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Schedule 

Week Date Lecture (W: 11:10-12:40, 24-402) 

1 30-Jul Introduction 

2 6-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 13-Aug Robot Kinematics (& Ekka Day) 

4 20-Aug Robot Dynamics & Control 

5 27-Aug Robot Trajectories & Motion 

6 3-Sep Sensors & Measurement 

7 10-Sep Perception (Computer Vision)   

8 17-Sep Navigation & Localization (+ Prof. M. Srinivasan) 

9 24-Sep Motion Planning + Control 

  1-Oct Study break 

10 8-Oct State-Space Modelling 

11 15-Oct Shaping the Dynamic Response 

12 22-Oct Linear Observers & LQR 

13 29-Oct Applications in Industry & Course Review 

 - 

http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Reference Material 

Outline 

• Denavit Hartenberg Notation 

• Parallel Robots 

 

 

• Jacobians  & Differential Motion 

• Multibody Dynamics Refresher 

 

• Newton-Euler Formulation 

• Lagrange Formulation 

 

 

 

 

 - 

http://ruina.tam.cornell.edu/Book/RuinaPratap1-15-13.pdf
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Inverse Kinematics  

• Forward: angles  position 

 x = f (θ) 

• Inverse: position  angles 

 θ = f-1(x) 

• Analytic Approach 

 

• Numerical Approaches: 

– Jacobian:  

– JT Approximation:  

• Slotine & Sheridan method 

– Cyclical Coordinate Descent 

 - 

Inverse Kinematics 

• Inverse Kinematics is the problem of finding the joint 
parameters given only the values of the homogeneous 
transforms which model the mechanism  
(i.e., the pose of the end effector) 

 

• Solves the problem of where to drive the joints in order to 
get the hand of an arm or the foot of a leg in the right 
place 

 

• In general, this involves the solution of a set of 
simultaneous, non-linear equations 

 

• Hard for serial mechanisms, easy for parallel 

 - 
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Solution Methods 

• Unlike with systems of linear equations, there are no 

general algorithms that may be employed to solve a set of 

nonlinear equation 

• Closed-form and numerical methods exist 

• We will concentrate on analytical, closed-form methods 

• These can be characterized by two methods of obtaining a 

solution: algebraic and geometric 

 - 

Inverse Kinematics: Algebraic Approach 

• We have a series of equations which define this system 

• Recall, from Forward Kinematics: 

 

 

 

 

 

• The end-effector pose is given by 

 

 

 

 

 

• Equating terms gives us a set of algebraic relationships 

θ1 

θ2 

θ3 

{0} 

φ,x,y 

 - 
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Denavit Hartenberg [DH] Notation 

• J. Denavit and R. S. Hartenberg first proposed the use of homogeneous 

transforms for articulated mechanisms 

 (But B. Roth, introduced it to robotics) 

 

• A kinematics “short-cut” that reduced the number of parameters by adding 

a structure to frame selection 

 

• For two frames positioned in space, the first can be moved into 

coincidence with the second by a sequence of 4 operations: 

– rotate around the xi-1 axis by an angle ai 

– translate along the xi-1 axis by a distance ai 

– translate along the new z axis by a distance di 

– rotate around the new z axis by an angle qi 

 - 

Denavit-Hartenberg Convention 

• link length ai the offset distance between the zi-1 and zi axes along the xi 
axis; 

• link twist ai the angle from the zi-1 axis to the zi axis about the xi axis; 

 

 

• link offset di the distance 
from the origin of frame i-1 
to the xi axis along the zi-1 
axis; 

• joint angle qi the angle 
between the xi-1 and xi axes 
about the zi-1 axis. 

 

Art  c/o P. Corke 

 - 



6 

DH: Where to place frame? 

1. Align an axis along principal motion 

1. Rotary (R): align rotation axis along the z axis 

2. Prismatic (P): align slider travel along x axis 

 

2. Orient  so as to position x axis towards next frame 

 

3. θ (rot z)  d (trans z)  a (trans x)  α (rot x) 

 - 

Denavit-Hartenberg  Rotation Matrix 

• Each transformation is a product of 4 “basic”  

transformations (instead of 6) 

 - 
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DH Example [1]: RRR Link Manipulator 

1. Assign the frames at the joints … 

2. Fill DH Table … 

α θ

θ1 

θ2 

θ3 

{0} 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 2 3

1 2 30 1 2

1 2 3

0 0 0

0 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c c s L c

s c L s s c L s s c L s
A A A

q q q q q q q q q

q q q q q q q q q

       
     
       
     
     
     

123 123 1 12 123

123 123 1 12 123

0 0 1 2

3 1 2 3

1 2 3

1 2 3

0

0

0 0 1 0

0 0 0 1

T A A A

c s L c L c L c

s c L s L s L s

q q q q q

q q q q q



   
 

 
 
 
 
 

α θ

θ

θ

θ

DH Example [2]: RRP Link Manipulator 

1. Assign the frames at the joints … 

2. Fill DH Table … 

α θ

θ

θ

0

1 1 1 2 2 2

1 1 1 2 2 2

1 2 3

1 20 1 2

1 2 3

0 0 1 0 0

0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s L c c s L c L

s c L s s c L s
A A A

q q q q q q

q q q q q q

      
     
       
     
     
     

θ1 

θ2 {0} 

 

 
12 12 1 12

12 12 1 12

0 0 1 2

3 1 2 3

1 2 3

1 2 3

0

0

0 0 1 0

0 0 0 1

T A A A

c s L c L L c

s c L s L L s

q q q q

q q q q



    
 

  
 
 
  

α θ
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Modified DH 

• Made “popular” by Craig’s Intro. to Robotics book 

• Link coordinates attached to the near by joint 

 

 

 

 

 

 

 

• a (trans x-1)  α (rot x-1)  θ (rot z)  d (trans z)  

 

Art  c/o P. Corke 

 - 

Modified DH [2] 

• Gives a similar result 

(but it’s not commutative) 

 

 

 

 

• Refactoring Standard  to Modified 

 

 - 
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Parallel Manipulators 

• The “central” Kinematic 

structure is made up of 

closed-loop chain(s) 

 

• Compared to Serial 

Mechanisms: 

+ Higher Stiffness 

+ Higher Payload 

+ Less Inertia 

– Smaller Workspace 

– Coordinated Drive System 

– More Complex & $$$ 

 

Sources: Wikipedia, “Delta Robot”, ParallelMic.Org, “Delta Parallel Robot”, and  

US Patent 4,976,582 

Symmetrical Parallel Manipulator 

A sub-class of Parallel Manipulator: 
o # Limbs (m) = # DOF (F) 

o The joints are arranged in an identical pattern 

o The # and location of actuated joints are the same  

 

Thus: 
o Number of Loops (L): One less than # of limbs 

 

 

o Connectivity (Ck) 

 

 

 
Where: λ: The DOF of the space that the system is in (e.g., λ=6 for 3D space). 

 

 

 
 

 - 

https://www.google.com/patents/US4976582
https://www.google.com/patents/US4976582
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Robot Dynamics 

 - 

Angular Velocity 

• If we look at a small timeslice as a frame rotates with a moving point, we 

find 
AΩB 

ΔP ΩΔt 

{B} 

P(t) 

P(t+Δt) 

θ 

|P|sinq 

 - 
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Velocity 

• Recall that we can specify a point in one frame relative to 

another as 

 

• Differentiating w/r/t to t we find 

 

 

 

• This can be rewritten as  

 

 

 - 

Skew – Symmetric Matrix 

 

 - 
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Velocity Representations 

• Euler Angles 

– For Z-Y-X  (α,β,γ): 

 

 

 

 

•  Quaternions 

 

 

 - 

Manipulator Velocities 

• Consider again the schematic of the planar 

manipulator shown.  We found that the end 

effector position is given by 

 

 

 

• Differentiating w/r/t to t  
 

 

 

 

 

• This gives the end effector velocity  

as a function of pose and joint velocities 

θ1 

θ2 

θ3 

v 
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Manipulator Velocities [2] 

• Rearranging, we can recast this relation in 

matrix form 

 

 

 

• Or 

 

 

 

 

• The resulting matrix is called the Jacobian 

and provides us with a mapping from 

Joint Space to Cartesian Space.   

θ1 

θ2 

θ3 

v 

Moving On…Differential Motion 

• Transformations also encode differential relationships 

• Consider a manipulator (say 2DOF, RR) 

  

  

• Differentiating with respect to the angles gives: 

 

 

 

 - 



14 

Differential Motion [2] 

• Viewing this as a matrix  Jacobian  

1 1 2 2v J Jq q 

 - 

Infinitesimal Rotations 

•   

 

 

 

 

 

 

 

•  Note that: 

 

 

 Therefore … they commute 

 

 

       x y y xR d R d R d R d   

 - 
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The Jacobian 

• In general, the Jacobian takes the form 

(for example, j joints and in i operational space) 

 

 

 

 

 

 

• Or more succinctly 

 - 

Jacobian [2] 

 

 

 

 

 

 

 

• Jacobian can be viewed as a mapping from  

Joint velocity space (   )  to 

Operational velocity space (v) 

 

Image:. Sciavicco and Siciliano,  

Modelling and Control of Robot  

Manipulators, 2nd ed, 2000 

 - 
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Revisiting The Jacobian  

• I told you: 

 

 

 

 

 

 

 

• True, but we can be more “explicit” 

 

 - 

Jacobian: Explicit Form 

• For a serial chain (robot): The velocity of a link with 

respect to the proceeding link is dependent on the type of 

link that connects them 

• If the joint is prismatic (ϵ=1), then 

• If the joint is revolute (ϵ=0), then  

 

 

 

• Combining them (with v=(Δx, Δθ)) 

 

 

dz
i dt
v

ˆ(in the  direction)
d

k
dt

q
 

  1

1

N
i

i i i i i

i

v v   



    p      
1 1

N N

i i i i i

i i

   q
 

  θ z

vv J  q Jω q

vJ
J

J

 
  
 

 - 
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Jacobian: Explicit Form [2] 

• The overall Jacobian takes the form 

 

 

• The Jacobian for a particular frame (F) can be expressed: 

 

 

 

Where:   &   

1

1 1 1

P P

n

n

x x

q qJ

z z 

  
  
 
  

1

1 1 1

F F

P PF

F v

nF

F F

n

x x
J

q qJ
J

z z
  

  
   

     
    

F F i

i i iRz z  0 0 1i

i z

 - 

Dynamics 

• We can also consider the forces that are required to 

achieve a particular motion of a manipulator or other body 

 

• Understanding the way in which motion arises from 

torques applied by the actuators or from external forces 

allows us to control these motions 

 

• There are a number of methods for formulating these 

equations, including 

– Newton-Euler Dynamics 

– Langrangian Mechanics 

 - 
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Dynamics of Serial Manipulators 

• Systems that keep on manipulating (the system) 

 

• Direct Dynamics: 

– Find the response of a robot arm  

with torques/forces applied 

 

• Inverse Dynamics: 

– Find the (actuator) torques/forces  

required to generate a desired  

trajectory of the manipulator 

 - 

Dynamics – Newton-Euler 

• In general, we could analyse the 

dynamics of robotic systems using 

classical Newtonian mechanics 

 

 

 

 

• This can entail iteratively 

calculating velocities and 

accelerations for each link and 

then computing force and moment 

balances in the system 

• Alternatively, closed form 

solutions may exist for simple 

configurations 

θ1 

θ2 

τ1 

τ2 

m1g 

m2g 
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Dynamics 

• For Manipulators, the general form is 

 

 

 where 
• τ is a vector of joint torques 

• Θ is the nx1 vector of joint angles 

• M(Θ) is the nxn mass matrix 

• V(Θ, Θ)is the nx1 vector of centrifugal and Coriolis terms 

• G(Θ) is an nx1 vector of gravity terms 

• Notice that all of these terms depend on Θ so the dynamics 

varies as the manipulator move 

 - 

Dynamics: Inertia 

• The moment of inertia (second moment)  

of a rigid body B relative to a line L  

that passes through a reference point O  

and is parallel to a unit vector u is given by: 

 

 

 

• The scalar product of Io
u with a second axis (w)  

is called the product of inertia  

 

 

• If u=w, then we get the moment of inertia: 

 

 Where: rg: radius of gyration of B w/r/t to L 

  

 

 

 
 - 
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Dynamics: Mass Matrix & Inertia Matrix  

• This can be written in a Matrix form as: 

 

 

• Where IO
B is the inertial matrix or inertial tensor  

of the body B about a reference point O 

 

 

 

 

• Where to get Ixx, etc?  Parallel Axis Theorem 

 If CM is the center of mass, then: 

 

 

 

 

 

 
 - 

Dynamics: Mass Matrix 

• The Mass Matrix:  Determining via the Jacobian! 

 

 

 

 

 

 

 

 

! M is symmetric, positive definite       , 0T

ij jim m M  θ θ

 - 
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Dynamics – Langrangian Mechanics 

• Alternatively, we can use Langrangian 
Mechanics to compute the dynamics of a 
manipulator (or other robotic system) 

 

• The Langrangian is defined as the difference 
between the Kinetic and Potential energy in 
the system 

 

• Using this formulation and the concept of 
virtual work we can find the forces and 
torques acting on the system. 

 

• This may seem more involved but is often 
easier to formulate for complex systems  

 - 

Dynamics – Langrangian Mechanics [2] 

, : Generalized Velocities, : Mass MatrixL K P M  θ

1

N

i

i

d K K P

dt




   
       
τ

θ θ θ

     ,M q   τ θ v θ θ g θ
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Dynamics – Langrangian Mechanics [3] 

• The Mass Matrix:  Determining via the Jacobian! 

 

 

 

 

 

 

 

 

! M is symmetric, positive definite       , 0T

ij jim m M  θ θ

 - 

Generalized Coordinates 

• A significant feature of the Lagrangian Formulation is that 

any convenient coordinates can be used to derive the 

system. 

• Go from Joint  Generalized 

– Define p:   

 

Thus: the kinetic energy and gravity terms become 

 

 where: 

   1 1n nq q p p  q p

d dp J q

*1
2

TKE  p H p

 * 1 1
T

 H J HJ

 * 1
T

G J G

 - 
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Inverse Dynamics  

• Forward dynamics governs the dynamic responses of a manipulator arm to the 

input torques generated by the actuators. 

• The inverse problem: 

– Going from joint angles  

to torques 

– Inputs are desired  

trajectories described  

as functions of time 

 

– Outputs are joint torques 

 to be  applied at each instance 

 
• Computation “big” (6DOF arm: 66,271 multiplications), 

but not scary (4.5 ms on PDP11/45) 

 

       1 1 2 3nq q t t tq q q    q

 1 n τ

 

 - 

Also: Inverse Jacobian 

• In many instances, we are also interested in computing the 

set of joint velocities that will yield a particular velocity at 

the end effector 

 

• We must be aware, however, that the inverse of the 

Jacobian may be undefined or singular.  The points in the 

workspace at which the Jacobian is undefined are the 

singularities of the mechanism. 

• Singularities typically occur at the workspace boundaries 

or at interior points where degrees of freedom are lost 

 - 
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Inverse Jacobian Example 

• For a simple two link RR manipulator: 

 

 

• The Jacobian for this is 

 

 

 

• Taking the inverse of the Jacobian yields 

 

 

 

• Clearly, as q2 approaches 0 or p this 

manipulator becomes singular 

q1 

q2 

Static Forces 

• We can also use the Jacobian to compute 

the joint torques required to maintain a 

particular force at the end effector 

• Consider the concept of virtual work 

 

• Or 

 

• Earlier we saw that 

 

• So that 

 

• Or 

q1 

q2 

q3 

F 
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Nonlinear 

Plant 

+ 

_ 

Xref X 

feedforward command 

(open-loop policy) 

compensated dynamics 

terrain  + τ friction  + τ 

terrain+ τfriction+ τ

Operation Space (Computed Torque)  

Model Based 

Model “Free” 

Compensated Manipulation 
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Trajectory Generation & Planning  

 - 

Trajectory Generation  

• The goal is to get from an initial position {i} to a final 

position {f} via a path points {p} 

{i} 

{f} 

{p} 

 - 
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Joint Space 

Consider only the joint positions 

as a function of time 

 

• + Since we control the joints, this is 

more direct 

• -- If we want to follow a particular 

trajectory, not easy  

– at best lots of intermediate points 

– No guarantee that you can solve 

the Inverse Kinematics for all 

path points 

 

 

Cartesian Workspace 

Consider the Cartesian positions 

as a function of time 

 

• + Can track shapes exactly  

• -- We need to solve the inverse 

kinematics and dynamics 

 

 

Time 

x 
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Polynomial Trajectories 

• Straight line Trajectories 

 

 

 

 

 

• Simpler 

• Polynomial Trajectories 

 

 

 

 

 

 

• Parabolic blends are 

smoother 

• Use “pseudo via points” 

A

B

C A

B

C

Summary 

• Kinematics is the study of motion without regard to the 

forces that create it 

• Kinematics is important in many instances in Robotics 

 

• The study of dynamics allows us to understand the forces 

and torques which act on a system and result in motion 

 

• Understanding these motions, and the required forces, is 

essential for designing these systems 

 

 

 - 
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Dynamic Simulation Software 

•   

 

 

 

  

•   

 

 

 

   

http://www.coppeliarobotics.com/
http://www.coppeliarobotics.com/
http://www.reflexxes.com/
http://www.reflexxes.com/

