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The practice of robotics and computer vision 
each involve the application of computational algo-

rithms to data.  The research community has devel-
oped a very large body of algorithms but for a
newcomer to the field this can be quite daunting.

For more than 10 years the author has maintained two open-
source matlab® Toolboxes, one for robotics and one for vision.
They provide implementations of many important algorithms and
allow users to work with real problems, not just trivial examples.

This new book makes the fundamental algorithms of robotics,
vision and control accessible to all.  It weaves together theory, algo-
rithms and examples in a narrative that covers robotics and com-
puter vision separately and together.  Using the latest versions
of the Toolboxes the author shows how complex problems can be
decomposed and solved using just a few simple lines of code.
The topics covered are guided by real problems observed by the
author over many years as a practitioner of both robotics and
computer vision.  It is written in a light but informative style, it is
easy to read and absorb, and includes over 1000 matlab® and
Simulink® examples and figures. The book is a real walk through
the fundamentals of mobile robots, navigation, localization, arm-
robot kinematics, dynamics and joint level control, then camera
models, image processing, feature extraction and multi-view
geometry, and finally bringing it all together with an extensive
discussion of visual servo systems.
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The (amazing) sense of vision

The trilobites were among the most 
successful of all early animals, 
appearing 521 million years ago 
and roaming the oceans for over 
270 million years.
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2D and 3D
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Cave paintings ~40,000 years ago
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Piero della Francesca (1415-1492)

Jan Vredeman de Vries, 1604.
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trompe l'oeil |ˌtrômp ˈloi|	

noun ( pl. trompe l'oeils pronunc. same )	

visual illusion in art, esp. as used to trick the 
eye into perceiving a painted detail as a three-
dimensional object.
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Edgar Mueller 
http://www.metanamorph.com

http://www.metanamorph.com
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Waterfall 
M.C. Escher 
1961
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Image 
formation 

(in pictures)
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points in the world
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Image formation

image planepoints in the world
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Image formation

points in the world image plane

dark 
inverted 
image
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The pin hole camera
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Pin hole images
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Simple imaging

• Image formation is the mapping of scene points to the image plane
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Image formation

dark 
inverted 
image
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Image formation

image plane

bigger 
area

F = f/f

f

f

brighter 
image

small 
is good
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Use a lens to gather more light

George R. Lawrence 1900
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Thin lens model
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Figure 11.1: Image formation geometry for a thin convex lens shown in 2-dimensional cross
section. A lens has two focal points at a distance of f on each side of the lens. By convention
the camera’s optical axis is the z-axis.

11.1 Perspective transform

The pin-hole camera produces a very dim image since its radiant power is the scene
luminance in units of watts/m2 multiplied by the size of the pin hole. The key to
brighter images is to collect light over a larger area using a lens or a curved mirror.
A convex lenses can form an image just like a pinhole but the larger diameter of the
lens allows more light to pass which leads to much brighter images.

The elementary aspects of image formation with a thin lens are shown in Figure
11.1. The positive z-axis is the camera’s optical axis. The z-coordinate of the object
and its image are related by the lens law

1

zo
+

1

zi
=

1

f
(11.1)

where zo is the distance to the object, zi the distance to the image, and f is the
focal length of the lens. For zo > f an inverted image is formed on the image
plane at z < − f . In a camera the image plane is fixed at the surface of the sensor
chip so the focus ring of the camera moves the lens along the optical axis so that

In the 5th century BCE, the philosopher Mo Jing in ancient China
mentioned the effect of an inverted image forming through a pin-
hole. The camera obscura is a darkened room where a dim inverted
image of the world is cast on the wall by light entering through a
small hole. Making the hole larger increases the brightness of the
image but makes it less focussed.
Camera obscuras were popular tourist attractions in Victorian
times, particularly in Britain, and many are still operating today.

Draft of December 31, 2010, Brisbane Copyright (c) Peter Corke 2010

z

o

! •
zi ! f

Focussing on distant objects

• Perspective projection 
–3D to 2D

(X ,Y,Z) 7! (x,y)

R3 7! R2
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Perspective projection

• Maps 
–Lines → lines 

• parallel lines not necessarily parallel 
• angles are not preserved 

–Conics → conics



No	  unique	  inverse
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Image 
formation 
(in maths)



P 2 R2

P̃ = (x,y,1)
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Homogeneous coordinates

• Cartesian → homogeneous

x =
x̃

z̃

, y =
ỹ

z̃

• homogeneous → Cartesian
P = (x,y)P̃ = (x̃, ỹ, z̃)

P = (x,y)

2
Chapter

Representing Position
and Orientation

Fig. 2.1.
a The point P is described by a co-
ordinate vector with respect to an
absolute coordinate frame. b The
points are described with respect

to the object’s coordinate frame {B}
which in turn is described by a

relative pose ξB. Axes are deno-
ted by thick lines with an open

arrow, vectors by thin lines with a
swept arrow head and a pose by a

thick line with a solid head

Fig. 2.2.
The point P can be described by

coordinate vectors relative to
either frame {A} or {B}. The pose

of {B} relative to {A} is AξB

A fundamental requirement in robotics and computer vision is to represent
the position and orientation of objects in an environment. Such objects in-
clude robots, cameras, workpieces, obstacles and paths.

A point in space is a familiar concept from mathematics and can be de-
scribed by a coordinate vector, also known as a bound vector, as shown in
Fig. 2.1a. The vector represents the displacement of the point with respect
to some reference coordinate frame. A coordinate frame, or Cartesian coor-
dinate system, is a set of orthogonal axes which intersect at a point known
as the origin.

More frequently we need to consider a set of points that comprise some
object. We assume that the object is rigid and that its constituent points
maintain a constant relative position with respect to the object’s coordinate
frame as shown in Fig. 2.1b. Instead of describing the individual points we
describe the position and orientation of the object by the position and ori-
entation of its coordinate frame. A coordinate frame is labelled, {B} in this
case, and its axis labels xB and yB adopt the frame’s label as their subscript.

The position and orientation of a coordinate frame is known as its pose
and is shown graphically as a set of coordinate axes. The relative pose of a
frame with respect to a reference coordinate frame is denoted by the symbol ξ

lines and points are duals
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A line in homogeneous form

p̃= (x̃, ỹ, z̃)
˜̀T p̃= 0

such that

Point equation of a line



˜̀= p̃1 ⇥ p̃2
˜̀
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Line joining points

p̃1 = (a,b,c)

p̃2 = (d,e, f )



�̃1 = (a,b,c)

p̃= ˜̀1 ⇥ ˜̀2

a university for the worldreal ®
CRICOS No. 00213J

© Peter Corke

Intersecting lines

p̃

�̃2 = (d,e, f )

line equation of a point
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Central projection model
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Pin-hole model in homogeneous form

x =
x̃

z̃

, y =
ỹ

z̃

• Perspective transformation, with the pesky divide by 
Z, is linear in homogeneous coordinate form.

Central perspective model
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Change of coordinates

• scale from metres to pixels 
• shift the origin to top left 

corner

u =
x

r
u

+u0

v =
y

r
v

+ v0
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Complete camera model 
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camera matrix
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Camera matrix

• Mapping points from the world to an image (pixel) 
coordinate is simply a matrix multiplication using 
homogeneous coordinates



• Consider an arbitrary scalar scale factor 
!

!

!

!

!

•           will all be scaled by 
• but  
!

• so the result is unchanged
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Scale invariance

ũ, ṽ, w̃ l

u =
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Normalized camera matrix

• Since scale factor is arbitrary we can fix the value of 
one element, typically C(3,4) to one.

focal length 
pixel size 

camera position & 
orientation

u =
ũ
w̃
, v =

ṽ
w̃
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Consider a 
moving camera



(X ,Y,Z)

Motion of a camera

vz
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w
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• 6 degrees of freedom 
– translate along x, y, z 
– rotate about x, y, z

wy

(u,v)
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Optical flow patterns
t

x

wz
• Pixel motion depends on 

–pixel position 
–camera motion
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Optical flow patterns
t

x

• Rotation and translation in x and y 
cause very similar motion
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Optical flow equation

461

of the point relative to the camera frame is

(15.1)

which we can write in scalar form as

(15.2)

The perspective projection Eq. 11.2 for normalized coordinates is

and the temporal derivative, using the quotient rule, is

Substituting Eq. 15.2, X= xZ and Y= yZ we can write this in matrix form

(15.3)

which relates camera velocity to feature velocity in normalized image coordinates.
The normalized image-plane coordinates are related to the pixel coordinates by Eq. 11.7

which we rearrange as

(15.4)

where –u= u− u0 and –v= (v− v0) are the pixel coordinates relative to the principal
point. The temporal derivative is

(15.5)

and substituting Eq. 15.4 and Eq. 15.5 into Eq. 15.3 leads to

(15.6)

15.2  ·  Image-Based Visual Servoing

are distances from principal point

speed 
of pixel

speed of 
camera
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Motion of multiple points

464

The matrix has a rank of two,! and therefore has a null-space of dimension four.
The null-space comprises a set of spatial velocity vectors that individually, or in any
linear combination, cause no motion in the image. Consider the simple case of a point
in front of the camera on the optical axis

>> J = cam.visjac_p([512; 512], 1)

The null-space of the Jacobian is

>> null(J)
ans =
         0         0   -0.7071         0
         0    0.7071         0         0
    1.0000         0         0         0
         0    0.7071         0         0
         0         0    0.7071         0
         0         0         0    1.0000

The first column indicates that motion in the z-direction, along the ray toward the
point, results in no motion in the image. Nor does rotation about the z-axis, as indi-
cated by column four. Columns two and three are more complex, combining rotation
and translation. Essentially these exploit the image motion ambiguity mentioned above.
Since x-axis translation causes the same image motion as y-axis rotation, column three
indicates that if one is positive and the other negative the resulting image motion will
be zero – that is translating left and rotating to the right.

We can consider the motion of two points by stacking the Jacobians

to give a 4× 6 matrix which will have a null-space with two columns. One of these
camera motions corresponds to rotation around a line joining the two points.

For three points

(15.8)

the matrix will be non-singular so long as the points are not coincident or collinear.

15.2.2 lControlling Feature Motion

So far we have shown how points move in the image plane as a consequence of camera
motion. As is often the case it is the inverse problem that is more useful – what camera
motion is needed in order to move the image features at a desired velocity?

For the case of three points {(ui, vi),  i= 1!3} and corresponding velocities {(Éi, Êi)}
we can invert Eq. 15.8

(15.9)

and solve for the required camera velocity.

The rank cannot be less than 2, even if
Z→∞.

Chapter 15  ·  Vision-Based Control174

from which we write

Once again, with reference to Fig. 8.1, this makes sense. Rotation of joint two, whose
rotational axis is in the negative y-direction, results in an angular velocity in the nega-
tive y-direction.

We have established, numerically, the relationship between the velocity of individual
joints and the translational and angular velocity of the robot’s end-effector. Earlier
Eq. 7.3 we wrote the forward kinematics in functional form as

and taking the derivative we write

(8.2)

which is the instantaneous forward kinematics where ν= (vx, vy, vz, ωx, ωy, ωz) ∈R
6 is

a spatial velocity and comprises translational and rotational velocity components. The
matrix J(q) ∈R6×N is the manipulator Jacobian or the geometric Jacobian.

The Jacobian matrix can be computed directly! by the jacob0 method of the
SerialLink object

>> J = p560.jacob0(qn)
J =
    0.1501    0.0144    0.3197         0         0         0
    0.5963    0.0000    0.0000         0         0         0
         0    0.5963    0.2910         0         0         0
         0   -0.0000   -0.0000    0.7071   -0.0000   -0.0000
         0   -1.0000   -1.0000   -0.0000   -1.0000   -0.0000
    1.0000    0.0000    0.0000   -0.7071    0.0000   -1.0000

The rows correspond to Cartesian degrees of freedom and the columns correspond to
joints – they are the end-effector spatial velocities corresponding to unit velocity of
the corresponding joints. The results we computed earlier, using derivative approxi-
mation, can be seen in the first two columns. The 3× 3 block of zeros in the top right
indicates that motion of the wrist joints has no effect on the end-effector translational
motion – this is an artifact of the spherical wrist and a zero length tool.

8.1.1 lTransforming Velocities between Coordinate Frames

Consider two frames {A} and {B} related by

A Jacobian is the matrix equivalent of the derivative – the derivative of a vector-valued function of
a vector with respect to a vector. If y= F(x) and x∈Rn and y∈Rm then the Jacobian is the
m×n matrix

The Jacobian is named after Carl Jacobi, and more more details are given in Appendix G.

The function jacob0 does not use
finite differences. It has a direct form
based on the Denavit-Hartenberg
parameters of the robot arm (Paul and
Shimano 1978).

Chapter 8  ·  Velocity Relationships

• Consider the case of three points, in matrix form
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Desired view
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Current view
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Image plane motion
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Image plane motion

(u̇, v̇)

(u, v)
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Inverting the problem
465

Given feature velocity we can compute the required camera motion, but how do
we determine the feature velocity? The simplest strategy is to use a simple linear
controller

(15.10)

that drives the features toward their desired values p* on the image plane. Combined
with Eq. 15.9 we write

That’s it! This controller will drive the camera so that the feature points move to-
ward the desired position in the image. It is important to note that nowhere have we
required the pose of the camera or of the object,▹ everything has been computed in
terms of what can be measured on the image plane.

For the general case where N> 3 points we can stack the Jacobians for all features
and solve for camera motion using the pseudo-inverse

(15.11)

Note that it is possible to specify a set of feature point velocities which are inconsis-
tent, that is, there is no possible camera motion that will result in the required image
motion. In such a case the pseudo-inverse will find a solution that minimizes the norm
of the feature velocity error.

For N≥ 3 the matrix can be poorly conditioned if the points are nearly co-inci-
dent or collinear. In practice this means that some camera motions will cause very
small image motions, that is, the motion has low perceptibility. There is strong simi-
larity with the concept of manipulability that we discussed in Sect. 8.1.4 and we take
a similar approach in formalizing it. Consider a camera spatial velocity of unit mag-
nitude

and from Eq. 15.7 we can write the camera velocity in terms of the pseudo-inverse

and substituting yields

which is the equation of an ellipsoid in the point velocity space. The eigenvectors of JpJp
T

define the principal axes of the ellipsoid and the singular values of Jp are the radii. The
ratio of the maximum to minimum radius is given by the condition number of Jp and
indicates the anisotropy of the feature motion. A high value indicates that some of the
points have low velocity in response to some camera motions. An alternative to stack-
ing all the point feature Jacobians is to select just three that when stacked result in the
best conditioned square matrix which can then be inverted.

We do require the depth Z of the point
but we will come to that shortly.

15.2  ·  Image-Based Visual Servoing

465

Given feature velocity we can compute the required camera motion, but how do
we determine the feature velocity? The simplest strategy is to use a simple linear
controller

(15.10)

that drives the features toward their desired values p* on the image plane. Combined
with Eq. 15.9 we write

That’s it! This controller will drive the camera so that the feature points move to-
ward the desired position in the image. It is important to note that nowhere have we
required the pose of the camera or of the object,▹ everything has been computed in
terms of what can be measured on the image plane.

For the general case where N> 3 points we can stack the Jacobians for all features
and solve for camera motion using the pseudo-inverse

(15.11)

Note that it is possible to specify a set of feature point velocities which are inconsis-
tent, that is, there is no possible camera motion that will result in the required image
motion. In such a case the pseudo-inverse will find a solution that minimizes the norm
of the feature velocity error.

For N≥ 3 the matrix can be poorly conditioned if the points are nearly co-inci-
dent or collinear. In practice this means that some camera motions will cause very
small image motions, that is, the motion has low perceptibility. There is strong simi-
larity with the concept of manipulability that we discussed in Sect. 8.1.4 and we take
a similar approach in formalizing it. Consider a camera spatial velocity of unit mag-
nitude

and from Eq. 15.7 we can write the camera velocity in terms of the pseudo-inverse

and substituting yields

which is the equation of an ellipsoid in the point velocity space. The eigenvectors of JpJp
T

define the principal axes of the ellipsoid and the singular values of Jp are the radii. The
ratio of the maximum to minimum radius is given by the condition number of Jp and
indicates the anisotropy of the feature motion. A high value indicates that some of the
points have low velocity in response to some camera motions. An alternative to stack-
ing all the point feature Jacobians is to select just three that when stacked result in the
best conditioned square matrix which can then be inverted.

We do require the depth Z of the point
but we will come to that shortly.
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The matrix has a rank of two,! and therefore has a null-space of dimension four.
The null-space comprises a set of spatial velocity vectors that individually, or in any
linear combination, cause no motion in the image. Consider the simple case of a point
in front of the camera on the optical axis

>> J = cam.visjac_p([512; 512], 1)

The null-space of the Jacobian is

>> null(J)
ans =
         0         0   -0.7071         0
         0    0.7071         0         0
    1.0000         0         0         0
         0    0.7071         0         0
         0         0    0.7071         0
         0         0         0    1.0000

The first column indicates that motion in the z-direction, along the ray toward the
point, results in no motion in the image. Nor does rotation about the z-axis, as indi-
cated by column four. Columns two and three are more complex, combining rotation
and translation. Essentially these exploit the image motion ambiguity mentioned above.
Since x-axis translation causes the same image motion as y-axis rotation, column three
indicates that if one is positive and the other negative the resulting image motion will
be zero – that is translating left and rotating to the right.

We can consider the motion of two points by stacking the Jacobians

to give a 4× 6 matrix which will have a null-space with two columns. One of these
camera motions corresponds to rotation around a line joining the two points.

For three points

(15.8)

the matrix will be non-singular so long as the points are not coincident or collinear.

15.2.2 lControlling Feature Motion

So far we have shown how points move in the image plane as a consequence of camera
motion. As is often the case it is the inverse problem that is more useful – what camera
motion is needed in order to move the image features at a desired velocity?

For the case of three points {(ui, vi),  i= 1!3} and corresponding velocities {(Éi, Êi)}
we can invert Eq. 15.8

(15.9)

and solve for the required camera velocity.

The rank cannot be less than 2, even if
Z→∞.
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Visual servoing: simple feedback
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Non-holonomic visual servoing
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Direct processing of wide-angle imagery
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AUV visual odometry

A hybrid AUV design for shallow water reef navigation. In Proc. IEEE Int. Conf. 
Robotics and Automation,  2005.	

M. Dunbabin, P. Corke, Visual motion estimation for an autonomous underwater reef 
monitoring robot. In P. Corke and S. Sukkariah, editors, Field and Service Robotics: 
Results of the 5th International Conference,  2006.	

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection, storage and 
retrieval with an underwater sensor network. In Proc. IEEE SenSys, 2005. 



a university for the worldreal ®
CRICOS No. 00213J

© Peter Corke

Crucible Finder

• The HMC must deal with uncertainty on crucible pose and 
vehicle approach position 

• Use a pan/tilt/zoom camera 

• Use visual fiducials on the crucible handle
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Crucible pickup






