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Week | Date Lecture (W: 11:10-12:40, 24-402)
1 [ 30-Jul [Introduction
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(Frames, Transformation Matrices & Affine Transformations)

13-Aug|Robot Kinematics (& Ekka Day)
20-Aug|Robot Dynamics & Control
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17-Sep [Navigation (+ Prof. M. Srinivasan)

24-Sep [Localization & Motion Planning + Control

1-Oct Study break
10 | 8-Oct {State-Space Modelling
11 [15-Oct[Shaping the Dynamic Response
12 |22-Oct|Linear Observers & LQR
13 |29-Oct|Applications in Industry & Course Review
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Let’s Generalize This

« Shaping the Dynamic Response

— A method of designing a control system for a process in which
all the state variables are accessible for

— measurement-the method known as pole-placement

» Theory:
—  We will find that in a controllable system, with all the state variables

accessible for measurement, it is possible to place the closed-loop poles
anywhere we wish in the complex s plane!

» Practice:

—  Unfortunately, however, what can be attained in principle may not be
attainable in practice. Speeding the response of a sluggish system requires
the use of large control signals which the actuator (or power supply) may not
be capable of delivering. And, control system gains are very sensitive to the
location of the open-loop poles
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Regulator Design

 Here the problem is to determine the gain matrix G in a
linear feedback law  «--6:- 6w

— Where: X, is the vector of exogenous variables. The reason it is
necessary to separate the exogenous variables from the process
state X, rather than deal directly with the metastate «-[ ]
is that we must assume that the underlying process 1s
controllable.

+ Since the exogenous variables are not true state variables, but additional
inputs that cannot be affected by the control action, they cannot be
included in the state vector when using a design method that requires
controllability.

« HOWEVER, they can be used in a process for Observability!
-~ when we are doing this as part of the sensing/mapping process!!
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A

» The assumption that all the state variables are accessible to
measurement in the regulator means that the gain matrix G
In is permitted to be any function of the state x that the
design method requires

y=0Cx
u=-—Gyy
u=-0%

— Where: X is the state of an appropriate dynamic system known as
an "observer."
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SISO Regulator Design
« Design of a gain matrix

G=g'=[¢,92-.., 0l

for the single-input, single-output system

X =Ax+ Bu

b,
p=p=|?
by,

With the control law # = —Gx = —g'x (6.7) becomes

where

X =(A—bg')x

 Our objective is to find the matrix G = g' which places the
poles of the closed-loop dynamics matrix 4.4 s
at the locations desired.

= METR 4202: Robotics 22 October 2014 - 8
e




SISO Regulator Design [2]

« One way of determining the gains would be to set up the
characteristic polynomial for Ac:

|sT — A =|sI —A+bg|=s*+as""'+ - - +a,

 The coefficients a,,a,, ...,a, of the powers of s in the
characteristic polynomial will be functions of the k
unknown gains. Equating these functions to the numerical
values desired for a,,a,, ...,a, will result in k simultaneous
equations the solution of which will yield the desired gains

Op -y Qg
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SISO Regulator Design [3]

If the original system is in the companion form given in (3.90), the task is
particularly easy, because

=@y —a@, *** =@, —a
1 0 0 0
A 0 1 LR () 0 0 (6.11)
0 0 | 0
| .
0 91 g2 e G
' 0
bg'=| 0[g1, 2. 0] =| =~ 9 _______ O
0 0 0 0
Hence
—a,— g, =92 k= Gk
1 0 0
A.=A-bg' 0 1 0
0 0 0

The gains g,..., g are simply added to the coefficients of the open-loop A

q matrix to give the closed-loop matrix A. This is also evident from the
block-diagram representation of the closed-loop system as shown in Fig. 6.1.
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SISO Regulator Design [4]

S|
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SISO Regulator Design [4]
 But how to get this in companion form?

x=Tx (6.14)
Then, as shown in Chap. 3,
#=Ax+ bu (6.15)
where
A=TAT" and b=Tb

For the transformed system the gain matrix is
g=d—-a=d—a (6.16)

since @ = a (the characteristic equation being invariant under a change of state
variables). The desired control law in the original system is

u=—g'x=—gT 's=-g% (6.17)
From (6.17) we see that
g=gT"
Thus the gain in the original system is
g=Tg=T{d-a) (6.18)
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SISO Regulator Design [5]

In words, .the desired gain matrix for a general system is the difference
between the coefficient vectors of the desired and actual characteristic equation,
premultiplied by the inverse of the transpose of the matrix T that transforms the
general system into the companion form of (3.90), the A matrix of which has
the form (6.11).

The desired matrix T is obtained as the product of two matrices U and V:

T=VU (6.19)

The first of these matrices transforms the original system into an intermediate
system
X = AX (6.20)

in the second companion form (3.107) and the second transformation U
transforms the intermediate system into the first companion form.
Consider the intermediate system

%= Ax + bu (6.21)
with A and b in the form of (3.107). Then we must have

A= UAU™ and b= Ub (6.22)

§7 METR 4202: Robotics

SISO Regulator Design [6]

The desired matrix U is precisely the inverse of the controllability test
matrix Q of Sec. 5.4. To prove this fact, we must show that

U'A=AU"" (6.23)
or
QA= AQ (6.24)
Now, for a single-input system
Q=[b,Ab,..., A""'b]
Thus, with A given by (3.107), the left-hand side of (6.23) is
0 0 ++v —a

) 1 0 -+« —a._,
QA =[b Ab,...,A*'B]I|0 1 - —a._,
00 -a,
=[Ab, A%b,..., A" 'b, —ayb — ap_ Ab — - -+ — @, A" 'b] (6.25)
The last term in (6.25) is
(—aif —ap_ A=+ —a, A" )b (6.26)

qy METR 4202: Robotics
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SISO Regulator Design [7]

Now, by the Cayley-Hamilton theorem, (see Appendix):
AF = =g A - g, A — =]
50 (6.26) is A*h. Thus the left-hand side of (6.24) as given by (6.25) is
Q:i =[Ab, A%h, ..., Ab]= A[b, Ab,..., A*'b] = AQ
which is the desired result.

If the system is not controllable, then Q™' does not exist and there is no
general method of transforming the original system into the intermediate system
(6.21); in fact it is not possible to place the closed-loop poles anywhere one

‘ desires. Thus, controllability is an essential requirement of system design by
pole placement. If the system is stabilizable (i.e., the uncontrollable part is
asymptotically stable, as discussed in Chap. 5) a stable closed-loop system can
be achieved by placing the poles of the controllable subsystem where one
wishes and accepting the pole locations of the uncontrollable subsystem. In
order to apply the formula of this section, it is necessary to first separate the
uncontrollable subsystem from the controllable subsystem.

The control matrix b of the intermediate system is given by

b=Ub (6.27)
We now show that
1
- 0
b=|. p (6.28)
0
METR 4202: Robotics 22 October 2014 -15

SISO Regulator Design [8]

Multiply (6.28) by Q to obtain
|
& e kel 0
Qb =[bAb,...,A"'b]|.|=b
0
which is the same as (6.27), since Q ' = U.

The final step is to find the matrix V that transforms the intermediate
system (6.21) into the final system (6.15). We must have

X=Wx (6.29)

p-%
<
B
<

or

V'A=Av! (6.30)
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SISO Regulator Design [9]

The matrix V™' that satisfies (6.30) is the transpose of the upper left-hand
k-by-k submatrix of the (triangular Toeplitz) matrix appearing in (3.103)

1 a a
. 0 | a, 5
V =W (6.31)
0 0 1
To prove this, we note that the left-hand side of (6.30) is
M1 a ay a, a, —ay
Vo= 0 I Ay 1 0 0
0 0 Lo o 0
0 0 0 —ay
I a ay, 0
=|0 1 Qjon 0 (6.32)
0 0 [ 0

(Note that the zeros in the first row of V 'A are the result of the difference of

§7 METR 4202: Robotics
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SISO Regulator Design [10]

(wo terms a; — a,, a, — a,, etc.) and the right-hand side of (6.30) is

00 —a |1 a - a4k
10 a,||10 1 [ Py
Av'=|0 1 —ay 0 0 [ P
00 a JI0 0 f 2
00 0 —ay
1 a, ay_, 0
=(0 1 s 0
00 I 0

which is the same as (6.32). Thus (6.30) is proved.
We also need

b=Vb
We will show that
b=b
Consider
b=Vv'b
with
1 a a || 1 1
b=VE= 0 1 A 0 0
0 0 1 0 0

q? METR 4202: Robotics
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SISO Regulator Design [11]

Thus b and b are the same,

The result of this calculation is that the transformation matrix T whose
transpose is needed in (6.18) is the inverse of the product of the controllability
test matrix and the triangular matrix (6.31).

The above results may be summarized as follows. The desired gain matrix
g, by (6.18) and (6.19), is given by

g=(vU)(d - a) (6.33)
where
Vv=w"! and U=0"'
Thus
VU = w'Q ' = (Qw)™
@ METR 4202: Robotics S Ortoper 2014 16
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a Tool for Solving ODEs
Simultaneously
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State Space as an ODE

 The basic mathematical model for an LTI system consists
of the state differential equation

X1 =Axm)+Bwry X1, =X,
v(t)=Cx(r)+ Dut)

» The solution is can be expressed as a sum of terms owing
to the initial state and to the input respectively:

i g
x(t)=e"x, + [D eObu(rydr (1) =ce"x, + Jv e Obu(T)d T+ du(r)
H—J ——

zero-input response  zero-state response

 This is a first-order solution similar to what we expect

METR 4202: Robotics 22 October 2014 -21
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State Equation Solution: Matrix Exponential

Tt 'l
x(1) 4 e x [D e bu(r)dr y(t)=ce"x, + Jo ce®bu(T)d T + du(r)

 The first term can be handled via a Taylor Series

A :;%A"(r—fo)":I+A(r—r0]+%A2(r—rD]2+%A3(I—ID)3+...

-> This case is known as the matrix exponential function

- Also referred to as the state-transition matrix,
denoted by @ (t, t,):

X(1) = ®(1)x, + [ ®(-7)Bu(n)dr

» The state-transition matrix satisfies the homogeneous state
equation, thus, it represents the free response of the system. That is,
it governs the response that is excited by the initial conditions only

Q@z METR 4202: Robotics 22 October 2014 -22
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Output Equation Solution

« Having the solution for the complete state response, a
solution for the complete output equation can be obtained
as:

V(1) =Ce'x, + [r Ce* Bu(r)dr+Du(r)
oy

'ﬁ_ﬁ
zero-input response: y,(t) Y5(t): zero-state response

@ METR 4202: Robotics 22 October 2014 -23

State Equation Solution
 Thus, the solution to the unforced system (u=0):

x () m@ - w10
x,(1) _ Gn(t) - B | x,(0)

J',,l(f) %(ﬂ ﬂ...“(?) -’f,,l(O)
Note: the term ¢;(t) can be interpreted as the response of the it" state variable
due to an initial condition on the j® state variable when there are zero initial
conditions on all other states.
 The solution of the state differential equation can also be

obtained using the Laplace transform:

C L]%(t) = Ax(t)+ Bu(1)] X(s5) = (sI- A)'x, +(sI- A)*BU(s)
Llifn)) = 1[Ax(t)]+ L[Busr)] / |
C sX(s5)—x, = AX(s) + BU(s) X(s) = D(s)x, +D(s)BU(s)

> I[@()]=®() =[sI-A]" —— @@ =L[sI-A]'

:7 METR 4202: Robotics 22 October 2014 -24
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Properties of the Matrix Exponential

 Note that eAtis just a notation used to represent a power series.

e #[e"] 0 0 00
« Example 1: Consider the following 4x4 matrix 4= ° | |
0 0 -10
Let's obtain the first terms of the power series:
0000 0 0 0 O] 0000
PRI .o oo . 0000 .
Tt oo o0 4=l0 000 =000 0 A4=0 vk=24
0100 -1 000 0000

The power series contains only a finite number of nonzero terms:

[ 1 0 0 0 0 0 0 0
—t
" 1 55 1 34 ={? 1 0 0 at]_|€ 0o 0 0
=I+A+—AT +—Af = e |=

¢ 2 6 F -t 1 0 [ ] 0 e 0 0

R R ,%ﬁ 12 ¢ 0 0 e 0
= METR 4202: Robotics 22 October 2014 -25

&

Properties of the matrix exponential

» For any real nxn matrix A, the matrix exponential ¢ satisfies:
1. e is the unique matrix for which: ier" —Ae™ e*’| =I(nxn)
dt =0
2.Forany t, and t,; e*@") =gtigtt
As a consequence: e*@ =g =¥ o
At e . . . { Az]‘l _ oAt
Thus, ¢ is invertible for all t, being the inverse: € =e

3 For all t, A and e* commute with respect to matrix product: Ae* =e¥A
T
sForait [*f=e"

5 For any real nxn matrix B, etA~Bii=eateBt for all t if and only if AB=BA

6. Finally, a useful property of the matrix exponential is that it can be
reduced to a finite power series involving n scalar analytic functions e(t)

n-1
oA = Za}—(’)Ak
=0

Q? METR 4202: Robotics 22 October 2014 -26
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Using this to Solve State Space Problems

» Example:
— Solve the following linear second-order ordinary differential
YO +Ty(@)+12v() =u(t)

— Consider the input u(t) is a step of magnitude 3
and the initial conditions i(0)=005 y(0)=010

L]
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Example:

(Back To) Robot Arms

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control”




Remembering the Motion Models:

 Recall from Dynamics, the Required Joint Torque is:

7. =D (q) g+ Ci(q,q;) +h(q) +b(q)
Dynanicel - R COUBIEGIONE

Inertial Tensor — (centrifugal and

a function of coriolis) issues Frictional Effect
position and due to multiple due to Joint/Link
acceleration moving joints movement

§7 METR 4202: Robotics 27 October 2014 -31

Lets simplify the model

« This torque model is a 2" order one (in position) lets look
at it as a velocity model rather than positional one then it
becomes a system of highly coupled 1%t order differential
equations

« We will then isolate Acceleration terms (acceleration is
the 1%t derivative of velocity)

a=1v=q= D;(q) (r; — Ci(g,4;) — h(q) —b(d1))

= METR 4202: Robotics 22 October 2014 -32
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Considering Control:

» Each Link’s torque is influenced by each other links motion
— We say that the links are highly coupled

« Solution then suggests that control should come from a
simultaneous solution of these torques

» We will model the solution as a “State Space” design and try to
balance the torque-in with positional control-out — the most
common way it is done!

— But we could also use ‘force control’ to solve the control problem!

@ METR 4202: Robotics 22 October 2014 -33

The State-Space Control Model:

Inertial Coupling

Friction b

[

Coriolis

Centrifugal c

Effects \_T_f

I+

Gravitation h
Effects

ME )2: Robotics ctober 2014 -34
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Setting up a Real Control

» We will (start) by using positional error to drive our
torque devices

+ State Space Model, I6int Drive
—_—Q, Error m—l! K, > Generalized e TOrqUE Neededmmpi-

Feedback, Q,

 This simple model is called a PE (proportional error)
controller

@ METR 4202: Robotics 22 October 2014 -35

PE Controller:

« To a 1t approximation, T = K ,*1

 Torque is proportional to motor current

* And the Torque required is a function of ‘Inertial’
(Acceleration) and ‘Friction’ (velocity) effects as suggested by
our L-E models

Tm = Jeqd + Feqq

- Which can be approximated as:

Kmlm = Jeqd + Feqq

Q@z METR 4202: Robotics 22 October 2014 -36

17



Setting up a “Control Law”

» We will use the positional error (as drawn in the state
model) to develop our torque control

« We say then for PE control:

T X kpe(gd — 9@)

* Here, k, is a “gain” term that guarantees sufficient current
will be generated to develop appropriate torque based on
observed positional error

% METR 4202: Robotics 22 October 2014 -37
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Using this Control Type:

« lItis a representation of the physical system of a mass on a
spring!
» We say after setting our target as a ‘zero goal’ that:

—kpe % 0 = JO + FO

the solution of which is:

0, is a function of
the servo

feedback as a F
function of time! <0a = c‘( /QJ)f

C'1u(l/2)wt + Coe” (1/2)wt}

Q@L METR 4202: Robotics 22 October 2014 -38
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State Space Model of PD:

frmme T GUE Needled mmmefip

L]

+ State Space Model,
—Q + Ervor—’{ K, Y et Generalized
_A

dQ/dt:

Jgint Dri%e

P

Feedback, Q

@ METR 4202: Robotics
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PID State Space Model:

<

=
&
=3

+ State Space Model,
—Q, + Ermr—»{ K, ’y » Generalized 1

dQ/dt

Feedback, Q,

:7 METR 4202: Robotics
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State Model of Adjustable Controller

Controller w/ Adj.

Robot Sys. —
e Control Inputee  TrANSfEr e Drive Poslﬂon/‘forqus_ﬂASDU:‘
N

+
| m— Error
Q + > Parameters :
Functions
A T
B Calc. Drive
Modifications
Desired Drive
T Performance Actual Drive using
Index | e Seeparate Feedback
Sensors
Decision Measure
Logic
Feedback, Q,

22 October 2014 -41
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Pole Assignment by State Feedback

« We begin by examining the problem of closed-loop pole
assignment. For the moment, we make a simplifying
assumption that all of the system states are measured. We
will remove this assumption later. We will also assume
that the system is completely controllable. The following
result then shows that the closed-loop poles of the system
can be arbitrarily assigned by feeding back the state
through a suitably chosen constant-gain vector.
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« Lemma 18.1: Consider the state space nominal model
 Let r(t) denote an external signal.

i(t) = Aoa(t) + Bou(t)
y(t) = Cou(t)

§@7 METR 4202: Robotics 22 October 2014 -44
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« Then, provided that the pair (A0, BO) is completely
controllable, there exists
u(t) =7 — Ka(t)
K 2 (ko ki, ... kn 1]
« such that the closed-loop characteristic polynomial is
A, (s), where A(s) is an arbitrary polynomial of degree n.

METR 4202: Robotics 22 October 2014 -45
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 Note that state feedback does not introduce additional
dynamics in the loop, because the scheme is based only on
proportional feedback of certain system variables. We can
easily determine the overall transfer function from r(t)
to y(t). Itis given by

Y (s) 4 CoAdj{sI — A, + BoK1B,
2 — Co(sI — Ay + BoK) 'B, =
(s (s  BoK) 7(s)
« where
F(s) 2 det{sI — Ao + BoK}
« and Adj stands for adjoint matrices.
@ METR 4202: Robotics 22 October 2014 -46
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[Matrix inversion lemma]

» We can further simplify the expression given above. To
do this, we will need to use the following results from
Linear Algebra.

« (Matrix inversion lemma).

Consider three matrices A,B,C
Then, if A + BC is nonsingular, we have that

(A+BC) '=A '-A 'B(I+CA 'B) 'CA!

* Inthe case for whichB =g € En and CT =h € En, the
above result becomes

1 -1 gh" -1
(A +gn") <I—A m)A

METR 4202: Robotics 22 October 2014 -47
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> M

« Lemma 18.3: Given a matrix W € Enxn and a pair of
arbitrary vectors ¢1 € En and ¢2 € En, then provided
that W and are nonsingular,

W +¢147 |

Adj(W + ¢163) 1 = Adj(W) ¢

* Proof: Seethel ”" o
¢ Adj(W + ¢165 ) = ¢ Adj(W)

Q@z METR 4202: Robotics 22 October 2014 -48
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SECaT Time! ... Brought To You By the Number 5

@ METR 4202

Robotics
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Example

Example
« Figure 18.1:

Schematic diagram of two coupled tanks

@ METR 4202: Robotics
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« Water flows into the first tank through pump 1 a rate fi(t)
that obviously affects the head of water in tank 1 (denoted
by h1(t)). Water flows out of tank 1 into tank 2 at a rate
f12(t), affecting both h1(t) and h2(t). Water than flows
out of tank 2 at a rate fe controlled by pump 2.

« Given this information, the challenge is to build a virtual
sensor (or observer) to estimate the height of liquid in tank
1 from measurements of the height of liquid in tank 2 and
the flows f1(t) and f2(t).

L]
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« Before we continue with the observer design, we first
make a model of the system. The height of liquid in tank
1 can be described by the equation

« Similarly, h2(t) is described by

dh;t(t) = %(fz(t) — f12(t))
« The flow between the two tanks can be approximated by
the free-fall velocigy,,ta- *~r ~***~=~~~g in height between

the two tanks: - At =)

@ METR 4202: Robotics le(t) - \/2g(h1 (t) - h2 (t)) 22 October 2014 -56




» We can linearize this model for a nominal steady-state
height difference (or operating point). Let

 This yields the following linear model:

hi(t) = ha(t) = Ah(t) = H + ha(t)
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« We are assuming that h2(t) can be measured and h1(t)
cannot,sowe setC=[0 1] and D=[0 O0]. The
resulting system is both controllable and observable (as
you can easily verify). Now we wish to design an
observer

=13

« to estimate the value of h2(t). The characteristic
polynomial of the observer is readily seen to be
2+ (2k+ J1)s+ Jok + ik

50 we can choose the observer poles; that choice gives us
values for J1 and J2.

§@7 METR 4202: Robotics 22 October 2014 -58
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« |If we assume that the operating point is H = 10%, then k =
0.0411. If we wanted polesat s =-0.9291 and s =-
0.0531, then we would calculate that J1 =0.3and J2 =
0.9. If we wanted two poles at s = -2, then J2 =3.9178

and J1=93.41.

@ METR 4202: Robotics 22 October 2014 -59

« The equation for the final observer is then
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« The data below has
shown earlier

been collected from the real system

Set point for height in tank 2 (%)

Percent

H 01 O~ 0
O O O OO
e

0 50 100 150_ 200 250 300 350 400

Time (sec)
Actual height in tank 2 (%)

Percent

B 01O N
[eNeNeNoN]

"

0 50 100 isoT_éoo 250 300 350 400
C

ime (sec)
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 The performance of

the observer for tank height is

compared below with the true tank height which is

actually measured o

n this system.

85
80 [
75
70
65 [
60 [
55
50|
45

Percent

Actual height in tank 1 (blue),
Observed height in tank 1 (red)

400 50 100 150 12

00 250 300 350 400
ime (sec)
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State-Feedback Control Objectives

» Regqulation: Force state x to equilibrium state (usually
0) with a desirable dynamic response.

» Tracking: Force the output of the system y to tracks a
given desired output y, with a desirable dynamic
response.

@ METR 4202: Robotics 22 October 2014 -66

Pole Placement Problem as an Eignenvalue Problem

Choose the state feedback gain to place the poles
of the closed-loop system, i.e.,

Eigenvalue s of G := G—HK

At specified locations /N Vs

Q@z METR 4202: Robotics 22 October 2014 -68
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State Feedback Control of a System in CCF

Consider a SISO system in CCF:

[0 1
0 0
G, = :
0 0
|~ a, —a,;

@(s)=|zI -G|=2"+a,z" " +-+a,_,z+4,

State Feedback Control

X(k+1) =G.x(k)+H.u

0 0
0 0
: | Ho=|
1

_al_ L1

u=—-Kx+r, K=k, K]
@ METR 4202: Robotics 22 October 2014 -69
Closed-Loop CCF System
Closed loop A matrix:
[0 1 0 ]
0 0 1 0
G= : ik, - k]
0 0 0 1
L™ a, —a,, —a, -— a1_ 2
S o 1
0 0
G= : :
0 0 0 1
|—a,+k, —a_+k, - —a,+k _, —a +k,|
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Choosing the Gain-CCF

Closed-loop Characteristic Equation
D(z)=2"+(a, +k, 2"+ +(a,, +k,)z+(a, +k,)
Desired Characteristic Equation:

n
0=(2) = [ [[2-1)=2" +afz" + -+ a5z + a2
i=1

Control Gains:

’Ki=ades a i=12,...,n

n—i+1 ~ Pn—i+1
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Transformation to CCF

Transform system x=Gx +Hu To CCF
SR
1 =%
A
. . X, =X
X" =GX+Hu= 2 778
)2n+ = _a‘n)zl_a‘n—lXZ _”'_ai)zn +u

Where x*(k)=x(k+1) (for simplicity)
First, find how new state z, is related to x:

%,=px, p=[p, - p,] (row vector)

§@7 METR 4202: Robotics
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Transformed State Equations

Necessary Conditions for p:

" =pG"?x* =pG”‘1x +W"("2Hu =X,
“Hu
1

Xna
X, =pG" X" =pG"X +p

p[H cH
Vector p can be found if the system is
1

controllable:

G"H]=[o 0 1]

p=e,’ M

22 October 2014 =73
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State Transformation Invertibility

X, p
State transformation: )2.2 Ty = RG %
)'(:n pG"!
Matrix T is invertible since
p 0 0 1
b oon - cmn)=|° t pG:nH
pé”‘l 1 pG H '- sz;“ZH
By the Cayley-Hamilton theorem.
), e 202 obotics 22 0ctober 2014 -7+
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Toeplitz Matrix

The Cayley-Hamilton theorem can further be used to

show that
an—l al 1
a,_, - 1 0
T™M| . . =
1 0 ... 0

Matrix on the right is called Toeplitz matrix

@ METR 4202: Robotics 22 October 2014 75

State Transformation Formulas

Formula 1: p
G
T= p. , p=e,M*
pGn—l
Formula 2:
a,_; a, 1)
Y ... 1 O
1 0] 0
@ METR 4202: Robotics 22 October 2014 -76
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State Feedback Control Gain Selection

u=—-KX+r, K=[a;’es—an— afes—al]
P
~ G
u=-— Tx+r:>K=[aﬁes—an— eoal® —a; P
E3 :
pGn—l

By Cayley Hamilton:  a |+a,_G+---+a,G"'=-G"

K= p(Gn +al®G" 4. +a’G+a’ I) or

K =e, M 0" (G)
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Bass-Gura Formula

U=—KX+r, R=[aﬁes—an— afes—al]
— T - -1
a, —ad’es a,, - a 17
K = an—l_agisl M a, 1 0
| a,—af* | L 1 O - 0f
-T _ -\ —.
a* —a, | ( [1 a a._, "
0O 1 a
K — M ) ) n—2
a’ —a,_, :
des
| a; a, | L [0 O 1 1)
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Double Integrator-Matlab Solution

T=0.5; lam=[0;0];

G=[1T;0 1]; H=[T"2/2;T]; C=[1 0];
K=acker(G,H,lam);

Gcl=G-H*K;
clsys=ss(Gcl,H,C,0,T);

step(clsys);

@ METR 4202: Robotics

v
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Flexible System Example

Consider the linear mass-spring system shown

below:
Xy X3

T’ ) r’ Parameters:
u v m,=m,=1Kg.
K=50 N/m

* Analyze PD controller based on a)x,, b)x,

» Design state feedback controller, place poles
at —20,—20,5/2(-1+ j)

§@7 METR 4202: Robotics
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Collocated Control

. X,(s) s?+50
L G, =20
Transfer Function: * = U(s) Sz(sz i 100)

PD Control: G, =K(s+a), a=20

ROOt- %fn 0 I
Locus S
s L
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Non-Collocated Control
X, (8) 50
1 - G = 2 =
Transfer Function: = U(s) Sz(sz " 100)
PD Control: G, =K(s+a) a=20

15

. g
Root-Locu s m

Imag Axis

Unstable 5

-10

-15
-35 -30 -25 -20 -15 -10 -5 0 5
Real Axis
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State Model

X, o o0 1 0fx,] [o
X;|_| 0 0 0 1)x| |0
X,| |-50 50 0 Ofx,| |1
x,| | 50 -50 0 ofx,| |0

Discretized Model: x(k+1)=Gx(k)+Hu(k)

0.9975 0.0025 0.01 0
0.0025 0.9975 0 0.01

—-0.4992 0.4992 0.9975 0.0025|
0.4992 0.4992 0.0025 0.9975

0.01
0
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Open-Loop System Information

Controllability matrix:
M=[H GH G(GH) c(c?H)]
(0] 0.0001 0.0002 0.0003
0] O 0] 0]
0.01 0.0099 0.0098 0.0097
(0] 0.001 0.0002 0.003

Characteristic equation:

|zI-G|=(z-1)%(z?-1.99z+1)=24-3.9923+5.9872-3.992+6

Q@z METR 4202: Robotics
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State Feedback Controller

Characteristic Equations:
|zI-G|=(z-1)?(z?-1.99z+1)=24-3.9923+5.982%-3.992+6

@ (s) = (z —0.8187)((z — 0.9294) +0.0658?)
d°(s)=2z*—-3.4963z° + 4.5822z%> —2.6675z +0.5819

-1

—3.4963+3.997 1 -3.99 598 -3.99

| 4.5822-5.98 M (0] 1 —-3.99 5.98
—2.6675+3.99 0 0 1 —-3.99
0.5819-6 0 0 0 —3.99

K =[757.00 —144.17 45.54 105.75]
U ==757x 4144 17X, =45.54%x  =105.75X , +r
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Matlab Solution

%System Matrices

m1=1; m2=1; k=50; T=0.01,;
syst=ss(A,B,C,D);

A=[0010;000 1;-50 50 0 0;50 -50 0 0];
B=[0; 0; 1; OJ;

C=[1000;0100]; D=zeros(2,1);
cplant=ss(A,B,C,D);

%Discrete-Time Plant
plant=c2d(cplant,T);
[G,H,C,D]=ssdata(plant);

Q@; METR 4202: Robotics 22 October 2014 -86




Matlab Solution

%Desired Close-Loop Poles
pc=[-20;-20;-5*sqrt(2)*(1+]);-
5*sqrt(2)*(1-)1;
pd=exp(T*pc);

% State Feedback Controller
K=acker(G,H,pd);

%Closed-Loop System
clsys=ss(G-H*K,H,C,0,T);
grid

step(clsys,1)
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Time Respone

Step Response

x 10° From: U(1)

2 T T T T T T

To: Y(1)

Amplitude

x10°

t t t t t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec.)
E? METR 4202: Robotics
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Steady-State Gain

Closed-loop system: x(k+1)=Gx(k)+Hr(k), Y=Cx(k)
Y (2)=C(zI-G)H R(2)
If r(k)=r.1(k) then y=C(I-G,)*H

Thus if the desired output is constant

r=y,/gain, gain= C(I-G)*H
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Time Response

Step Response

Amplitude

Time (sec.)

Q, METR 4202: Robotics 22 October 2014 =90

41



Integral Control

k-1

Control law: u =—st—K|Ze(j)+>;—“

: j=0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I G | plant
Integral | T
controller -K, |«
Automatically generates reference input r!
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Closed-Loop Integral Control System

X(k +1) = Gx (k) +Hu(k)
y(k) =Cx(k)

Plant:

Control: u=r-Kx-Kv(k),e=y, -y

Integral state: v(k+1) =v(k)—e(k)

Closed-loop system

sl TeoHak <L)
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Double Integrator-Matlab Solution

T=0.5; lam=[0;0;0];

G=[1T;01]; H=[T"2/2;T]; C=[1 0];
Gbhar=[G zeros(2,1);C 1];
Hbar=[H;0];
K=acker(Gbar,Hbar,lam);
Gcl=Gbar-Hbar*K;

yd=1; r=0; %unknown gain
clsys=ss(Gcl,[H*r;-yd],[C 0;K],0,T);
step(clsys);
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Closed-Loop Step Response

Step Response

From: U(1)

Amplitude

Time (sec.)
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