Position & motion in 2D and 3D

METR4202: Guest lecture 22 October 2014

Peter Corke

Sections 11.1, 15.2

The (amazing) sense of vision

The trilobites were among the most successful of all early animals, appearing 521 million years ago and roaming the oceans for over 270 million years.

2D and 3D

Cave paintings ~40,000 years ago

Piero della Francesca (1415-1492)

Jan Vredeman de Vries, 1604.

trompe l'oeil | trômp 'loi| noun (pl. trompe l'oeils pronunc. same) visual illusion in art, esp. as used to trick the eye into perceiving a painted detail as a threedimensional object.

Edgar Mueller http://www.metanamorph.com

TTING

Waterfall M.C. Escher 1961

Image formation (in pictures)

points in the world

Image formation

points in the world

ímage plane

Image formation

points in the world

ímage plane

The pin hole camera

Pin hole images

Simple imaging

• Image formation is the mapping of scene points to the image plane

$$x = \frac{fX}{Z}, y = \frac{fY}{Z} \qquad (X, Y, Z) \mapsto (x, y)$$
$$\mathbb{R}^3 \mapsto \mathbb{R}^2$$

Image formation

Image formation

Use a lens to gather more light

George R. Lawrence 1900

Perspective projection

Maps

- $-Lines \rightarrow lines$
 - parallel lines not necessarily parallel
 - angles are not preserved
- $-Conics \rightarrow conics$

No unique inverse

Image formation (in maths)

Homogeneous coordinates

- Cartesian → homogeneous
 - P = (x, y) $\tilde{P} = (x, y, 1)$ $P \in \mathbb{R}^2$ $\tilde{P} \in \mathbb{P}^2$

homogeneous → Cartesian

$$ilde{P} = (ilde{x}, ilde{y}, ilde{z}) \qquad P = (x, y)$$
 $x = rac{ ilde{x}}{ ilde{z}}, y = rac{ ilde{y}}{ ilde{z}}$

línes and points are duals

A line in homogeneous form

QUT

Line joining points

Intersecting lines

$$\tilde{\boldsymbol{p}} = \tilde{\ell}_1 \times \tilde{\ell}_2$$

Central projection model

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Perspective transformation, with the pesky divide by Z, is linear in homogeneous coordinate form.

Change of coordinates

- scale from metres to píxels
- shift the origin to top left corner

$$p = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \tilde{u}/\tilde{w} \\ \tilde{v}/\tilde{w} \end{pmatrix}$$

Camera matrix

 Mapping points from the world to an image (pixel) coordinate is simply a matrix multiplication using homogeneous coordinates

$$\begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

$$u = \frac{\tilde{u}}{\tilde{w}}, v = \frac{\tilde{v}}{\tilde{w}}$$

Scale invariance

Consider an arbitrary scalar scale factor

$$\begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{pmatrix} = \lambda \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

• $\tilde{u}, \tilde{v}, \tilde{w}$ will all be scaled by λ

• but $u = \frac{\tilde{u}}{\tilde{w}}, v = \frac{\tilde{v}}{\tilde{w}}$

so the result is unchanged

Normalized camera matrix

 Since scale factor is arbitrary we can fix the value of one element, typically C(3,4) to one.

Consider a moving camera

Motion of a camera

- 6 degrees of freedom
 - -translate along x, y, z
 - -rotate about x, y, z

Optical flow patterns

Pixel motion depends on

 –pixel position
 –camera motion

Optical flow patterns

 Rotation and translation in x and y cause very similar motion

Optical flow equation

(\bar{u}, \bar{v}) are distances from principal point

Motion of multiple points

• Consider the case of three points, in matrix form

$$\begin{pmatrix} \dot{u}_1 \\ \dot{\nu}_1 \\ \dot{u}_2 \\ \dot{\nu}_2 \\ \dot{\nu}_2 \\ \dot{u}_3 \\ \dot{\nu}_3 \end{pmatrix} = \begin{pmatrix} J_{p_1} \\ J_{p_2} \\ J_{p_3} \end{pmatrix} \boldsymbol{\nu} \qquad \boldsymbol{\nu} = (\boldsymbol{\nu}_x, \boldsymbol{\nu}_y, \boldsymbol{\nu}_z, \, \omega_x, \, \omega_y, \, \omega_z) \in \mathbb{R}^6$$

Desired view

Current view

Image plane motion

Image plane motion

Inverting the problem

IBVS simulation

Applications

Visual servoing: simple feedback

Non-holonomic visual servoing

Direct processing of wide-angle imagery

K. Usher and J. Roberts and P. Corke and E. Duff, Vision-based navigational competencies for a car-like vehicles. In M. Ang and O. Khatib, editors, *Experimental Robotics IX*, volume 21 of *Springer Tracts in Advanced Robotics (STAR)*, 2006.

P. Corke and D. Symeonidis and K. Usher, Tracking road edges in the panospheric image plane. In *Proc. Int. Conf on Intelligent Robots and Systems (IROS)*, 2003.

AUV visual odometry

Crucible Finder

- The HMC must deal with uncertainty on crucible pose and vehicle approach position
- Use a pan/tilt/zoom camera
- Use visual fiducials on the crucible handle

Crucible pickup

Queensland University of Technology Knowledge Cloud

Participants needed for MOOC trial Robotic Vision

all

QL

Help us pioneer QUT's new *Massive Open Online Course* by joining us to test the first four weeks of this eight week course. *Robotic Vision*, by Professor Peter Corke, promises to be an in-depth look into the mechanics of sight and how robots receive and interpret visual stimulus.

Starting on 17 November

Pre-register at qut.edcastcloud.com/learn/robotic-vision-trial For more information contact moocs@qut.edu.au

QUT

a university for the real world®