

Date	Lecture (W: 11:10-12:40, 24-402)			
30-Jul	ntroduction			
6-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)			
13-Aug Robot Kinematics (& Ekka Day)				
20-Aug	Robot Dynamics & Control			
27-Aug	Robot Motion			
3-Sep	Sensing & Perception			
10-Sep	Multiple View Geometry (Computer Vision)			
17-Sep	Navigation & Localization (+ Prof. M. Srinivasan)			
24-Sep	Motion Planning + Control			
1-Oct	Study break			
8-Oct	State-Space Modelling			
15-Oct	Shaping the Dynamic Response			
22-Oct	Linear Observers & LQR			
29-Oct Applications in Industry & Course Review				

Q	uic	ek Outline	
1.	P	erception → Camera Sensors	
	1.	Image Formation	
		→ "Computational Photography"	
	2.	Calibration	
	3.	Feature extraction	
	4.	Stereopsis and depth	
	5.	Optical flow	
		-	
	METR 4	4202: Robotics	3 September 2014 - 4

Image Formation - Single View Geometry → Camera Projection Matrix $\mapsto \begin{pmatrix} f\mathbf{X} + \mathbf{Z}p_x \\ f\mathbf{Y} + \mathbf{Z}p_y \\ \mathbf{Z} \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ & f & p_y & 0 \\ & & 1 & 0 \end{bmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{pmatrix}$ Y Ζ 1 • x = Image point $\mathbf{K} = \begin{bmatrix} f & p_x \\ f & p_y \\ & 1 \end{bmatrix}$ • **X** = World point • *K* = Camera Calibration Matrix $\mathbf{x} = \mathtt{K}[\mathtt{I} \mid \mathbf{0}] \mathbf{X}_{cam}.$ → Perspective Camera as: $P = K[R \mid t]$ where: P is 3×4 and of rank 3 M METR 4202: Robotics 3 September 2014 - 16

2-D Transformation	S			
\rightarrow x' = point in the new	w (or 2 nd) image			
\rightarrow x = point in the old	image			
 Translation Rotation Similarity Affine 	x' = x + t x' = R x + t x' = sR x + t x' = A x			
• Projective $x' = A x$				
here, x is an inh	omogeneous pt (2-vector)			
x' is a ho	mogeneous point			
METR 4202: Robotics		3 September 2014 -22		

2-	2-D Transformations						
	Name	Matrix	# D.O.F.	Preserves:	Icon		
	translation	$\begin{bmatrix} I & t \end{bmatrix}_{2 \times 3}$	2	orientation $+\cdots$			
	rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\Diamond		
	similarity	$\left[\begin{array}{c c} sR & t \end{array} \right]_{2 \times 3}$	4	angles $+\cdots$	\diamond		
	affine	$\left[\begin{array}{c} A \end{array} \right]_{2 imes 3}$	6	parallelism $+\cdots$	\square		
	projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines			
	METR 4202: Robotics 3 September 2014 - 23						

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$\left[egin{array}{c c} I & t \end{array} ight]_{3 imes 4}$	3	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{3 imes 4}$	6	lengths $+\cdots$	\Diamond
similarity	$\left[\left. sR \right t \left. \right]_{3 imes 4} ight.$	7	angles $+\cdots$	\diamondsuit
affine	$\left[egin{array}{c} A \end{array} ight]_{3 imes 4}$	12	parallelism $+\cdots$	\Box
projective	$\left[\begin{array}{c} ilde{H} \end{array} ight]_{4 imes 4}$	15	straight lines	

Calibration matrix

- Is this form of K good enough?
- non-square pixels (digital video)
- skew
- radial distortion

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = \mathbf{K} \mathbf{X}_c$$
$$\begin{bmatrix} fa & s & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{K}$$
From Szeliski, Computer Vision: Algorithms and Applications

2014 -2

Projection ModelsOrthographic				
• Weak Perspective	$\mathbf{\Pi} = \begin{bmatrix} i_x & i_y & i_z & t_x \\ j_x & j_y & j_z & t_y \\ 0 & 0 & 0 & 1 \end{bmatrix}$			
• Affine	$\mathbf{\Pi} = f \begin{bmatrix} i_x & i_y & i_z & t_x \\ j_x & j_y & j_z & t_y \\ 0 & 0 & 0 & 1 \end{bmatrix}$			
• Perspective	$\mathbf{\Pi} = \begin{bmatrix} * & * & * & * \\ * & * & * & * \\ 0 & 0 & 0 & 1 \end{bmatrix}$			
• Projective	$\Pi = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$ $\Pi = \begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$			
Slide from Szeliski, Computer Vision: Algorithms and Applications				
METR 4202: Robotics		3 September 2014 -34		

Fundamental matrix

- Camera calibrations are unknown
- x' F x = 0 with $F = [e] \times H = K'[t] \times R$ K-1
- Solve for F using least squares (SVD)
 re-scale (xi, xi') so that |xi|≈1/2 [Hartley]
- e (epipole) is still the least singular vector of F
- H obtained from the other two s.v.s
- "plane + parallax" (projective) reconstruction
- use self-calibration to determine K [Pollefeys]

Matching criteria

- Raw pixel values (correlation)
- Band-pass filtered images [Jones & Malik 92]
- "Corner" like features [Zhang, ...]
- Edges [many people...]
- Gradients [Seitz 89; Scharstein 94]
- Rank statistics [Zabih & Woodfill 94]

Slide from Szeliski, Computer Vision: Algorithms and Applications
METR 4202: Robotics 3 September 2014 -5

Camera matrix calibration	
 Advantages: very simple to formulate and solve can recover K [R t] from M using QR decomposition [Golub & VanLoan 96] 	
 Disadvantages: doesn't compute internal parameters more unknowns than true degrees of freedom need a separate camera matrix for each new view 	
METR 4202: Robotics	3 September 2014 120

Measurement equations • Measurement equations $u_{fp} = i_f^T s_p$ i_f : rotation, s_p : position $v_{fp} = j_f^T s_p$ • Stack them up... W = R S $R = (i_1, ..., i_F, j_1, ..., j_F)^T$ $S = (s_1, ..., s_p)$ From Szeliski, <u>Computer Vision: Algorithms and Applications</u> WITH202: Robotis

