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Robot Sensing & Perception 

METR 4202: Advanced Control & Robotics 

Dr Surya Singh -- Lecture # 6  September 3, 2014

metr4202@itee.uq.edu.au 
http://robotics.itee.uq.edu.au/~metr4202/

© 2014 School of Information Technology and Electrical Engineering at the University of Queensland

“Seeing is forgetting the name of what one sees”
– L. Weschler

Schedule

Date Lecture (W: 11:10-12:40, 24-402)
30-Jul Introduction

6-Aug
Representing Position & Orientation & State
(Frames, Transformation Matrices & Affine Transformations)

13-Aug Robot Kinematics (& Ekka Day)
20-Aug Robot Dynamics & Control
27-Aug Robot Motion
3-Sep Sensing & Perception

10-Sep Multiple View Geometry (Computer Vision)
17-Sep Navigation & Localization (+ Prof. M. Srinivasan)
24-Sep Motion Planning + Control
1-Oct Study break
8-Oct State-Space Modelling

15-Oct Shaping the Dynamic Response
22-Oct Linear Observers & LQR
29-Oct Applications in Industry & Course Review
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Reference Material

UQ Library/SpringerLink

UQ Library
(ePDF)

UQ Library
(Hardcopy)
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Quick Outline

1. Perception  Camera Sensors
1. Image Formation
 “Computational Photography”

2. Calibration

3. Feature extraction

4. Stereopsis and depth

5. Optical flow
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Sensor Information

Laser

Vision/Cameras GPS
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Mapping: Indoor robots

3 September 2014 -METR 4202: Robotics 6
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Cameras

Wikipedia, E-30-Cutmodel
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Perception

• Making Sense from Sensors

http://www.michaelbach.de/ot/mot_rotsnake/index.html
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Perception

• Perception is about understanding
the image for informing latter 
robot / control action

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

3 September 2014 -METR 4202: Robotics 9

Perception

• Perception is about understanding
the image for informing latter 
robot / control action

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
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Image Formation: Lens Optics

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications

3 September 2014 -METR 4202: Robotics 11

Image Formation: 
Lens Optics (Chromatic Aberration & Vignetting)
• Chromatic Aberration:

• Vignetting:

Sec. 2.2 from Szeliski, Computer Vision: Algorithms and Applications

3 September 2014 -METR 4202: Robotics 12
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Image Formation: 
Lens Optics (Aperture / Depth of Field)

http://en.wikipedia.org/wiki/File:Aperture_in_Canon_50mm_f1.8_II_lens.jpg
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Image Formation – Single View Geometry

Corke, Ch. 11
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Image Formation – Single View Geometry [II]

Hartly & Zisserman, Ch. 6
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Image Formation – Single View Geometry
 Camera Projection Matrix

• x = Image point

• X = World point

• K = Camera Calibration Matrix

Perspective Camera as:

where: P is 3×4 and of rank 3

3 September 2014 -METR 4202: Robotics 16
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Image Formation – Two-View Geometry [Stereopsis]
 Fundamental Matrix

3 September 2014 -METR 4202: Robotics 17

Planar Projective Transformations

• Perspective projection of a plane
– lots of names for this:

• homography, colineation, planar projective map

– Easily modeled using homogeneous coordinates
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Slide from Szeliski, Computer Vision: Algorithms and Applications
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Transformations

• Forward Warp

• Inverse Warp

Sec. 3.6 from Szeliski, Computer Vision: Algorithms and Applications

3 September 2014 -METR 4202: Robotics 19

Transformations

• x’: New Image   &    x : Old Image

• Euclidean:
(Distances preserved)

• Similarity (Scaled Rotation):  
(Angles preserved)

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

3 September 2014 -METR 4202: Robotics 20
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Transformations [2]

• Affine :
(|| lines remain ||)

• Projective:  
(straight lines preserved)
H: Homogenous 3x3 Matrix

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications
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2-D Transformations

 x’ = point in the new (or 2nd) image

 x = point in the old image

• Translation x’ = x + t

• Rotation x’ = R x + t

• Similarity x’ = sR x + t

• Affine x’ = A x

• Projective x’ = A x

here, x is an inhomogeneous pt (2-vector)

x’  is a homogeneous point

3 September 2014 -METR 4202: Robotics 22
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2-D Transformations

3 September 2014 -METR 4202: Robotics 23

3D Transformations

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Image Rectification

To unwarp (rectify) an image
• solve for H given p’’ and p

• solve equations of the form:  sp’’ = Hp
– linear in unknowns:  s and coefficients of H

– need at least 4 points

Slide from Szeliski, Computer Vision: Algorithms and Applications
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3D Projective Geometry

• These concepts generalize naturally to 3D
– Homogeneous coordinates

• Projective 3D points have four coords:  P = (X,Y,Z,W)

– Duality
• A plane L is also represented by a 4-vector

• Points and planes are dual in 3D: L P=0

– Projective transformations
• Represented by 4x4 matrices T:  P’ = TP,    L’ = L T-1

– Lines are a special case…

Slide from Szeliski, Computer Vision: Algorithms and Applications
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3D → 2D Perspective Projection
(Image Formation Equations)

u

(Xc,Yc,Zc)

ucf

Slide from Szeliski, Computer Vision: Algorithms and Applications
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3D → 2D Perspective Projection

• Matrix Projection (camera matrix):
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Slide from Szeliski, Computer Vision: Algorithms and Applications
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Calibration matrix

• Is this form of K good enough?

• non-square pixels (digital video)

• skew

• radial distortion

From  Szeliski, Computer Vision: Algorithms and Applications
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Calibration

See:  Camera Calibration Toolbox for Matlab
(http://www.vision.caltech.edu/bouguetj/calib_doc/)

• Intrinsic: Internal Parameters
– Focal length: The focal length in pixels.

– Principal point: The principal point

– Skew coefficient:

The skew coefficient defining the angle between the x and y pixel axes.

– Distortions: The image distortion coefficients (radial and tangential distortions) 
(typically two quadratic functions)

• Extrinsics: Where the Camera (image plane) is placed:
– Rotations: A set of 3x3 rotation matrices for each image

– Translations: A set of 3x1 translation vectors for each image

3 September 2014 -METR 4202: Robotics 30
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Camera calibration

• Determine camera parameters from known 3D points or 
calibration object(s)

• internal or intrinsic parameters such as focal length, 
optical center, aspect ratio:
what kind of camera?

• external or extrinsic (pose)
parameters:
where is the camera?

• How can we do this?

From  Szeliski, Computer Vision: Algorithms and Applications
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Camera calibration – approaches

• Possible approaches:
– linear regression (least squares)

– non-linear optimization

– vanishing points

– multiple planar patterns

– panoramas (rotational motion)

From  Szeliski, Computer Vision: Algorithms and Applications
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Measurements on Planes
(You can not just add a tape measure!)

1 2 3 4

1

2

3

4

Approach:  unwarp then measure

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Projection Models

• Orthographic

• Weak Perspective

• Affine

• Perspective

• Projective
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Slide from Szeliski, Computer Vision: Algorithms and Applications
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Properties of Projection

• Preserves
– Lines and conics

– Incidence

– Invariants (cross-ratio)

• Does not preserve
– Lengths

– Angles

– Parallelism

3 September 2014 -METR 4202: Robotics 35

The Projective Plane

• Why do we need homogeneous coordinates?
– Represent points at infinity, homographies, perspective 

projection, multi-view relationships

• What is the geometric intuition?
– A point in the image is a ray in projective space

(0,0,0)

(sx,sy,s)

image plane

(x,y,1)
y

xz

• Each point (x,y) on the plane is represented by a ray
(sx,sy,s)

– all points on the ray are equivalent:  (x, y, 1)  (sx, sy, s)
Slide from Szeliski, Computer Vision: Algorithms and Applications
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Projective Lines

• What is a line in projective space?

• A line is a plane of rays through origin

• all rays (x,y,z) satisfying:  ax + by + cz = 0
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• A line is represented as a homogeneous 3-vector l
lT p

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Point and Line Duality
– A line l is a homogeneous 3-vector (a ray)

– It is  to every point (ray) p on the line:  lT p=0

• What is the intersection of two lines l1 and l2 ?
• p is  to l1 and l2  p = l1  l2

• Points and lines are dual in projective space
• every property of points also applies to lines

l p1 p2
l1

l2
p

• What is the line l spanned by rays p1 and p2 ?
• l is  to p1 and p2  l = p1  p2  (l is the plane normal)

3 September 2014 -METR 4202: Robotics 38
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Ideal points and lines

• Ideal point (“point at infinity”)
– p  (x, y, 0) – parallel to image plane

– It has infinite image coordinates

(sx,sy,0)y

x
z image plane

Line at infinity
• l∞  (0, 0, 1) – parallel to image plane

• Contains all ideal points

(sx,sy,0)
y

x
z image plane
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Vanishing Points

• Vanishing point
– projection of a point at infinity

– whiteboard
capture,
architecture,… 

image plane

camera
center

ground plane

vanishing point

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Fun With Vanishing Points

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Vanishing Points (2D)

image plane

camera
center

line on ground plane

vanishing point

3 September 2014 -METR 4202: Robotics 42
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Vanishing Points

• Properties
– Any two parallel lines have the same vanishing point

– The ray from C through v point is parallel to the lines

– An image may have more than one vanishing point

image plane

camera
center

C

line on ground plane

vanishing point V

line on ground plane
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Vanishing Lines

• Multiple Vanishing Points
– Any set of parallel lines on the plane define a vanishing point

– The union of all of these vanishing points is the horizon line

v1 v2

3 September 2014 -METR 4202: Robotics 44
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Two-View Geometry: Epipolar Plane

• Epipole: The point of intersection of the line joining the camera centres (the baseline) with the image plane. 
Equivalently, the epipole is the image in one view of the camera centre of the other view. 

• Epipolar plane is a plane containing the baseline. 
There is a one-parameter family (a pencil) of epipolar planes 

• Epipolar line is the intersection of an epipolar plane with the image plane. All epipolar lines intersect at the 
epipole. An epipolar plane intersects the left and right image planes in epipolar lines, and defines the 
correspondence between the lines. 

3 September 2014 -METR 4202: Robotics 45

Two-frame methods

• Two main variants:

• Calibrated: “Essential matrix” E
use ray directions (xi, xi’ )

• Uncalibrated: “Fundamental matrix” F

• [Hartley & Zisserman 2000]

From  Szeliski, Computer Vision: Algorithms and Applications
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Fundamental matrix

• Camera calibrations are unknown

• x’ F x = 0 with F  = [e] H = K’[t] R K-1

• Solve for F using least squares (SVD)
– re-scale (xi, xi’ ) so that |xi|≈1/2  [Hartley]

• e (epipole) is still the least singular vector of F

• H obtained from the other two s.v.s

• “plane + parallax” (projective) reconstruction

• use self-calibration to determine K [Pollefeys]

From  Szeliski, Computer Vision: Algorithms and Applications
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Essential matrix

• Co-planarity constraint:

• x’ ≈  R x + t

• [t] x’ ≈ [t] R x

• x’ [t] x’ ≈ x’ [t] R x

• x’ E x = 0  with E =[t] R

• Solve for E using least squares (SVD)

• t is the least singular vector of E

• R obtained from the other two s.v.s

From  Szeliski, Computer Vision: Algorithms and Applications
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Stereo: Epipolar geometry

• Match features along epipolar lines

viewing rayepipolar plane

epipolar line

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Stereo: epipolar geometry

• for two images (or images with collinear camera centers), 
can find epipolar lines

• epipolar lines are the projection of the pencil of planes 
passing through the centers

• Rectification:  warping the input images (perspective 
transformation) so that epipolar lines are horizontal

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Fundamental Matrix

• The fundamental matrix is the algebraic representation of 
epipolar geometry.

3 September 2014 -METR 4202: Robotics 51

Fundamental Matrix Example

• Suppose the camera matrices are those of a calibrated 
stereo rig with the world origin at the first camera

• Then:

• Epipoles are at:

∴

3 September 2014 -METR 4202: Robotics 52
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Summary of fundamental matrix properties

3 September 2014 -METR 4202: Robotics 53

Fundamental Matrix & Motion

• Under a pure translational camera motion, 3D points appear to slide 
along parallel rails. The images of these parallel lines intersect in a 
vanishing point corresponding to the translation direction. The 
epipole e is the vanishing point.

3 September 2014 -METR 4202: Robotics 54
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Cool Robotics Share

D. Wedge, The Fundamental Matrix Song
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Rectification

• Project each image onto same plane, which is parallel to 
the epipole

• Resample lines (and shear/stretch) to place lines in 
correspondence, and minimize distortion

• [Zhang and Loop, MSR-TR-99-21]

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Rectification

BAD!

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Rectification

GOOD!

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Matching criteria

• Raw pixel values (correlation)

• Band-pass filtered images [Jones & Malik 92]

• “Corner” like features [Zhang, …]

• Edges [many people…]

• Gradients [Seitz 89;  Scharstein 94]

• Rank statistics [Zabih & Woodfill 94]

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Finding correspondences

• Apply feature matching criterion (e.g., correlation or 
Lucas-Kanade) at all pixels simultaneously

• Search only over epipolar lines (many fewer candidate 
positions)

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Image registration (revisited)

• How do we determine correspondences?
– block matching or SSD (sum squared differences)

d is the disparity (horizontal motion)

• How big should the neighborhood be?

Slide from Szeliski, Computer Vision: Algorithms and Applications

3 September 2014 -METR 4202: Robotics 61

Neighborhood size

• Smaller neighborhood: more details

• Larger neighborhood:  fewer isolated mistakes

w = 3 w = 20

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Stereo: certainty modeling

• Compute certainty map from correlations

input depth map       certainty map

3 September 2014 -METR 4202: Robotics 63

Plane Sweep Stereo

• Sweep family of planes through volume

• each plane defines an image  composite homography

virtual camera

composite
input image

 projective re-sampling of (X,Y,Z)

3 September 2014 -METR 4202: Robotics 64
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Plane sweep stereo

• Re-order (pixel / disparity) evaluation loops

for every pixel, for every disparity
for every disparity for every pixel
compute cost compute cost

3 September 2014 -METR 4202: Robotics 65

Stereo matching framework

• For every disparity, compute raw matching costs

Why use a robust function?
– occlusions, other outliers

• Can also use alternative match criteria

3 September 2014 -METR 4202: Robotics 66
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Stereo matching framework

• Aggregate costs spatially

• Here, we are using a box filter
(efficient moving average
implementation)

• Can also use weighted average,
[non-linear] diffusion…

3 September 2014 -METR 4202: Robotics 67

Stereo matching framework

• Choose winning disparity at each pixel

• Interpolate to sub-pixel accuracy

d

E(d)

d*

3 September 2014 -METR 4202: Robotics 68
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Traditional Stereo Matching

• Advantages:
– gives detailed surface estimates

– fast algorithms based on moving averages

– sub-pixel disparity estimates and confidence

• Limitations:
– narrow baseline  noisy estimates

– fails in textureless areas

– gets confused near occlusion boundaries

3 September 2014 -METR 4202: Robotics 69

Stereo with Non-Linear Diffusion

• Problem with traditional approach:
– gets confused near discontinuities

• New approach:
– use iterative (non-linear) aggregation to obtain better estimate

– provably equivalent to mean-field estimate of Markov Random 
Field

3 September 2014 -METR 4202: Robotics 70
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How to get Matching Points? Features

• Colour

• Corners

• Edges

• Lines

• Statistics on Edges:  SIFT, SURF, ORB…
In OpenCV: The following detector types are supported:

– "FAST" – FastFeatureDetector

– "STAR" – StarFeatureDetector

– "SIFT" – SIFT (nonfree module)

– "SURF" – SURF (nonfree module)

– "ORB" – ORB

– "BRISK" – BRISK

– "MSER" – MSER

– "GFTT" – GoodFeaturesToTrackDetector

– "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled

– "Dense" – DenseFeatureDetector

– "SimpleBlob" – SimpleBlobDetector

3 September 2014 -METR 4202: Robotics 71

Feature-based stereo

• Match “corner” (interest) points

• Interpolate complete solution

Slide from Szeliski, Computer Vision: Algorithms and Applications
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Features -- Colour Features

• RGB is NOT an absolute (metric) colour space
Also!

• RGB (display or additive colour) does not map to 
CYMK (printing or subtractive colour) without calibration

• Y-Cr-Cb or HSV does not solve this either

Bayer Patterns

Fig: Ch. 10, Robotics Vision and Control

3 September 2014 -METR 4202: Robotics 73

How to get the Features? Still MANY Ways

• Canny edge detector:

3 September 2014 -METR 4202: Robotics 74
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Hough Transform

• Uses a voting mechanism

• Can be used for other lines and shapes 
(not just straight lines)

3 September 2014 -METR 4202: Robotics 75

Hough Transform: Voting Space

• Count the number of lines that can go through a point and 
move it from the “x-y” plane to the “a-b” plane

• There is only a one-“infinite” number (a line!) of solutions
(not a two-“infinite” set – a plane)

3 September 2014 -METR 4202: Robotics 76
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Hough Transform: Voting Space

• In practice, the polar form is often used

• This avoids problems with lines that are nearly vertical 

3 September 2014 -METR 4202: Robotics 77

Hough Transform: Algorithm

1. Quantize the parameter space appropriately. 

2. Assume that each cell in the parameter space is an 
accumulator. Initialize all cells to zero. 

3. For each point (x,y) in the (visual & range) image space, 
increment by 1 each of the accumulators that satisfy the 
equation. 

4. Maxima in the accumulator array correspond to the 
parameters of model instances. 

3 September 2014 -METR 4202: Robotics 78
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Line Detection – Hough Lines [1]

• A line in an image can be expressed as two variables:
– Cartesian coordinate system: m,b

– Polar coordinate system: r, θ
 avoids problems with vert. lines

y=mx+b

• For each point (x1, y1) we can write:

• Each pair (r,θ) represents a line that passes through (x1, y1) 
See also OpenCV documentation (cv::HoughLines)
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Line Detection – Hough Lines [2]

• Thus a given point gives a sinusoid

• Repeating for all points on the image

See also OpenCV documentation (cv::HoughLines)
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Line Detection – Hough Lines [3]

• Thus a given point 
gives a sinusoid

• Repeating for all
points on the image

• NOTE that an intersection of sinusoids represents (a point) 
represents a line in which pixel points lay.

 Thus, a line can be detected by finding the number of
Intersections between curves

See also OpenCV documentation (cv::HoughLines)
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“Cool Robotics Share” -- Hough Transform

• http://www.activovision.com/octavi/doku.php?id=hough_transform

METR 4202: Robotics 3 September 2014 -82
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Line Extraction and Segmentation

Adopted from  Williams, Fitch, and Singh, MTRX 4700

3 September 2014 -METR 4202: Robotics 83

Line Formula

Adopted from  Williams, Fitch, and Singh, MTRX 4700

3 September 2014 -METR 4202: Robotics 84
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Line Estimation

Least squares minimization of the line:

• Line Equation:

• Error in Fit:

• Solution:

Adopted from  Williams, Fitch, and Singh, MTRX 4700
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Line Splitting / Segmentation

• What about corners?

Split into multiple lines  (via expectation maximization)
1. Expect (assume) a number of lines N  (say 3)

2. Find “breakpoints” by finding nearest neighbours upto a 
threshold or simply at random (RANSAC)

3. How to know N?  (Also RANSAC)
Adopted from  Williams, Fitch, and Singh, MTRX 4700
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٣ of a Point from a Line Segment

d

D

Adopted from  Williams, Fitch, and Singh, MTRX 4700
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Edge Detection

• Canny edge detector:
– Pepsi Sequence:

Image Data: http://www.cs.brown.edu/~black/mixtureOF.html and Szeliski, CS223B-L9
See also: Use of Temporal information to aid segmentation: 
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html
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Why extract features?

• Object detection 

• Robot Navigation 

• Scene Recognition

• Steps:
– Extract Features

– Match Features Adopted drom S. Lazebnik, Gang Hua (CS 558)
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Why extract features? [2]

• Panorama stitching…
Step 3: Align images  

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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Characteristics of good features

• Repeatability
– The same feature can be found in several images despite 

geometric and photometric transformations 

• Saliency
– Each feature is distinctive

• Compactness and efficiency
– Many fewer features than image pixels

• Locality
– A feature occupies a relatively small area of the image; robust to 

clutter and occlusion

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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Finding Corners

• Key property: in the region around a corner, image 
gradient has two or more dominant directions

• Corners are repeatable and distinctive
C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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Corner Detection: Basic Idea

• Look through a window

• Shifting a window in any direction should give a large 
change in intensity

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

“flat” region:
no change in 
all directions

Source: A. Efros
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Corner Detection: Mathematics

 2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

Change in appearance of window w(x,y) 
for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)
Adopted from   
S. Lazebnik, 
Gang Hua (CS 558)
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Corner Detection: Mathematics

 2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y) 
for the shift [u,v]:

Adopted from   
S. Lazebnik, 
Gang Hua (CS 558)
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Corner Detection: Mathematics

 2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) 
for the shift [u,v]:

Adopted from   
S. Lazebnik, 
Gang Hua (CS 558)
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Corner Detection: Mathematics

 2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

We want to find out how this function behaves for small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:

E(u, v)

Adopted from   
S. Lazebnik, 
Gang Hua (CS 558)
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Corner Detection: Mathematics
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 2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y   

Local quadratic approximation of E(u,v) in the neighborhood of 
(0,0) is given by the second-order Taylor expansion:

We want to find out how this function behaves for small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:

Adopted from   
S. Lazebnik, 
Gang Hua (CS 558)
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Corner Detection: Mathematics
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Adopted from   
S. Lazebnik, 
Gang Hua (CS 558)
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Corner Detection: Mathematics
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Adopted from   
S. Lazebnik, 
Gang Hua (CS 558)
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Harris detector: Steps

• Compute Gaussian derivatives at each pixel

• Compute second moment matrix M in a Gaussian window 
around each pixel 

• Compute corner response function R

• Threshold R

• Find local maxima of response function (nonmaximum 
suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Adopted from   
S. Lazebnik, 
Gang Hua (CS 558)
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Harris Detector: Steps

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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Harris Detector: Steps
Compute corner response R

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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Harris Detector: Steps
Find points with large corner response: R>threshold

Adopted from   S. Lazebnik, Gang Hua (CS 558)

3 September 2014 -METR 4202: Robotics 104



53

Harris Detector: Steps
Take only the points of local maxima of R

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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Harris Detector: Steps

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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Invariance and covariance

• We want corner locations to be invariant to photometric 
transformations and covariant to geometric 
transformations
– Invariance: image is transformed and corner locations do not 

change

– Covariance: if we have two transformed versions of the same 
image, features should be detected in corresponding locations

Adopted from   S. Lazebnik, Gang Hua (CS 558)
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RANdom SAmple Consensus

1. Repeatedly select a small (minimal) subset of 
correspondences

2. Estimate a solution (in this case a the line)

3. Count the number of “inliers”, |e|<Θ
(for LMS, estimate med(|e|)

4. Pick the best subset of inliers

5. Find a complete least-squares solution

• Related to least median squares

• See also: 
MAPSAC (Maximum A Posteriori SAmple Consensus)

From  Szeliski, Computer Vision: Algorithms and Applications
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Cool Robotics Share Time!

D. Wedge, The RANSAC Song
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Basic idea:
• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2
angle histogram
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SIFT descriptor

Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe
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Properties of SIFT
• Extraordinarily robust matching technique

– Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination
• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

From David Lowe and Szeliski, Computer Vision: Algorithms and Applications
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Feature matching

• Given a feature in I1, how to find the best match in I2?
1. Define distance function that compares two descriptors

2. Test all the features in I2, find the one with min distance

From  Szeliski, Computer Vision: Algorithms and Applications
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Feature distance

• How to define the difference between two features 
f1, f2?
– Simple approach is SSD(f1, f2) 

• sum of square differences between entries of the two descriptors

• can give good scores to very ambiguous (bad) matches 

I1 I2

f1 f2

From  Szeliski, Computer Vision: Algorithms and Applications
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Feature distance
• How to define the difference between two features f1, f2?

– Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’)
• f2 is best SSD match to f1 in I2

• f2’        is  2nd best SSD match to f1 in I2

• gives small values for ambiguous matches

I1 I2

f1 f2f2'

From  Szeliski, Computer Vision: Algorithms and Applications
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Evaluating the results
• How can we measure the performance of a feature matcher?

50
75

200

feature distance

From  Szeliski, Computer Vision: Algorithms and Applications

3 September 2014 -METR 4202: Robotics 116



59

True/false positives

• The distance threshold affects performance
– True positives = # of detected matches that are correct

• Suppose we want to maximize these—how to choose threshold?

– False positives = # of detected matches that are incorrect
• Suppose we want to minimize these—how to choose threshold?

50
75

200

feature distance

false match

true match

From  Szeliski, Computer Vision: Algorithms and Applications
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Levenberg-Marquardt

• Iterative non-linear least squares [Press’92]
– Linearize measurement equations

– Substitute into log-likelihood equation:  
quadratic cost function in Dm

From  Szeliski, Computer Vision: Algorithms and Applications
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Levenberg-Marquardt

• What if it doesn’t converge?
– Multiply diagonal by (1 + l), increase l until it does

– Halve the step size Dm (my favorite)

– Use line search

– Other ideas?

• Uncertainty analysis:  covariance S = A-1

• Is maximum likelihood the best idea?

• How to start in vicinity of global minimum?

From  Szeliski, Computer Vision: Algorithms and Applications
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Camera matrix calibration

• Advantages:
– very simple to formulate and solve

– can recover K [R | t] from M using 
QR decomposition [Golub & VanLoan 96]

• Disadvantages:
– doesn't compute internal parameters

– more unknowns than true degrees of freedom

– need a separate camera matrix for each new view

From  Szeliski, Computer Vision: Algorithms and Applications
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Multi-plane calibration

• Use several images of planar target held at unknown 
orientations [Zhang 99]
– Compute plane homographies

– Solve for K-TK-1 from Hk’s
• 1plane if only f unknown

• 2 planes if (f,uc,vc) unknown

• 3+ planes for full K

– Code available from Zhang and OpenCV

From  Szeliski, Computer Vision: Algorithms and Applications
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Rotational motion

• Use pure rotation (large scene) to estimate f
– estimate f from pairwise homographies

– re-estimate f from 360º “gap”

– optimize over all {K,Rj} parameters
[Stein 95; Hartley ’97; Shum & Szeliski ’00; Kang & Weiss ’99]

• Most accurate way to get f, short of surveying distant 
points

f=510 f=468

From  Szeliski, Computer Vision: Algorithms and Applications
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SFM: Structure from Motion 
(& Cool Robotics Share (this week))
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Structure [from] Motion

• Given a set of feature tracks,
estimate the 3D structure and 3D (camera) motion.

• Assumption: orthographic projection

• Tracks:  (ufp,vfp), f: frame, p: point

• Subtract out mean 2D position…

if: rotation,  sp: position

From  Szeliski, Computer Vision: Algorithms and Applications
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Structure from motion

• How many points do we need to match?

• 2 frames:
– (R,t): 5 dof + 3n point locations 
– 4n point measurements 
– n  5

• k frames:
– 6(k–1)-1 + 3n  2kn

• always want to use many more

From  Szeliski, Computer Vision: Algorithms and Applications
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Measurement equations

• Measurement equations

ufp = if
T sp if: rotation, sp: position

vfp = jf
T sp

• Stack them up…

W = R S

R = (i1,…,iF, j1,…,jF)T

S = (s1,…,sP)

From  Szeliski, Computer Vision: Algorithms and Applications
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Factorization

W = R2F3 S3P

SVD

W = U Λ V Λ must be rank 3

W’ = (U Λ 1/2)(Λ1/2 V) = U’ V’

Make R orthogonal

R = QU’ ,  S = Q-1V’

if
TQTQif = 1 …

From  Szeliski, Computer Vision: Algorithms and Applications
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Results

• Look at paper figures…

From  Szeliski, Computer Vision: Algorithms and Applications
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Bundle Adjustment

• What makes this non-linear minimization hard?
– many more parameters: potentially slow

– poorer conditioning (high correlation)

– potentially lots of outliers

– gauge (coordinate) freedom

From  Szeliski, Computer Vision: Algorithms and Applications
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Lots of parameters: sparsity

• Only a few entries in Jacobian are non-zero

From  Szeliski, Computer Vision: Algorithms and Applications
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Sparse Cholesky (skyline)

• First used in finite element analysis

• Applied to SfM by [Szeliski & Kang 1994]

structure | motion fill-in

From  Szeliski, Computer Vision: Algorithms and Applications
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Conditioning and gauge freedom

• Poor conditioning:
– use 2nd order method

– use Cholesky decomposition

• Gauge freedom
– fix certain parameters (orientation)  or

– zero out last few rows in Cholesky decomposition

From  Szeliski, Computer Vision: Algorithms and Applications
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More Cool Robotics Share!
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Cool Robotics Share (IV)

Source: Youtube: Wired, How the Tesla Model S is Made
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