

week	Date	Lecture (W: 11:10-12:40, 24-402)		
1	30-Jul	Introduction		
2	6-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)		
3	13-Aug	Robot Kinematics (& Ekka Day)		
4	20-Aug	Robot Dynamics & Control		
5	27-Aug	Robot Motion		
6	3-Sep	Robot Sensing: Perception & Multiple View Geometry		
7	10-Sep	Robot Sensing: Features & Detection using Computer Vision		
8	17-Sep	Navigation & Localization (+ Prof. M. Srinivasan)		
9	24-Sep	Motion Planning + Control		
	1-Oct	Study break		
	8-Oct	State-Space Modelling		
10		Classing the Demonstrate Demonstrate		
10 11	15-Oct	Shaping the Dynamic Response		
10 11 12	15-Oct 22-Oct	Linear Observers & LQR		

Dynam	ixel ŀ	Kit		
	http://w	ww.tribotix.com/Products/Tribotix/Kits/U	JQ_Kits.htr	<u>m</u>
Kit inclu	ides:			
	Index	Part	Quantity	
	1	FP04-F1 Angles Hinge Bracket	2	
	2	FP04-F2 Stnd Hinge Bracket	4	
	3	FP04-F3 Bottom Bracket	5	
	4	FP04-F4 Large Hinge Bracket	2	
	5	FP04-F5 Wide Hinge Bracket	2	
	6	FP04-F6 Side Bracket	2	
	7	FP04-F7 Back Bracket	2	
	8	BNS-10 Bioloid Screw Set	1	
	9	Cable-3P Robot Cable-3P 200mm	1	
	10	SMPS2Dynamixel SMPS2Dynamixel	1	
	11	USB2Dynamixel USB2Dynamixel	1	
	12	AX-12A DYNAMIXEL AX-12A	3	
	13	DYNAMIXEL MX-12W	1	
METR 4202: RC	botics			10 September 2014 - 3

- Project each image onto same plane, which is parallel to the epipole
- Resample lines (and shear/stretch) to place lines in correspondence, and minimize distortion

How to get Matching Points? Features					
• Colour					
• Corners					
• Edges					
• Lines					
• Statistics on Edges: SIFT, SURF, ORB					
In OpenCV: The following detector types are supported:					
– "FAST" – FastFeatureDetector					
 "STAR" – StarFeatureDetector 					
 "SIFT" – SIFT (nonfree module) 					
 "SURF" – SURF (nonfree module) 					
– "ORB" – ORB					
– "BRISK" – BRISK					
– "MSER" – MSER					
 "GFTT" – GoodFeaturesToTrackDetector 					
 "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled 					
 "Dense" – DenseFeatureDetector 					
 "SimpleBlob" – SimpleBlobDetector 					
METR 4202: Robotics 10 September 2014 - 24					

Camera matrix calibration	
 Advantages: very simple to formulate and solve can recover K [R t] from M using QR decomposition [Golub & VanLoan 96] 	
 Disadvantages: doesn't compute internal parameters more unknowns than true degrees of freedom need a separate camera matrix for each new view 	
From Szeliski, Computer Vision: Algorithms and Applications	
METR 4202: Robotics	10 September 2014 -74

Measurement equations • Measurement equations $u_{fp} = i_f^T s_p$ i_f : rotation, s_p : position $v_{fp} = j_f^T s_p$ • Stack them up... W = R S $R = (i_1, ..., i_F, j_1, ..., j_F)^T$ $S = (s_1, ..., s_p)$ From Szeliski, <u>Computer Vision: Algorithms and Applications</u>

