0lg - w,Cg
0

(2.101)
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A5 p, (2.102)
A5 e, (2.103)

ides of Egs. (2.102) and (2.103)
be written

(2.104)
(2.105)
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where

Zp o ZA‘_I 3A4 4A5 Sp!

' = (47" (AN,

2e = 245 %4, A5 %,

Zer . (114.'2)_' (OAl}_l Ue
are the position vectors of P and the direction of the zs-axis with reference to
the (x2, ¥2, z2) coordinate system.

Equations (2.104) and (2.105) constitute a set of six scalar equations free of
the variable 6. However, only two of the three scalar equations in Eq. (2.105)
are independent, because the components of e must satisfy the condition of
a unit vector. Hence there are only five independent equations in five un-
knowns, 8y, ..., 6s. The x and y components in Egs. (2.104) and (2.105) are
third-degree polynomials, while the z-component is a second-degree poly-
nomial in the sines and cosines of five joint angles. We note that by using
this approach, 6 does not appear in the system of equations and therefore

reduces the complexity of the problem. In the following we eliminate 85 from
the system of equations above.

Elimination of 65. First, we notice that both z-components of Egs. (2.104)
and (2.105) are already free of the variable #5. Expanding the z-components
of Egs. (2.104) and (2.105), yields

hysopsthy — hysopcty — g saasty + gysaachy
= —h,cay + dycoy + g.cas + ds, (2.106)
nySa2sty — nysaacly — m,sa3sls + mysoscly
= —n,C0y + M,Ccas, (2.107
where
8x = aschs + ay,
8y = —ascasss + dssay,
8, = assayS0s + dscay + dy,
hy = pxcb) + p,s6; —ay,
hy = —pyca 86, + pyca ch + (p; — di)sey,

h, = pxsos6) — pysacly + (p, —di)cay,

m, = cassts,
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my = coysaiscls -+ saacs,

m, = —sa4sascls + caycas,

n, = exch + eys6;,

ny = —exca 80y + eycaycty + ¢80,
n, = exsa; st — eysach) + e, ca.

A third equation that is free of 653 is obtained by performing the dot product
2p . %e = ?p’ . %¢’. Substituting Eqs. (2.104) and (2.105) into the dot product
and simplifying, we obtain

axnysby + an e + (asmy + dymysws)sts + (aam, — dymysos)chy
= —ainy — dan; — asmy — my(dscas + dy) + ki, (2.108)

where ky = —dscas + pxex + pyey + (p, — d))e,.

A fourth equation that is free of 5 is obtained by equating the sum of the
squares of the x, y, and z components on both sides of Eq. (2.104). Expanding
(p)? = (*p')? yields

axhys0, + arh Oy + (a3gy + dag saa)sts + (azgx — d3gySc3)chy
= —arhy — dyh; — asgx — g;(dscas +ds) + kz, (2.109)

where
ky = 0.5[p} + p}+ (p. —d1)* —aj +a3 +dj — a3 —di +a; +di — a5 —d3).

Equations (2.106) through (2.109) represent a system of four second-
degree polynomials in the sines and cosines of four joint angles. We may
consider sin#; and cos §; as two independent variables and add the following
trigonometric identities as supplementary equations of constraint:

%0, +c*9; =1, for i=1,24,5. (2.110)

In this way, we obtain a system of eight second-degree polynomials in eight
variables. Tsai and Morgan employed a continuation method to solve the sys-
tem of equations above and showed that the most general 6-dof, 6R robot has
at most 16 significant solutions. See Appendix A for more details.

The system of equations will decouple when any three consecutive joint
axes either intersect at a common point or are parallel to one another. For
these special geometries, closed-form solutions can be derived. In what fol-
lows we illustrate the decoupling by solving the inverse kinematics of two
special cases that are most commonly implemented in industrial robots. Other
special cases can be derived by applying the kinematic inversions.

a) Last Three Joint Axes |
the last three joint axes interse
:dentically. Substituting these v

hx S@z
hy592

provided that Saly 7"5 0 and a, #

p1 = —hycay + dycay + d
U2 = —ajhy — dzh;_ — dad.,
+OSIEL 4 72 ()
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hence are completely decouple
6,, we sum the squares of Eqgs.
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) Last Three Joint Axes Intersecting at a Common Point. When
the last three joint axes intersect at a common point, a3 = as = ds = 0
identically. Substituting these values into Egs. (2.106) and (2.109) yields

hy80; — hycly = 1 [saz, (2.111)
hys6y + hecby = pz/as, (2.112)

pmvided that sy # 0 and a; # 0, where

) = —h,cay + dycap + dy + dycas,
Wty = _alhx — dghz o d3d40(}53
+0.5[p + p2 + (p, — d)? — a} +af + df — a3 — d} — d}).

Equations (2.111) and (2.112) contain only two unknown variables and
hence are completely decoupled from Egs. (2.107) and (2.108). To eliminate
#,, we sum the squares of Egs. (2.111) and (2.112).

K2+ h2 = (1 /s02)? + (2/az). (2.113)

Equation (2.113) contains only one variable, ;. We may convert it into
a fourth-degree polynomial in #; by replacing s6; with 2¢ /(1 + tf) and c6),
with (1 — tf')/(l + tf), where #t; = tan(6,/2). Hence, for each given end-
effector position, there are at most four real solutions of 6;, Once 6, is found,
aunique solution of &, can be obtained by solving Eqgs. (2.111) and (2.112) si-
multaneously for s6; and c6,, and then applying the two-argument arctangent
function. Following that, a unique solution of £ can be found by solving the
two scalar equations associated with the x and y components of Eq. (2.104).

Corresponding to each solution set of (6, 6>, 63), two sets of (84, 05, 65)
can be found by following the procedure outlined in the earlier example.
Hence we conclude that there are at most eight possible solutions sets (ma-
nipulator postures).

(b) Joint Axes 2, 3, and 4 Parallel to One Another. When the second,
third, and fourth joint axes are parallel to one another, &; = a3 = 0 identi-
cally. Further, since the common normals between the second and third joint
axes and between the third and fourth joint axes are indeterminate, we can
always define these two common normals such that d; = d3 = 0. With these
values, Egs. (2.106) and (2.107) reduce to

hz —_— deO.’4 — d4

souysfs = , (2.114)

as
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o T 2.115)
S5
provided that as # 0 and sas # 0.
Again, Egs. (2.114) and (2.115) contain only two unknown variables and
hence are completely decoupled from Egs. (2.108) and (2.109). We can elim-
inate f5 by summing the squares of Eq. (2.114) and (2.115):

Peig= (hz — dscoty — d4)2 " (-nz + cmcas)z‘ 2.116)

as S5

Equation (2.116) contains only one variable, ;. We may convert it into a
fourth-degree polynomial in t) by replacing s6; with 27, /(1 +17) and ¢6, with
(1 — !,2)/{] + !,2}, where 1} = tan(#,;/2). Hence for each given end-effector
position and orientation, there are at most four real solutions of ;. Once @, is
known, a unique solution of f5 can be obtained by solving Eqs. (2.114) and
(2.115) simultaneously for sfs and cfs and then applying the two-argument
arctangent function.

When oy = a3 = 0, the two scalar equations corresponding to the x and y
components of Eq. (2.105) reduce to

myCO34 + mysbay = nycly + nys6y, (2.117)
My 8634 — myClhy = —n,s6; + nych;. (2.118)
Equations (2.117) and (2.118) contain two unknown variables, f34 and 6;.

We may reduce these two equations to a single equation in one variable by the
following procedure. Subtracting Eq. (2.118) x s, from (2.117) x c6; yields

myClizq + myShpg = ny. (2.119)
Adding Eq. (2.118) x cf; to (2.117) x s6, yields

mxsezgq ot my09234 = nNy. (2120)

Hence, corresponding to each solution set of #; and 6s, a unique solution of
0,34 can be obtained by solving Eqs. (2.119) and (2.120) for s6,34 and cby34,
and then applying the two-argument arctangent function.

Similarly, the two scalar equations corresponding to the x and y compo-
nents of Eq. (2.104) reduce to

8xChas + gysha + axcls = hychy + hysth — ay, (2.121)
8x8614 — gyclus + azsty = —h,s6, + h,ch,. (2.122)

METt

Subtracting Eq. (2.122) x s6,
8xCx34 + g,50,:

Adding Eq. (2.122) X c6; to (2.1
8x80234 — g0y

Summing the squares of [Eq. (2.1

2“3(k3C923
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5605 + hychs. (2.122)

METHOD OF SUCCESSIVE SCREW DISPLACEMENTS 91
Subtracting Eq. (2.122) x s6; from (2.121) x cf, yields
8xCO4 + gy8634 + aschyy = hy — azchs. (2.123)
Adding Eq. (2.122) x ¢, to (2.121) x sf, yields
2x80234 — 8ycbaas + a3s6y3 = hy — ay80;. (2.124)
Summing the squares of [Eq. (2.123) - h,] and [Eq. (2.124) - h,] yields
2a3(kscOs + kasbaz) + ks = 0, (2.125)
where

k3 = gxCO34 + gyS0234 — hy,
ks = gx86234 — gyCl234 — hy,
ks = —aj + a3 + k3 + k3.

Hence, corresponding to each solution set of (6, 6s, 6234), Eq. (2.125)
yields two solutions of 6»3. Once 6,3 is found, Eqgs. (2.123) and (2.124) yield
a unique solution of 6. We conclude that there are at most eight possible
solution sets.

2.7 METHOD OF SUCCESSIVE SCREW DISPLACEMENTS

In this section we study a method of analysis based on the concept of succes-
sive screw displacements. First, the transformation matrix associated with a
screw displacement is derived. Then the concept of the resultant screw of two
successive screw displacements is described. Then the concept is applied to
the position analysis of serial manipulators.

2.7.1 Transformation Based on Screw Displacement

Chasles’ theorem states that the general spatial displacement of a rigid body
is a translation plus a rotation. A stronger form of the theorem states that
regardless of how a rigid body is displaced from one location to another, the
displacement can be regarded as a rotation about and a translation along some
axis. Such a combination of translation and rotation is called a screw displace-
ment (Bottema and Roth, 1979). In what follows we derive a homogeneous
transformation based on the concept of screw displacement.
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X

FIGURE 2.12. Vector diagram of a spatial displacement.

Figure 2.12 shows a point P that is displaced from a first position P to
a second position P, by a rotation of 6 about a screw axis followed by a
translation of ¢ along the same axis. The rotation brings P from P; to P;, and
the translation brings P from P; to P,. In the figure, s = [s,, sy, szJT denotes
a unit vector along the direction of the screw axis, and s, = [5ox, Sy, So717
denotes the position vector of a point lying on the screw axis. The rotation
angle O and the translational distance ¢ are called the screw parameters. The
screw axis together with the screw parameters completely define the general
displacement of a rigid body. Note that for a general displacement of a rigid
body, the screw axis does not necessarily pass through the origin of the fixed
frame.

The displacement equation due to a rotation about an axis passing through
the origin was derived in Chapter 1. Hence we only need to take care of the
fact that the screw axis does not pass through the origin and add the contri-
bution due to a translation along the screw axis. Referring to Fig. 2.12, we
observe that

r = p1 — 8o, (2.!26)
r; =p; —S, — IS. (2.127)

METH

Substituting Eqgs. (2.126) and (2.1

p2 =S8+ 15+ (P1 —8,)cl + 5

Equation (2.128) is known as g
displacement of a rigid body. Exp
and pz by #p, we obtain

Ap:

where the elements of the rotatior
the position of the origin, 4q, of th
Qx = 18y — 8,5 ()
dy = LSy — $pxay)

Gz = 157 — Spxa3)
Equation (2.129) can be written

A
|

where A is a 4 x 4 transformation

ajg = (sf — 1)(1 -
a1z = 5xSy(1 — B
ayy = 8;5;(1 —cf
ag) = Sysx(1 —cb
an = (55— (-
a3 = §y5,(1 — b
azy = 5,85.(1 —co
ayp = 5,8y(1 — cf
azp = (s; — (I
Ay =8y — Sox (@

a4 = f.'i‘y — Spx@2)

Ayg = 185; — Spx3)
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substituting Egs. (2.126) and (2.127) into (1.35), we obtain

p2 = So + 15+ (P) — So)c6 + 8 X (P1 — S,)s0 + [(p) — 5,)"sIs(1 — cB).
(2.128)
Equation (2.128) is known as Rodrigues’s formula for the general spatial
displacement of a rigid body. Expanding Eq. (2.128) and replacing p, by ?p
and p2 by *p, we obtain
Ap="Rys "p+1q, (2.129)

where the elements of the rotation matrix, a;j, are given by Eq. (1.37), and
the position of the origin, #q, of the moving frame is given by

qx = t8x — Sox(@ry — 1) — spya12 — 50,413,

gy =18y — SpxQ2] — Say(a'ZZ — 1) — s8ozG23,

X

g; = 15; — Spx3] — Sop3y — Soz(a33 —1). (2‘130)
a spatial displacement.

Equation (2.129) can be written as a homogeneous transformation:

‘Ap=A"% (2.131)
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a general displacement of a rigid
ss through the origin of the fixed azn = (-"'i = D —ch) +1,

a2 = $ySy(1 — ch) — 5,56,
az; = sys; (1 — ch) + 5,56,
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ay = (s7 = D1 —ch) + 1,

ajg = sy — Sox (a1 — ]) — Soy@12 — Spz013,

(2.126)
- IS, (2.127)

Q24 = I8y — SpxQn| — S(.-y(aﬂ — 1) — 85,023,

ayg = 1§; — Spxdsz) — Spyd3z — Soz(a:i} = 1)
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as =0,
as =0,
ag =0,
ass = 1. (2.132)

The upper left 3 x 3 submatrix of A represents the rotation of the rigid
body. The upper right 3 x 1 submatrix represents the translation of the origin
0 (ie., ais = gy, au = qy, and az4 = gq,). This representation of a spatial
displacement requires eight parameters: three associated with the direction
of the screw axis, three associated with the location of the screw axis, one
associated with the rotation angle, and one associated with the translational
distance. However, only two of the three parameters associated with the di-
rection of the screw axis are independent since they must satisfy the condition
of a unit vector:

s's=1. (2.133)

Similarly, only two of the three parameters associated with the location of the
screw axis are independent, since S, can be any point on the screw axis. For
convenience, we may choose s, to be normal to the screw axis:

T 0, (2.134)

Given the screw axis and screw parameters, we can compute the elements
of the transformation matrix by Eq. (2.132). On the other hand, given the
spatial displacement of a rigid body in terms of a rotation matrix, R, and a
translation vector, 4q, we can compute the screw axis and the screw parame-
ters as follows. The angle of rotation is given by

_1an +an+a;n—1
2

8 = cos (2.135)

There are two solutions of #, one being the negative of the other. Once the
rotation angle is known, the direction of the screw axis is computed by

G asz — da
T 280
a)y — dasg
= "oy
a1 — a2
5, = —————, 2.136
Sz 750 ( )

The translational distance i

and the screw axis location
tions in Eq. (2.130) along
there exists one solution co

From the derivation abg
SCrew axis, one being the p
represent the same screw, s
the —(s, S,) screw axis prog
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successive screw displacements: that is, a rotation about the nth joint axis,
followed by another about the (» — 1)th joint axis, and so on. Since all screw
displacements take place about the joint axes at the reference position, the
resulting screw displacement is obtained by premultiplying these screw dis-
placements:

Ay ':AIAZ"‘AM—FAH- (2139)

Using the method of successive screw displacements, only one fixed coor-
dinate system and one end effector coordinate system are needed. The screw
parameters used in Eq. (2.132) should not be confused with the Denavit—
Hartenberg parameters. The joint variables of a screw displacement represent
the actual angles of rotation and/or distances of translation needed to bring the
end effector from a reference position to a target position. Specifically, for a
revolute joint, 6; is a variable and ; = 0 identically, while for a prismatic
joint, t; is a variable and 6; = 0 identically.

The D-H parameters do not represent the angle of rotation or the distance
of translation about a joint axis. To obtain the actual displacements, it is nec-
essary to subtract the joint variables associated with a reference position from
that of a target position. One of the advantages of using successive screw dis-
placements is that the reference position can be chosen arbitrarily. For ex-
ample, it can be chosen at the home position of a robot, where all the infor-
mation regarding the location of the end effector and the locations of the joint
axes are known.

For direct kinematics, we compute Eq. (2.139) directly by using the given
joint variables. For inverse kinematics, the left-hand side of Eq. (2.139) is
given and the problem is to find the joint displacements needed to bring the
hand to a desired location.

2.7.3 Position Analysis of an Elbow Manipulator

Figure 2.15 shows the schematic diagram of an elbow manipulator. In this
manipulator, the second joint axis intersects the first perpendicularly, the third
and fourth joint axes are parallel to the second, the fifth joint axis is perpen-
dicular to the fourth with a small offset distance a4, and the sixth joint axis
intersects the fifth perpendicularly. We wish to solve the inverse kinematics
problem of this manipulator using the method of successive screw displace-
ments.

(a) Reference Position. First we identify a reference configuration with
respect to which the displacement of the manipulator will be measured. Fig-
ure 2.16 shows such a reference configuration, where the first joint axis, $;,
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FIGURE 2.15. A 6-dof elbow manipulator.

points up vertically in the positive z-direction; the second, lhif‘d. .md four.lh
joint axes, $,, $3, and $4, are all pointing out of the paper; the fifth joint axis,
$s, points in the positive z-direction; and the sixth joint axis, $s, points in the
positive x-direction. The hand coordinate system is located at point Q. such
that the wo-axis points in the positive x-direction and the ug-axis points in the

$
+ $5 Up

= a ag

Base

FIGURE 2.16. Reference position of the elbow manipulator.
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TABLE 2.5. Screw Axis Locations of the Elbow

Manipulator
Joint { 5; Soi
1 0,0, (0,0,0)
2 (0, —1,0) (0,0,0)
3 (0, —-1,0) (az,0,0)
4 (0,—-1,0) (a2 +a3,0,0)
5 0,0, 1) (ag + a3+ ay,0,0)
6 (1,0,0) (0,0,0)

positive z-direction. At this reference position, the locations of the screw axes
with respect to the fixed reference frame are listed in Table 2.5. The reference
position of the end effector is

u=1[0,0,1", wvo=1[0—1,01", wo=[1,0,0]", and

po = [az + a3 + a4, 0,0]".
(b) Target Position. Let the target position of the end effector be

u = [uy, uy, u,)t, v =[vs, y, v 1", w=[w, wy, w,]’, and
T
P = [px, Py, r.l-

(c) Transformation Matrices. Substituting the coordinates of the joint
axes into Eq. (2.132), we obtain the screw transformation matrices:

_CH] —'891 00 Cf}| Sgl 0 0
59] CG] 0 0 0 = . —50[ C0| 0 0
Ai=19 o0 10| A=l 5 9 10
| 0 0 0 1] 0 0 0 1
[(c0, 0 —s6; O]
Ay o 0 1 0 0
27 156, 0 co; 0}’
| 0 0 0 L |
¢y 0 —sBy ax(l —chs)
Ax = 0 1 0 0
= s6s 0 ng. —&2503
| 0 0 0 1

[ cOy 0 -—
Aq. = 0 ]
SOy 0 ¢
L0 0
i ng ‘_\05
A s = 885 (.95
0 o
| 0 0
= 5
Aﬁ . O Cf‘)ﬁ =
0 s6s ¢
i 0 o0

The matrix products

Clpg 0
0 1

A =
AzA3A, shie 0
0 0

A1ArA3A,

cticthzy —sb,
s6 1 09234 co 1
5-39334 0
0 0

(d) Inverse Kinemati
given by

Multiplying both sides

At
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(0,0,0)
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|_C‘94 0 —sb; (a2 +asz)(l - 094)
A 0 1 0 0
= sy 0 cly —(az + a3)sby
| 0 0 0 1
[cOs —sbs 0 (az+az+as)(l —chs)
i sfs c¢f; O —(ay + a3 + aq)sbs
710 0 | 0
| O 0 0 1
1 0 0 0
- 0 cly —s8g O
9= 0 Sgﬁ 096 0
(00 0 1

The matrix products A;A3A4 and A;A3A3A4 are computed as

Cbpq 0 —sbx34 aych + aschy — (az + az)chaa

0 1 0 0
Ashsis = S04 0 cbay  ar86) + a3shn — (az + az)sbay
0 0 0 1
(2.140)
A1ArA3A,
cOiclng —sO) —cbisbs  cbilarchy + azchs — (az + az)chrzal
_ | s6ichna el —sOi86rq  sO)[axch; + azclys — (az + a3)chq)
I Y 0 034 [a2802 + a3sfa3 — (az + a3)sbi34]
0 0 0 ]
(2.141)

(d) Inverse Kinematics. The transformation of the wrist center point P is
given by

p= A A2A3A4pp. (2.142)
Multiplying both sides of the equation above by A", we obtain

Px a; +axy+ag

A7 ’;)’ = AyA3A4 g

0 (2.143)

1 1




102 POSITION ANALYSIS OF SERIAL MANIPULATORS

Substituting Al_' and Eq. (2.140) into (2.143) yields

PxCO1 + pysO; = aychy + aichrs + a4Ch;34, (2.144)
—pxS6; + pych) =0, (2.145)
P = azs6 + a386r3 + ass6a34. (2.146)

From Eq. (2.145), two solutions of 8, are found immediately:

g E{
Px

0, = tan (2.147)

For this manipulator, the position and orientation are not decoupled. There-
fore, we need to work on both simultaneously. Applying the transformation
matrix to the approach vector w gives

R;Fw S R2R3R4R5wu, (2148)

where R; denotes the upper left 3 x 3 submatrix of A;. Expanding Eq. (2.148),
we obtain

w,chy + w,,s@i = cbh34COs, (2149)
—W, 86 + wych; = s6;s, (2.150)
w, = 59-234(295. (2.]51)

Corresponding to each solution of 8y, Eq. (2.150) yields two solutions of 6s:

65 = sin~' (—w,s6;, + wych)). (2.152)
That is, if 65 = 65 is a solution, 05 = & — 65 is also a solution. Once 0; and
05 are known, Eqgs. (2.149) and (2.151) can be solved for s6534 and c6,34. This
leads to a unique solution for 634:

0234 = Atan2 [w,/cs, (wxch) + wys6;)/chs]. (2.153)

Next, we solve Eqgs. (2.144) and (2.146) for 6, and 65. For convenience, we
rewrite Egs. (2.144) and (2.146) as follows:

azcts + (13(1923 = ki (2.154)
a;st, + azsbs = ks, (2.155)

o o

where ki = pxcl; + p s, .
squares of Egs. (2.154) ang (

2
ay + ¢

Hence
05 = ¢

Therefore, corresponding to
most two real solutions of g
a solution. Once 65 is knoﬁ
and (2.155) simultaneously f{
Finally, the solutions of 6, aj

To solve for 6, we apply

(R,
Expanding Eq. (2.158), we ¢

U cliclyy +

— U, CH 80534 —
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where ki = pxc) + pysOy — asclysyg and ky = p, — a48634. Summing the
squares of Egs. (2.154) and (2.155), we obtain

a2 +a: + 2aaschy = ki + k3. (2.156)

Hence

2 442 _ .22
1 ki +k5 —a; — a3

93 = COS (2]57)

2asa;3

Therefore, corresponding to each solution set of 0y, 05, and 634, there are at

most two real solutions of #3. Namely, if 65 is a solution, 63 = —03 is also

a solution. Once #5 is known, 6, can be obtained by solving Egs. (2.154)

and (2.155) simultaneously for s6; and c¢6,. This produces one solution of 6.

Finally, the solutions of 6, are obtained from the relation 84 = 6234 — 62 — 0.
To solve for 64, we apply the transformation to the unit vector u:

(R\RyR3Rs)™u = RsRguy. (2.158)

Expanding Eq. (2.158), we obtain

U clyclyg + M)‘59]C9234 + HZSBQ_'M = 395596, (2.1539)
—uyx80; + uychy = —clssbs, (2.160)
—u 0180234 — 150150234 + O34 = COg. (2.161)

We can solve Egs. (2.159) and (2.160) for s6:
806 = 05 (1,0 COpa+ 150 O34+, 50234) —COs (—u, 80, +uychy). (2.162)
Equations (2.161) and (2.162) together determine a unique solution for &s:
B = Atan2(s6g, cOg). (2.163)

We conclude that there are at most eight real inverse kinematic solutions.

2.7.4 Position Analysis of the Stanford Arm

Figure 2.17 shows a 6-dof manipulator developed at Stanford University
(Scheinman, 1969). In this manipulator, the third joint is a prismatic joint (or
sliding pair) while all the others are revolute. The first joint axis, $;, points
up vertically in the positive z-direction. The second joint axis, $,, intersects
the first perpendicularly at point A and points in the positive x-direction. The
third joint axis intersects the second perpendicularly at point B and points






