

Week	Date	Lecture (W: 11:10-12:40, 24-402)		
1	30-Jul	Introduction		
2	6-Aug	Representing Position & Orientation & State		
		(Frames, Transformation Matrices & Affine Transformations)		
3	13-Aug	Robot Kinematics (& Ekka Day)		
4	20-Aug	Robot Dynamics & Control		
5	27-Aug	Robot Motion		
6	3-Sep	Robot Sensing: Perception & Multiple View Geometry		
7	10-Sep	Robot Sensing: Features & Detection using Computer Vision		
8	17-Sep	Navigation (+ Prof. M. Srinivasan)		
9	24-Sep	Localization & Motion Planning + Control		
	1-Oct	Study break		
10	8-Oct	State-Space Modelling		
11	15-Oct	Shaping the Dynamic Response		
12	22-Oct	Linear Observers & LQR		
13	29-Oct	Applications in Industry & Course Review		

State-space representation

• We can write linear systems in matrix form:

$$\dot{\mathbf{x}} = \begin{bmatrix} -7 & 12\\ 1 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 0 \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{x} + 0\mathbf{u}$$

Or, more generally:

 $\dot{x} = \mathbf{A}x + \mathbf{B}u$ $y = \mathbf{C}x + Du$

"State-space equations"

8 October 2014 - 9

State variable transformation • Two homologous representations: $\dot{x} = Ax + Bu$ and $\dot{q} = Fq + Gu$ y = Cx + Du and y = Hq + JuWe can write: $\dot{x} = T\dot{q} = ATz + Bu$ $\dot{q} = T^{-1}ATz + T^{-1}Bu$ Therefore, $F = T^{-1}AT$ and $G = T^{-1}B$ Similarly, C = HT and D = JSubstituting the second sec

Example: (Back To) Robot Arms

Slides 17-27 Source: R. Lindeke, ME 4135, "Introduction to Control"

METR 4202: Robotics

8 October 2014 - 14

Lets simplify the model

- This torque model is a 2nd order one (in position) lets look at it as a velocity model rather than positional one then it becomes a system of highly coupled 1st order differential equations
- We will then isolate Acceleration terms (acceleration is the 1st derivative of velocity)

$$a = \dot{v} = \ddot{q} = D_i^{-1}(q) \left(\tau_i - C_i(q, \dot{q}_i) - h(q) - b(\dot{q}_1)\right)$$

Considering Control:

- Each Link's torque is influenced by each other links motion - We say that the links are highly coupled
- Solution then suggests that control should come from a simultaneous solution of these torques
- We will model the solution as a "State Space" design and try to balance the torque-in with *positional control*-out the most common way it is done!
 - But we could also use 'force control' to solve the control problem!

8 October 2014 - 17

PE Controller: • To a 1st approximation, $\tau = K_m * I$ • Torque is proportional to <u>motor current</u> • And the Torque required is a function of 'Inertial' (Acceleration) and 'Friction' (velocity) effects as suggested by our L-E models $\tau_m \simeq J_{eq}\ddot{q} + F_{eq}\dot{q}$ • Which can be approximated as: $K_m I_m = J_{eq}\ddot{q} + F_{eq}\dot{q}$

Setting up a "Control Law"

- We will use the <u>positional error</u> (as drawn in the state model) to develop our torque control
- We say then for PE control:

 $au \propto k_{pe}(heta_d - heta_a)$

• Here, k_{pe} is a "gain" term that guarantees sufficient current will be generated to develop appropriate torque based on observed positional error

8 October 2014 - 21

METR 4202: Robotics

Using this Control Type:
It is a representation of the physical system of a mass on a spring!
We say after setting our target as a 'zero goal' that:
-kpe * θ_a = J θ + F θ
the solution of which is:

θ_a is a function of the servo feedback as a function of time!
(θ_a = e^{-(F/2J)t} [C₁e^{(1/2)ωt} + C₂e^{-(1/2)ωt}]

State evolution • Consider the system matrix relation: $\dot{x} = Fx + Gu$ y = Hx + JuThe time solution of this system is: $x(t) = e^{F(t-t_0)} x(t_0) + \int_{t_0}^{t} = e^{F(t-\tau)} Gu(\tau) d\tau$ If you didn't know, the matrix exponential is: $e^{Kt} = I + Kt + \frac{1}{2!}K^2t^2 + \frac{1}{3!}K^3t^3 + \cdots$

METR 4202: Robotics

8 October 2014 - 28

Stability

• We can solve for the natural response to initial conditions *x*₀:

$$\mathbf{x}(t) = e^{p_i t} \mathbf{x}_0$$

$$\therefore \dot{\mathbf{x}}(t) = p_i e^{p_i t} \mathbf{x}_0 = \mathbf{F} e^{p_i t} \mathbf{x}_0$$

Clearly, a system will be stable provided $eig(\mathbf{F}) < 0$

8 October 2014 - 29

Discretisation FTW!

• We can use the time-domain representation to produce difference equations!

$$\boldsymbol{x}(kT+T) = e^{\mathbf{F}T} \boldsymbol{x}(kT) + \int_{kT}^{kT+T} e^{\mathbf{F}(kT+T-\tau)} \mathbf{G}\boldsymbol{u}(\tau) d\tau$$

Notice $u(\tau)$ is not based on a discrete ZOH input, but rather an integrated time-series.

We can structure this by using the form:

$$u(\tau) = u(kT), \qquad kT \le \tau \le kT + T$$

8 October 2014 - 35

METR 4202: Robotics

Discretisation FTW! • Put this in the form of a new variable: $\eta = kT + T - \tau$ Then: $x(kT + T) = e^{FT}x(kT) + \left(\int_{kT}^{kT+T} e^{F\eta} d\eta\right) Gu(kT)$ Let's rename $\Phi = e^{FT}$ and $\Gamma = \left(\int_{kT}^{kT+T} e^{F\eta} d\eta\right) G$ Discrete state matrices So,

$$\mathbf{x}(k+1) = \mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}\mathbf{u}(k)$$
$$\mathbf{y}(k) = \mathbf{H}\mathbf{x}(k) + \mathbf{I}\mathbf{u}(k)$$

Again, x(k + 1) is shorthand for x(kT + T)

Note that we can also write Φ as:

$$\mathbf{\Phi} = \mathbf{I} + \mathbf{F}T\mathbf{\Psi}$$

where

$$\Psi = \mathbf{I} + \frac{\mathbf{F}T}{2!} + \frac{\mathbf{F}^2 T^2}{3!} + \cdots$$

8 October 2014 - 31

State-space z-transform

We can apply the z-transform to our system: $(z\mathbf{I} - \mathbf{\Phi})\mathbf{X}(z) = \mathbf{\Gamma}U(k)$

$$Y(z) = \mathbf{H}\mathbf{X}(z)$$

which yields the transfer function: $\frac{Y(z)}{X(z)} = G(z) = H(zI - \Phi)^{-1}\Gamma$

METR 4202: Pohotics	8 October 2014 53