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Schedule 

Week Date Lecture (W: 11:10-12:40, 24-402) 

1 30-Jul Introduction 

2 6-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 13-Aug Robot Kinematics (& Ekka Day) 

4 20-Aug Robot Dynamics & Control 

5 27-Aug Robot Motion 

6 3-Sep Robot Sensing: Perception & Multiple View Geometry  

7 10-Sep Robot Sensing: Features & Detection using Computer Vision 

8 17-Sep Navigation (+ Prof. M. Srinivasan) 

9 24-Sep Localization & Motion Planning + Control 

  1-Oct Study break 

10 8-Oct State-Space Modelling 

11 15-Oct Shaping the Dynamic Response 

12 22-Oct Linear Observers & LQR 

13 29-Oct Applications in Industry & Course Review 

 - 

http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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• Lab 3: 

– Due Nov 3 or Nov 12 

– Time Signup online 

– Rubric online (soon) 
 

 

• Cool Robotics Share Site  

 http://metr4202.tumblr.com/ 

Twitter: #metr4202 

 

 

 

 

Announcements: Lab 3 Extended 

! 

Cool 
Robotics 

Video 
Share 

 - 

Shaping of  

Dynamic Responses 

 - 

http://metr4202.tumblr.com/
http://metr4202.tumblr.com/
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Let’s Generalize This 

• Shaping the Dynamic Response 

– A method of designing a control system for a process in which 

all the state variables are accessible for 

– measurement-the method known as pole-placement 

 

• Theory: 

– We will find that in a controllable system, with all the state variables 

accessible for measurement, it is possible to place the closed-loop poles 

anywhere we wish in the complex s plane! 

• Practice: 

– Unfortunately, however, what can be attained in principle may not be 

attainable in practice. Speeding the response of a  sluggish system requires 

the use of large control signals which the actuator (or power supply) may not 

be capable of delivering. And, control system gains are very sensitive to the 

location of the open-loop poles 

 - 

Regulator Design 

• Here the problem is to determine the gain matrix G in a 

linear feedback law 

– Where: x0 is the vector of exogenous variables. The reason it is 

necessary to separate the exogenous variables from the process 

state x, rather than deal directly with the metastate  

is that we must assume that the underlying process is 

controllable.  

• Since the exogenous variables are not true state variables, but additional 

inputs that cannot be affected by the control action, they cannot be 

included in the state vector when using a design method that requires 

controllability.   

• HOWEVER, they can be used in a process for Observability! 

∴ when we are doing this as part of the sensing/mapping process!!  

 

 
 - 
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ˆ 

• The assumption that all the state variables are accessible to 

measurement in the regulator means that the gain matrix G 

in is permitted to be any function of the state x that the 

design method requires 

    

 

 

– Where: x̂ is the state of an appropriate dynamic system known as 

an "observer."  

 - 

SISO Regulator Design 

• Design of a gain matrix 

 

for the single-input, single-output system 

 

 

 

 

 

• Our objective is to find the matrix G = g' which places the 

poles of the closed-loop dynamics matrix 

at the locations desired. 

 - 
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SISO Regulator Design [2] 

• One way of determining the gains would be to set up the 

characteristic polynomial for Ac: 

 

 

• The coefficients a1,a2, …,ak of the powers of s in the 

characteristic polynomial will be functions of the k 

unknown gains. Equating these functions to the numerical 

values desired for  a1,a2, …,ak will result in k simultaneous 

equations the solution of which will yield the desired gains 

gl, ... , gk. 

 - 

SISO Regulator Design [3] 

 - 
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SISO Regulator Design [4] 

 

 - 

SISO Regulator Design [4] 

• But how to get this in companion form? 

 - 
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SISO Regulator Design [5] 

 

 - 

SISO Regulator Design [6] 

 - 
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SISO Regulator Design [7] 

 

 - 

SISO Regulator Design [8] 

 - 
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SISO Regulator Design [9] 

 

 - 

SISO Regulator Design [10] 

 

 - 
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SISO Regulator Design [11] 

 

 - 

Viewing State-Space as 

a Tool for Solving ODEs 

Simultaneously 

 - 
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State Space as an ODE 

• The basic mathematical model for an LTI system consists 

of the state differential equation 

 

 

 

• The solution is can be expressed as a sum of terms owing 

to the initial state and to the input respectively: 

 

 

 

• This is a first-order solution similar to what we expect 

 - 

State Equation Solution: Matrix Exponential 

• The first term can be handled via a Taylor Series  

 

 

 This case is known as the matrix exponential function 

 Also referred to as the state-transition matrix, 

 denoted by Φ (t, t0): 

 

•  The state-transition matrix satisfies the homogeneous state 

equation, thus, it represents the free response of the system. That is, 

it governs the response that is excited by the initial conditions only 

 - 
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Output Equation Solution 

• Having the solution for the complete state response, a 

solution for the complete output equation can be obtained 

as: 

 

 

 - 

State Equation Solution 

• Thus, the solution to the unforced system (u=0): 

 
 

 

Note: the term ϕij(t) can be interpreted as the response of the ith state variable 

due to an initial condition on the jth state variable when there are zero initial 

conditions on all other states. 

• The solution of the state differential equation can also be 

obtained using the Laplace transform: 

 

 

 

 
 - 
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Properties of the Matrix Exponential 

• Note that eAt is just a notation used to represent a power series.  

 

• Example 1: Consider the following 4x4 matrix 

 

 - 

Properties of the matrix exponential 

 - 
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Using this to Solve State Space Problems 

• Example:  

– Solve the following linear second-order ordinary differential  

 

– Consider the input u(t) is a step of magnitude 3  

and the initial conditions  

 

 - 

Example: 

(Back To) Robot Arms 

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control” 

 - 
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Remembering the Motion Models: 

• Recall from Dynamics, the Required Joint Torque is: 

Dynamical 

Manipulator 

Inertial Tensor – 

a function of 

position and 

acceleration 

Coupled joint 

effects 

(centrifugal and 

coriolis) issues 

due to multiple 

moving joints 

Gravitational 

Effects 

Frictional Effect 

due to Joint/Link 

movement 

 - 

Lets simplify the model 

• This torque model is a 2nd order one (in position) lets look 

at it as a velocity model rather than positional one then it 

becomes a system of highly coupled 1st order differential 

equations 

 

 

• We will then isolate Acceleration terms (acceleration is 

the 1st derivative of velocity) 

 

 

 - 
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Considering Control: 

• Each Link’s torque is influenced by each other links motion 

– We say that the links are highly coupled 

 

• Solution then suggests that control should come from a 
simultaneous solution of these torques 

 

• We will model the solution as a “State Space” design and try to 
balance the torque-in with positional control-out – the most 
common way it is done! 

– But we could also use ‘force control’ to solve the control problem! 

 

 - 

The State-Space Control Model: 

D-1(q) 1/s 1/s
Output

Positions 

Kinematics

b

C

h

+

+

+

Torque accel Vel pos

Friction

Coriolis

Centrifugal 

Effects

Gravitation 

Effects

Inertial Coupling

 - 
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Setting up a Real Control 

• We will (start) by using positional error to drive our 

torque devices 

 

 

 

 

 

 

 

• This simple model is called a PE (proportional error) 

controller 

 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q
Joint Drive

 - 

PE Controller: 

• To a 1st approximation,  = Km*I 

• Torque is proportional to motor current 

 

 

• And the Torque required is a function of ‘Inertial’ 

(Acceleration) and ‘Friction’ (velocity) effects as suggested by 

our L-E models 

 

 

  Which can be approximated as: 

 

 

 - 
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Setting up a “Control Law” 

• We will use the positional error (as drawn in the state 

model) to develop our torque control 

• We say then for PE control: 

 

 

 

 

 

• Here, kpe is a “gain” term that guarantees sufficient current 

will be generated to develop appropriate torque based on 

observed positional error 

 

 
 - 

Using this Control Type: 

• It is a representation of the physical system of a mass on a 

spring! 

• We say after setting our target as a ‘zero goal’ that: 

 

 

  

 the solution of which is: 

  

 

a is a function of 

the servo 

feedback as a 

function of time! 

 - 
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State Space Model of PD: 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q
Joint Drive

K
d

dQ/dt

 - 

PID State Space Model: 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q

K
d

dQ/dt

ki   dt

Joint Drive

 - 
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State Model of Adjustable Controller 

+ Controller w/ Adj.

Parameters
Error Control Input

Feedback, Q
a

Q
d

+

-

Drive Position/Torque
Actual

Pos

Performance

Index

Measure

Robot Sys.

Transfer

Functions

Desired Drive

Calc. Drive

Actual Drive using

Separate Feedback

Sensors

Decision

Logic

Modifications

Kinematic/

Kinetic Models

Physical

Parameters

 - 

Pole Placement 

 - 
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Pole Assignment by State Feedback 

• We begin by examining the problem of closed-loop pole 

assignment.  For the moment, we make a simplifying 

assumption that all of the system states are measured.  We 

will remove this assumption later.  We will also assume 

that the system is completely controllable.  The following 

result then shows that the closed-loop poles of the system 

can be arbitrarily assigned by feeding back the state 

through a suitably chosen constant-gain vector. 

 - 

• Lemma 18.1:  Consider the state space nominal model 

 

• Let           denote an external signal. )( tr

 - 
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• Then, provided that the pair (A0, B0) is completely 

controllable, there exists 

 

 

• such that the closed-loop characteristic polynomial is 

Acl(s), where Acl(s) is an arbitrary polynomial of degree  n. 

 

 - 

• Note that state feedback does not introduce additional 

dynamics in the loop, because the scheme is based only on 

proportional feedback of certain system variables.  We can 

easily determine the overall transfer function from           

to y(t).  It is given by 

 

• where 

 

• and Adj stands for adjoint matrices.   

)( tr

 - 
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[Matrix inversion lemma] 

• We can further simplify the expression given above.  To 

do this, we will need to use the following results from 

Linear Algebra. 

•  (Matrix inversion lemma).  

Consider three matrices  A,B,C  

Then, if A + BC is nonsingular, we have that 

 

 

• In the case for which B = g  n  and CT = h  n, the 

above result becomes  

 

 
 - 

• Lemma 18.3:  Given a matrix W  nn and a pair of 

arbitrary vectors  1  n  and  2  n, then provided 

that W and                   are nonsingular, 

 

 

 

• Proof:  See the book. 

,21
TW 

 - 
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SECaT Time! … Brought To You By the Number 5 

 - 
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Example 

 - 

Example 

• Figure 18.1: Schematic diagram of two coupled tanks 

 - 
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• Water flows into the first tank through pump 1 a rate fi(t) 

that obviously affects the head of water in tank 1 (denoted 

by h1(t)).  Water flows out of tank 1 into tank 2 at a rate 

f12(t), affecting both h1(t) and h2(t).  Water than flows 

out of tank 2 at a rate fe controlled by pump 2. 

• Given this information, the challenge is to build a virtual 

sensor (or observer) to estimate the height of liquid in tank 

1 from measurements of the height of liquid in tank 2 and 

the flows f1(t) and f2(t). 

 - 

• Before we continue with the observer design, we first 

make a model of the system.  The height of liquid in tank 

1 can be described by the equation 

 

• Similarly, h2(t) is described by 

 

• The flow between the two tanks can be approximated by 

the free-fall velocity for the difference in height between 

the two tanks: 

 

 

 - 
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• We can linearize this model for a nominal steady-state 

height difference (or operating point).  Let 

 

• This yields the following linear model: 

 

 

• where 

 - 

• We are assuming that h2(t) can be measured and h1(t) 

cannot, so we set C = [0  1]  and  D = [0   0].  The 

resulting system is both controllable and observable (as 

you can easily verify).  Now we wish to design an 

observer 

 

 

• to estimate the value of h2(t).  The characteristic 

polynomial of the observer is readily seen to be 

 

• so we can choose the observer poles;  that choice gives us 

values for J1 and J2. 

 - 
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• If we assume that the operating point is H = 10%, then k = 

0.0411.  If we wanted poles at s = -0.9291 and  s = -

0.0531, then we would calculate that J1 = 0.3 and  J2 = 

0.9.  If we wanted two poles at s = -2, then  J2 = 3.9178 

and  J1 = 93.41. 

 - 

• The equation for the final observer is then 

 - 
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• The data below has been collected from the real system 

shown earlier 
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 - 

• The performance of the observer for tank height is 

compared below with the true tank height which is 

actually measured on this system. 

Actual height in tank 1 (blue),  

Observed height in tank 1 (red) 
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State-Feedback Control Objectives 

• Regulation: Force state x to equilibrium state (usually 

0) with a desirable dynamic response.  

 

 

• Tracking: Force the output of the system y to tracks a 

given desired output yd with a desirable dynamic 

response.  

 

 - 

Pole Placement Problem as an Eignenvalue Problem 

Choose the state feedback gain to place the poles 

of the closed-loop system, i.e.,  

HKG:G of sEigenvalue 

At specified locations 
desdes

n
 ,,

1
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State Feedback Control of a System in CCF 

Consider a SISO system in CCF: 

State Feedback Control 

 11K,rKxu nkk 

uHxGx cc kk  )(ˆ)1(ˆ
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Closed-Loop CCF System 
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Choosing the Gain-CCF 

Closed-loop Characteristic Equation 

     121
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Desired Characteristic Equation: 
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Control Gains: 
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Transformation to CCF 

Transform system uHGxx  To CCF 
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uHxGx

First, find how new state z1 is related to x:  

   vectorrow p,pxˆ
11 nppx 

Where x+(k)=x(k+1) (for simplicity) 
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Transformed State Equations 
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Necessary Conditions for p: 

   100HGGHHp 1  n

1Mep 
T

n

Vector p can be found if the system is 

controllable: 

State Transformation Invertibility 
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State transformation: 

Matrix T is invertible since 
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By the Cayley-Hamilton theorem. 
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Toeplitz Matrix 
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Matrix on the right is called Toeplitz matrix 

The Cayley-Hamilton theorem can further be used to 

show that 

State Transformation Formulas 
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Formula 1: 

Formula 2: 
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State Feedback Control Gain Selection 
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Double Integrator-Matlab Solution 

T=0.5; lam=[0;0]; 

G=[1 T;0 1]; H=[T^2/2;T]; C=[1 0]; 

K=acker(G,H,lam); 

Gcl=G-H*K; 

clsys=ss(Gcl,H,C,0,T); 

step(clsys); 

Flexible System Example 

Consider the linear mass-spring system shown 

below: 

m1 
u 

m2 

x2 x1 

k 
Parameters: 

m1=m2=1Kg. 

K=50 N/m 

• Analyze PD controller based on a)x1, b)x2 

• Design state feedback controller, place poles 

at  j 125,20,20
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Collocated Control 

Transfer Function:  100
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Non-Collocated Control 
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State Model 

u
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Discretized Model: x(k+1)=Gx(k)+Hu(k) 
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Controllability matrix: 

Characteristic equation: 

|zI-G|=(z-1)2(z2-1.99z+1)=z4-3.99z3+5.98z2-3.99z+6 



39 

State Feedback Controller 

Characteristic Equations: 
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4321 75.10554.4517.144757

75.10554.4517.14400.757K

|zI-G|=(z-1)2(z2-1.99z+1)=z4-3.99z3+5.98z2-3.99z+6 

Matlab Solution 

%System Matrices 

m1=1; m2=1; k=50; T=0.01; 

syst=ss(A,B,C,D); 

A=[0 0 1 0;0 0 0 1;-50 50 0 0;50 -50 0 0]; 

B=[0; 0; 1; 0]; 

C=[1 0 0 0;0 1 0 0]; D=zeros(2,1); 

cplant=ss(A,B,C,D); 

 

%Discrete-Time Plant 

plant=c2d(cplant,T); 

[G,H,C,D]=ssdata(plant); 
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Matlab Solution 

%Desired Close-Loop Poles 

pc=[-20;-20;-5*sqrt(2)*(1+j);-

5*sqrt(2)*(1-j)]; 

pd=exp(T*pc); 

 

% State Feedback Controller 

K=acker(G,H,pd); 

 

%Closed-Loop System 

clsys=ss(G-H*K,H,C,0,T); 

grid 

step(clsys,1) 
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Steady-State Gain 

Closed-loop system: x(k+1)=Gclx(k)+Hr(k), Y=Cx(k) 

Y(z)=C(zI-Gcl)
-1H R(z) 

If r(k)=r.1(k) then yss=C(I-Gcl)
-1H  

Thus if the desired output is constant 

r=yd/gain, gain= C(I-Gcl)
-1H  
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Integral Control 
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Double Integrator-Matlab Solution 

T=0.5; lam=[0;0;0]; 

G=[1 T;0 1]; H=[T^2/2;T]; C=[1 0]; 

Gbar=[G zeros(2,1);C 1]; 

Hbar=[H;0]; 

K=acker(Gbar,Hbar,lam); 

Gcl=Gbar-Hbar*K; 

yd=1; r=0; %unknown gain 

clsys=ss(Gcl,[H*r;-yd],[C 0;K],0,T); 

step(clsys); 

Closed-Loop Step Response 
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