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Schedule

Week | Date Lecture (W: 11:10-12:40, 24-402)
1 [ 30-Jul [Introduction
2 |6-Au Representing Position & Orientation & State

g (Frames, Transformation Matrices & Affine Transformations)
3 |13-Aug|Robot Kinematics (& Ekka Day)
4 |20-Aug|Robot Dynamics & Control
5 |27-Aug|Robot Motion
6 | 3-Sep [Robot Sensing: Perception & Multiple View Geometry
7 |10-Sep [Robot Sensing: Features & Detection using Computer Vision
8 |17-Sep[Navigation (+ Prof. M. Srinivasan)
9 |24-Sep [Localization
1-Oct Study break

10 | 8-Oct |State-Space Modelling
11 [15-OctMotion Planning + Control
12 |22-Oct[Shaping the Dynamic Response
13 [29-Oct|Linear Observers & LQR + Course Review
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Announcements; Lab 3 Extended

- Lab 3: |
— Due Nov 3 or Nov 12 .
— Time Signup online
— Rubric online

* Individual Assignment
— Online too!

— Just attempt 100 points worth
» That’s 50% -- the entire paper is worth 200 points!
» No extra credit for trying additional problems >100 points.

Cool

« Cool Robotics Share Site Robotics |
=> http://metr4202.tumblr.com/ e
Twitter: #metr4202
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Shaping of

Dynamic Responses
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Let’s Generalize This

« Shaping the Dynamic Response

— A method of designing a control system for a process in which
all the state variables are accessible for

— measurement-the method known as pole-placement

» Theory:
—  We will find that in a controllable system, with all the state variables

accessible for measurement, it is possible to place the closed-loop poles
anywhere we wish in the complex s plane!

» Practice:

—  Unfortunately, however, what can be attained in principle may not be
attainable in practice. Speeding the response of a sluggish system requires
the use of large control signals which the actuator (or power supply) may not
be capable of delivering. And, control system gains are very sensitive to the
location of the open-loop poles
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Regulator Design

 Here the problem is to determine the gain matrix G in a
linear feedback law  «--6:- 6w

— Where: X, is the vector of exogenous variables. The reason it is
necessary to separate the exogenous variables from the process
state X, rather than deal directly with the metastate «-[ ]
is that we must assume that the underlying process 1s
controllable.

+ Since the exogenous variables are not true state variables, but additional
inputs that cannot be affected by the control action, they cannot be
included in the state vector when using a design method that requires
controllability.

« HOWEVER, they can be used in a process for Observability!
-~ when we are doing this as part of the sensing/mapping process!!
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» The assumption that all the state variables are accessible to
measurement in the regulator means that the gain matrix G
In is permitted to be any function of the state x that the
design method requires

y=0Cx
u=-—Gyy
u=-0%

— Where: X is the state of an appropriate dynamic system known as
an "observer."
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SISO Regulator Design
« Design of a gain matrix

G=g'=[¢,92-.., 0l

for the single-input, single-output system

X =Ax+ Bu

b,
p=p=|?
by,

With the control law # = —Gx = —g'x (6.7) becomes

where

X =(A—bg')x

 Our objective is to find the matrix G = g' which places the
poles of the closed-loop dynamics matrix 4.4 s
at the locations desired.

= METR 4202: Robotics 29 October 2014 - 8
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SISO Regulator Design [2]

« One way of determining the gains would be to set up the
characteristic polynomial for Ac:

|sT — A =|sI —A+bg|=s*+as""'+ - - +a,

 The coefficients a,,a,, ...,a, of the powers of s in the
characteristic polynomial will be functions of the k
unknown gains. Equating these functions to the numerical
values desired for a,,a,, ...,a, will result in k simultaneous
equations the solution of which will yield the desired gains

Op -y Qg
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SISO Regulator Design [3]

If the original system is in the companion form given in (3.90), the task is
particularly easy, because

=@y —a@, *** =@, —a
1 0 0 0
A 0 1 LR () 0 0 (6.11)
0 0 | 0
| .
0 91 g2 e G
' 0
bg'=| 0[g1, 2. 0] =| =~ 9 _______ O
0 0 0 0
Hence
—a,— g, =92 k= Gk
1 0 0
A.=A-bg' 0 1 0
0 0 0

The gains g,..., g are simply added to the coefficients of the open-loop A

q matrix to give the closed-loop matrix A. This is also evident from the
block-diagram representation of the closed-loop system as shown in Fig. 6.1.
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SISO Regulator Design [4]

S|
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SISO Regulator Design [4]
 But how to get this in companion form?

x=Tx (6.14)
Then, as shown in Chap. 3,
#=Ax+ bu (6.15)
where
A=TAT" and b=Tb

For the transformed system the gain matrix is
g=d—-a=d—a (6.16)

since @ = a (the characteristic equation being invariant under a change of state
variables). The desired control law in the original system is

u=—g'x=—gT 's=-g% (6.17)
From (6.17) we see that
g=gT"
Thus the gain in the original system is
g=Tg=T{d-a) (6.18)

qy METR 4202: Robotics 29 October 2014 -12




SISO Regulator Design [5]

In words, .the desired gain matrix for a general system is the difference
between the coefficient vectors of the desired and actual characteristic equation,
premultiplied by the inverse of the transpose of the matrix T that transforms the
general system into the companion form of (3.90), the A matrix of which has
the form (6.11).

The desired matrix T is obtained as the product of two matrices U and V:

T=VU (6.19)

The first of these matrices transforms the original system into an intermediate
system
X = AX (6.20)

in the second companion form (3.107) and the second transformation U
transforms the intermediate system into the first companion form.
Consider the intermediate system

%= Ax + bu (6.21)
with A and b in the form of (3.107). Then we must have

A= UAU™ and b= Ub (6.22)

§7 METR 4202: Robotics

SISO Regulator Design [6]

The desired matrix U is precisely the inverse of the controllability test
matrix Q of Sec. 5.4. To prove this fact, we must show that

U'A=AU"" (6.23)
or
QA= AQ (6.24)
Now, for a single-input system
Q=[b,Ab,..., A""'b]
Thus, with A given by (3.107), the left-hand side of (6.23) is
0 0 ++v —a

) 1 0 -+« —a._,
QA =[b Ab,...,A*'B]I|0 1 - —a._,
00 -a,
=[Ab, A%b,..., A" 'b, —ayb — ap_ Ab — - -+ — @, A" 'b] (6.25)
The last term in (6.25) is
(—aif —ap_ A=+ —a, A" )b (6.26)

qy METR 4202: Robotics

29 October 2014 -13

29 October 2014 -14



SISO Regulator Design [7]

Now, by the Cayley-Hamilton theorem, (see Appendix):
AF = =g A - g, A — =]
50 (6.26) is A*h. Thus the left-hand side of (6.24) as given by (6.25) is
Q:i =[Ab, A%h, ..., Ab]= A[b, Ab,..., A*'b] = AQ
which is the desired result.

If the system is not controllable, then Q™' does not exist and there is no
general method of transforming the original system into the intermediate system
(6.21); in fact it is not possible to place the closed-loop poles anywhere one

‘ desires. Thus, controllability is an essential requirement of system design by
pole placement. If the system is stabilizable (i.e., the uncontrollable part is
asymptotically stable, as discussed in Chap. 5) a stable closed-loop system can
be achieved by placing the poles of the controllable subsystem where one
wishes and accepting the pole locations of the uncontrollable subsystem. In
order to apply the formula of this section, it is necessary to first separate the
uncontrollable subsystem from the controllable subsystem.

The control matrix b of the intermediate system is given by

b=Ub (6.27)
We now show that
1
- 0
b=|. p (6.28)
0
METR 4202: Robotics 29 October 2014 -15

SISO Regulator Design [8]

Multiply (6.28) by Q to obtain
|
& e kel 0
Qb =[bAb,...,A"'b]|.|=b
0
which is the same as (6.27), since Q ' = U.

The final step is to find the matrix V that transforms the intermediate
system (6.21) into the final system (6.15). We must have

X=Wx (6.29)

p-%
<
B
<

or

V'A=Av! (6.30)
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SISO Regulator Design [9]

The matrix V™' that satisfies (6.30) is the transpose of the upper left-hand
k-by-k submatrix of the (triangular Toeplitz) matrix appearing in (3.103)

1 a a,
sty 0 | T R P '
V = W (6.31)
0 0 |

I a ay a, a, —ay
Vo= 0 I Ay 1 0 0
10 0 I L0 0 0
0 0 0 —ay
I a ay, 0
= |0 1 ¢v¢ a 4 0 (6.32)
0 0 [ 0

(Note that the zeros in the first row of V 'A are the result of the difference of

§7 METR 4202: Robotics 29 October 2014 -17

SISO Regulator Design [10]

(wo terms a; — a,, a, — a,, etc.) and the right-hand side of (6.30) is

00 -+ =—alfl a - @
10 a,||10 1 [ Py
Av'=|0 1 —ay 0 0 [ P
00 a JI0 0 f 2
00 0 —ay
1 a, [y 0
=(0 1 s 0
00 I 0

which is the same as (6.32). Thus (6.30) is proved.
We also need

b=Vb
We will show that
b=b
Consider
b=Vv'b
with
1 a a || 1 1
b=VE= 0 1 a5 (|0 0
0 0 1 0 0

q? METR 4202: Robotics 29 October 2014
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SISO Regulator Design [11]

Thus b and b are the same,

The result of this calculation is that the transformation matrix T whose
transpose is needed in (6.18) is the inverse of the product of the controllability
test matrix and the triangular matrix (6.31).

The above results may be summarized as follows. The desired gain matrix
g, by (6.18) and (6.19), is given by

g=(vU)(d—a) (6.33)
where
V=w"! and U=Q™"
Thus
VU =W 'Q ' = (Qw)"
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Deterministic Linear Quadratic Regulation

Figure 20.1 shows the feedback configuration for the linear quadratic regulation (LOR)
problem. The process is assumed to be a continuous-time LT1 system of the form

X = Ax + Bu, xeR", ueRF,
y=Cx, , , y e R",
:1=0Gx+ Hu, z e RE,

and has two distinct outputs.

1. The measured output y(r) corresponds to the signalﬁs} that can be measured

z(t) e R

- o
process J

' We) € R™

o u(t) e B¥

- -

O—

controller

Figure 20.1. Linear quadratic regulation {LQR) feedback configuration

§7 METR 4202: Robotics 29 October 2014 -21

Deterministic Linear Quadratic Regulation

2. The controlled output z(t) corresponds to the signal(s) that one would like tq
make as small as possible in the shortest possible time.

Sometimes z(¢f) = y(t), which means that our control objective is simply tq
make the measured output very small. At other times one may have

o NPEE)
Rl [)"‘(t)]’

which means that we want to make both the measured output y(¢) and its
derivative y(¢) very small. Many other options are possible.

qy METR 4202: Robotics 29 October 2014 -22
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Optimal Regulation

The LQR problem is defined as follows. Find the control input u(¢), ¢ € [0, c0) that
makes the following criterion as small as possible:

o0
JLOR :=[ Iz 4 p llu(e)l>dt, (20.1)
0

where p is a positive constant. The term

o2 2
f l2(o)2dt
1]

corresponds to the energy of the controlled output, and the term

/ ()|t
JO

corresponds to the energy of the control signal. In LQR one seeks a controller that
minimizes both energies. However, decreasing the energy of the controlled output
will require a large control signal, and a small control signal will lead to large con-
trolled outputs. The role of the constant p is to establish a trade-off between these
conflicting goals.

§, METR 4202: Robotics 29 October 2014 -23

Optimal Regulation

1. When we chose o very large, the most effective way to decrease Jor is to
employ a small control input, at the expense of a large controlled output.

2. When we chose o very small, the most effective way to decrease Jiggr is to
obtain a very small controlled output, even if this is achieved at the expense of
employing a large control input.

Often the optimal LOR problem is defined more generally and consists of finding
the control input that minimizes

(=)
JLor r:L 2(1) Qz(t) + pu(r) Ru(n) dr, (20.2)

qy METR 4202: Robotics 29 October 2014 -24
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Optimal Regulation

where Q € R®*€ and R € R™*" are symmetric positive-definite matrices and p is a
positive constant.

We shall consider the most general form for a quadratic criterion, which is

JLQR = f x(8Y Qx(t) + ult) Ru(t) + 2x(¢) Nu(t)dt. (J-LQR)
0

Since z = Gx + Hu, the criterion in (20.1) is a special form of the criterion (J-LQR)
with

0 =G'G, R=HH+pl, N=GH
and (20.2) is a special form of the criterion (J-LQR) with

0 =G'0G, R=H'QH + pR, N =G'QH.

§7 METR 4202: Robotics 29 October 2014 -25

Optimal State Feedback

It turns out that the LQR criterion
o0
N f x(8) Qx (1) + u(t) Ru(r) + 2x(t) Nu()dr (J-LQR)
0

can be expressed as in (20.3) for an appropriate choice of feedback invariant. In fact,
the feedback invariant in Proposition 20.1 will work, provided that we choose the
matrix P appropriately. To check that this is so, we add and subtract this feedback
invariant to the LQR criterion and conclude that

o0
JLQR = / x'Ox +u'Ru +2xX'Nu dt
0
= H(x(-); u("))

o0
- / x'Ox +u'Ru + 2x'Nu + (Ax + Bu) Px + x' P(Ax + Bu) dt
0

I

o0
H(x();u()) + / x'(A'P 4+ PA+ Q)x +u'Ru+2u'(B'P 4 N'x dt.
0

q? METR 4202: Robotics 29 October 2014 -26
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Optimal State Feedback

By completing the square, we can group the quadratic term in u with the cross-term
In i times x:

(' + X' K"YR(u + Kx)
=u'Ru+x'(PB+N)R"Y(B'P+N'x+ 2'(B'P + Nz,

where
K:=R Y BP+N,

from which we conclude that

(=)
Jugr = H(x(); u(-)) +f x'(AP+PA+Q—(PB+N)RTYB'P+N)x
]
4 (' L 2K YR(u + Kx) de.

§7 METR 4202: Robotics 29 October 2014 -27

Optimal State Feedback

[f we are able to select the matrix P so that

AP+ PA+Q—(PB+NR(B'P+N)=0, (20.5)
we obtain precisely an expression such as (20.3) with

Alx, ) = (' + 2K R(u + Kx),

which has a minimum equal to zero for

u=—Kx, K:=RT(B'P+N,
leading to the closed-loop system

i=(A—BRUB'P+ N))x.
The following has been proved.
Theorem 20.1. Assume that there exists a symmetric solution P to the algebraic Ric-
cati equation (20.5) for which A — BR™'(B'P + N') is a stability matrix. Then the
feedback law
u(®) i=—Kx(1), ¥Yt=0, K=RYB'P+N (20.6)

minimizes the LOR criterion {1-LOR) and leads to

e~
JigR = f x' Ox + u'Ru + 2x'Nu dt = x'(0) Px(0). O
0

qy METR 4202: Robotics 29 October 2014 -28




LQR In MATLAB

MATLAB®™ Hint 42 (1gx). The command [K, P, E] = lgr (A,B,Q,R,N) solves
the algebraic Riccati equation

FPALQ—(PB+NR YBP+N)=0

that minimizes the LQR criteria

Ji= / x'0x + u'Ru + 2x'Nu di
0

for the continuous-time process
X = AX + Bu,

T'his command also returns the poles E of the closed-loop system

29 October 2014 -29
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Gryphon: Mine Scanning Robot
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Generalized Mine & Placement

¢->one sprfnrgf\‘ :
" fiing pine—-5=—"" -~ ] T~ detonator

- = ‘

explosive—-l B p
T e g e
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(Antipersonnel) Landmines are Challenging
« Variable & Changing » Terrain Diversity

« Counter-thwart mechanisms » False Positive Rate >100:1

-

q@? METR 4202: Robotics 29 October 2014 -45
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Ex: PMN-2 [1]

29 October 2014 -46

Ex: PMN-2 [2]

q;, METR 4202: Robotics
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Ex: PMN-2 [3]: Mechanically Intricate

§, METR 4202: Robotics 29 October 2014 -48

Land Mines: Highly Variable

« Little metal
.. “High-sensitivity”
detectors / instruments

» Highly Variable
(Example: PMN-2):
— 3-stage detonation
— Anti-thwart
— All mechanical

— Poor construction
detectors / instruments

. Focus on manipulating
sensor instead of
complex sensing ???,,,

qy METR 4202: Robotics 29 October 2014 -49
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Clearance & Breeching

Humanitarian Military
Detection >98% 50-60%
Rate (m”/day /person) ~ 200 ~ 10,000
Conditions Fair weather/daytime All weather/24/7
Standards Int. Mine Action Std. | Army Field Manuals
Funding (source) Gov't, NGOs Military

 Breeching: Line
» Demining: Area
—> International Mine Action Standards (IMAS)

§7 METR 4202: Robotics 29 October 2014 -50

Humanitarian Demining Process
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Humanitarian Demining Process

1. Level 1: Specification
— Rough minefield location

2. Level 2: Clearing

— Heavy machines
(e.q., flails, grinders, rollers, ploughs, and sifters)

— ~90% clearance

3. Level 3: Confirmation

§, METR 4202: Robotics 29 October 2014 =52

Sensor Mobility Is Critical

B

—
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Back to Gyrphon ...

§7 METR 4202: Robotics
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Robust Control:
Command Shaping for Vibration Reduction

Integrated

Planner (é?_lr;m?:d ero—»] Regulator P Plant
Controller pping

|

|

L —Tunning — — Sensor |«

q? METR 4202: Robotics
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Command Shaping

Original velocity profile

Velocity

Input shaper

»

Time ™

3

Velocity

Command-shaped velocity profile

>
Time

\ Tirrle
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Position

0.6

Command Shaping in Position Space

==-A, Response
""" A, Response
= —e—Total Response

\ " s "
\ / N 7%
“ 5 % ’ \ I' .
[
\ - 5 4 Mg
\ ' ..
\ /
Ny
0 0.5 1 1.5 2
Time

Q? METR 4202: Robotics

29 October 2014 =57

24



Command Shaping:
Zero Vibration and Derivative

—(T P
K = e<\/1—<2> 1=12

A, 1 2K K?
= | A+K)2 (1+K)? (1+K)?
ti 0 X T,

For Gryphon:
Atp=15[m] | Atp,;=30[m]
w | _ | w0 } (1 _ m)% Wp1 } (@) s | © 232 161
{ ¢ } { Cp0 p1— PO o1 [ \p1—p ¢ 303 300
AXis2 &3 I 0 0
G-I : i .
VIETR 4202: Robotics 29 October 2014 -58

Part of a Robotic Solution...

Nt R
ereo vision camei

Optional ground-
gra

Counter-
weight

___________
il T e
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Gryphon Schematic

Joint3

Ground frame Fg

Manipulator Joint 2

Wrist joints

Sensor \

AN

Counter-weight

Manipulator frame Fy Joint 1 (yaw)

Terrain
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Gryphon: Comparison to other tracked robots

Control Robustness (“Autonomy?)

METR 4202: Robotics 29 October 2014 =61
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Multiple Inaccuracies

 Sensing:
N

creenshots courtesy M- Freese; Tokyo Tech:

@ METR 4202: Robotics 29 October 2014 -62

Operational Overview

" Detecting

Heightmap

Terrain
scanning

Terrain

[Sensing (Stereo
Vision)

Calibration Model Noisy terrain data
(Offline Data) Y

Planar conditional
filtering & map
generation (Online Data)

Terrain model relative to
robot base with offset

Path generation & ‘

. . Nominal Path
collection correction

Command_> Final trajectory
4 Shaping (with reduced vibration)

reenshotscourtesy M- Freese; Tokyo Tech:
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Terrain Modeling & Following Overview
* 1. Terrain Mapping * 1l. Terrain Model

Conditional Planner

Filtering & Stitching

« Ill. Path Generation V. Scanning
‘*'-,‘;A
®9® V Evaluation
—) —) ) & Marking
Height map expansion Input-shaping &
& Path generation
METR 4202: Robotics 29 October 2014 -64

Terrain Mapping

+ Stereo depth maps (Pont Gray Bumblebee)
+ Kinematic calibration corrections

Ex,: Grassy area
with hill or bump

qy METR 4202: Robotics 29 October 2014 =65
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(e |
Terrain Geometry Model: Heightmap Expansion

i

Scanning gap
[

Expanded Filtered
and Offset Model

Q, METR 4202: Robotics 29 October 2014 -66

Terrain Geometry Model:
Conditional Planar Filter

=

* Planarity: Found from plane eq. residuals for a surface
patch

« Filter type and strength varied based on this
« Goal: Reduce noise without feature degradation

asv METR 4202: Robotics 29 October 2014 =67
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Terrain Map—>Maodel:
Conditional Planar Filter

Apply
filter(s)
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Map = Model (I1): Height Map Expansion

» Envelope expansion:
— Feny = Fery T scanning gap ...

; ; i< Scanning gap d

— Performed along the normals, more than vertical axis
addition:

q{, METR 4202: Robotics 29 October 2014 -69
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Map > Model (111): Height Map Expansion

Terrain
envelope

Model of

terrain
Scanning gap
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Calibration Model
+ Height (z) Calibration:

z
X
y
* Plane (x-y) Calibration ]
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Effect of Overall Calibration Matrix

30 1
—— With Overall Calibration Matrix
25 correction

Without Overall Calibration Matrix
20 correction

Deviation from ideal path [mm]
=

5 | /\/\ /_/\/\

’ V \r\l\/ | - \w\ |
0 0.5 1 1.5
Circular distance [m]

Scanning speed: 100 mm/s
Scanning gap: 100 mm
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Path Generation

 X-y: Scanning Scheme * z: Terrain Sampling (z)
» Joint-space/Work-space? Sample corresponding

+ Reduce excess work ... point based on the local
patch & normals

z = X
Manipulator . Detector path f;nv( path ’ypath)

= METR 4202: Robotics 29 October 2014 =73
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Path Generation (I1)

« Orientation: Advanced Terrain Following

§, METR 4202: Robotics
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Contour Following

Detector

)

Terrain

Envelope ’ Potential collisions

\ \/\Q/ _
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Terrain Modeling: _
Find a good model to characterize

ﬁ, METR 4202: Robotics 29 October 2014 =76

Experiments: Scanning Over Obstacle

Ve e, ""’-'ﬁ"’&*v'v‘ P £5y

g
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Scanning on ~ Level Terrain - Measurements

20

Unfiltered

— — Gaussian filtered

Conditional Planar filtered

Deviation from ideal path [mm]

Scanning speed: 100 mm/s
Scanning gap: 100 mm

\
o AN
7 "\_)’\l'\ \\, .
\
Laser range
finder ™~
_1 0 L
0 0.5 1
Circular distance [m] AN
Scan pass

/

Manipulator
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Scanning on Rough Terrain - Measurements

30 r

20 r

Deviation from ideal path [mm]

0

Scanning speed: 100 mm/s
Scanning gap: 100 mm

Obstacle location

0.5
Circular distance [m]

Unfiltered

— — Gaussian filtered

Conditional Planar filtered

AR )

Q? METR 4202: Robotics
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Command Shaping Tests: Step-Response

* Reduced Joint
Encoder Vibration
Joint 1 (ATV Yaw) Encoder:

Toint 1 angle [deg]

55 6 _ﬁ:.:[g] 7 4
Joint 3 (Arm Extend) Encoder:

386

Fl
2383
EEY
- —— Unshaped
g3 Shped
382
381 -
33 a3 5 .

» Reduced Tip
Acceleration

£ s
F 02
H

¥
g 04
<
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High-Level Control Software

[67 1661 Zatimal 6p/s 850 —mall

for
------
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../../../../Cache/FSR Talk/GYRPHON CACHE/inputShapingEffect2.avi

Detector Imaging

« Targets

PMA-1A PMA-2 Fragment
Target# Target type Depth [cm] MD GPR
1 PMA-2 5 Yes No
2 PMA-1A 125 Yes Yes
3 PMA-1A 125 Yes Yes
4 PMA-1A 125 Yes Yes
5 Fragment 5 Yes No
6 Stone ~10 No Yes
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Extensive Field Tests

- 2005: Kagawa, Japan

C3007+Siem Réap, Cambome
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//localhost/Users/spns/Desktop/QUT Guest Lecture/TEST Lane Results/GOO-From Marc/Gyrphon Videos/Gryphon-CAMBODIA2006Nov-small.mpg

Gryphon: Field Tests in Croatia & Cambodia
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February 2006: Tests in Croatia
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Terrain & Estimation

+ IF we know terrain - Triangulation
» IF we know depth > SNR gives terrain “characteristic”
» - Estimate both simultaneously (= solution up to scale)
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End on a “Bang, Bang”...
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A Better (Controlled) “Bang Bang”
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UQ Robotics: Dynamic Systems in Motion

Diverse international Aerial Systems
research group

Hanna Kurniwati m
(NUS/MIT) Bio-inspired
Paul Pounds Nﬁems

Mechanics _ B e

(ANWalgiIng

Surya Singh
(Stanford/Syd) of motion
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SECaT Time! ... Brought To You By the Number 5
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