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Schedule
Week | Date Lecture (W: 11:10-12:40, 24-402)

1 [ 30-Jul [Introduction

6-Aug Representing Po_sition _ & .Orientation _ & State
(Frames, Transformation Matrices & Affine Transformations)

13-Aug|Robot Kinematics (& Ekka Day)

20-Aug|Robot Dynamics & Control

27-Aug[Robot Motion

3-Sep [Robot Sensing: Perception & Multiple View Geometry

10-Sep|Robot Sensing: Features & Detection using Computer Vision

17-Sep [Navigation (+ Prof. M. Srinivasan)

24-Sep [Localization & Motion Planning + Control

1-Oct Study break

10 | 8-Oct {State-Space Modelling

11 [15-Oct[Shaping the Dynamic Response

12 |22-Oct|Linear Observers & LQR

13 |29-Oct|Applications in Industry & Course Review
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http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US

Announcements; Lab 2 Extended

e Feedback from Lab 1!

» Lab 2 Report:

— Same as last semester

— This time it’s public

— “Private” (PAF) comments are in the online Lab2 PAF
« Lab 3:

— Cup stack/unstacking

— Hope to get it written by this afternoon.

— Might be a “live document” like last year

Cool

« Cool Robotics Share Site Robetis
=» http://metr4202.tumblr.com/ Share
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State-Space Modelling

(from 2013 — Sorry!)

(“Hear Ye! It be stated”)



http://metr4202.tumblr.com/
http://metr4202.tumblr.com/

Affairs of state

* Introductory brain-teaser:

— If you have a dynamic system model with history (ie.
integration) how do you represent the instantaneous state of the
plant?

Eg. how would you setup a simulation of a step response, mid-step?

start
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Introduction to state-space

« Linear systems can be written as networks of simple
dynamic elements:

s+2 2 N -1
s24+7s+12 s+4 s+3

1
u 1 2 j,%)_,y
S

—12

(AN
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Introduction to state-space

» We can identify the nodes in the system

— These nodes contain the integrated time-history values of the
system response

— We call them “states”

1
X X

—12

P
0l
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Linear system equations

« We can represent the dynamic relationship between the
states with a linear system:

th == —7x1 - 12x2 + u
'X:Z == xl + Oxz + Ou
y = x1+ 2x,+0u
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State-space representation

» We can write linear systems in matrix form:
_[=7 12 1
x =7 o]x]v
y =[1 2]x+0u

Or, more generally: “State-space
x =Ax + Bu equations”
y =Cx+ Du
@ METR 4202: Robotics 8 October 2014 - 9

State-space representation

« State-space matrices are not necessarily a unique
representation of a system
— There are two common forms

« Control canonical form

— Each node — each entry in x — represents a state of the system
(each order of s maps to a state)

« Modal form

— Diagonals of the state matrix A are the poles (“modes”) of the
transfer function

aay ME )2: Robotics October 2014 -1¢
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State variable transformation

» Important note!

— The states of a control canonical form system are not the same as
the modal states

— They represent the same dynamics, and give the same output, but
the vector values are different!

« However we can convert between them:
— Consider state representations, x and g where

x=Tq

T is a “transformation matrix”

= METR 4202: Robotics 8 October 2014 -11
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State variable transformation

« Two homologous representations:
x =Ax + Bu and q =Fq+ Gu
y=Cx+Du y =Hq +Ju

We can write:
X =Tq= ATz +Bu
qg=T ATz + T 1Bu

Therefore, F = T-1ATand G = T"1B

Similarly, C=HTand D =]

aay ME )2: Robotics 8 October 2014 -12
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Controllability matrix

» To convert an arbitrary state representation in F, G, H and
J to control canonical form A, B, C and D, the
“controllability matrix”

Cc=[G FG F2G - F" @]
must be nonsingular.

/1 o 14 Had 41 (19 4+ Hala1 422 fratxr )
] \AJ ll_y IS It C4allCd U1C  COIIu UlldUlllLy HIdlIX !
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Example:

(Back To) Robot Arms

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control”




Remembering the Motion Models:

 Recall from Dynamics, the Required Joint Torque is:

7. =D (q) g+ Ci(q,q;) +h(q) +b(q)
Dynanicel - R COUBIEGIONE

Inertial Tensor — (centrifugal and

a function of coriolis) issues Frictional Effect
position and due to multiple due to Joint/Link
acceleration moving joints movement
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Lets simplify the model

« This torque model is a 2" order one (in position) lets look
at it as a velocity model rather than positional one then it
becomes a system of highly coupled 1%t order differential
equations

« We will then isolate Acceleration terms (acceleration is
the 1%t derivative of velocity)

a=1v=q= D;(q) (r; — Ci(g,4;) — h(q) —b(d1))

= METR 4202: Robotics 8 October 2014 -16
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Considering Control:

» Each Link’s torque is influenced by each other links motion
— We say that the links are highly coupled

« Solution then suggests that control should come from a
simultaneous solution of these torques

» We will model the solution as a “State Space” design and try to
balance the torque-in with positional control-out — the most
common way it is done!

— But we could also use ‘force control’ to solve the control problem!

= METR 4202: Robotics 8 October 2014 -17
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The State-Space Control Model:

Inertial Coupling

Friction b

[

Coriolis

Centrifugal c

Effects

I+

Gravitation h
Effects

ME )2: Robotics 8 October 2014 -18
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Setting up a Real Control

» We will (start) by using positional error to drive our
torque devices

+ State Space Model, I6int Drive
—_—Q, Error m—l! K, > Generalized e TOrqUE Neededmmpi-

Feedback, Q,

 This simple model is called a PE (proportional error)
controller

@ METR 4202: Robotics 8 October 2014 -19

PE Controller:

« To a 1t approximation, T = K ,*1

 Torque is proportional to motor current

* And the Torque required is a function of ‘Inertial’
(Acceleration) and ‘Friction’ (velocity) effects as suggested by
our L-E models

Tm = Jeqd + Feqq

- Which can be approximated as:

Kmlm = Jeqd + Feqq

Q@z METR 4202: Robotics 8 October 2014 -20
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Setting up a “Control Law”

» We will use the positional error (as drawn in the state
model) to develop our torque control

« We say then for PE control:

T X kpe(gd — 9@)

* Here, k, is a “gain” term that guarantees sufficient current
will be generated to develop appropriate torque based on
observed positional error
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Using this Control Type:

« lItis a representation of the physical system of a mass on a
spring!
» We say after setting our target as a ‘zero goal’ that:

—kpe * 0q = JO + F6

the solution of which is:

0, is a function of
the servo

feedback as a F
function of time! <0a = c‘( /QJ)f

C'1u(l/2)wt + Coe” (1/2)wt}

Q@L METR 4202: Robotics 8 October 2014 -22
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State Space Model of PD:

+ State Space Model, I6int Drive
—Q, + Ervor—’{ K, 'y > Generalized frm TOFqUE Needed i }\
A
[~ ]

dQ/dt:

Feedback, Q
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PID State Space Model:

| i le
Kifdt e
+ State Space Model,
—_—Q, + Ermr—»{ K, y Generalized |
A
L~ ]
dQ/dt
Feedback, Q,
&y M )2: Robotics October 2014 -24
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State Model of Adjustable Controller

Kinematic/
—_—— Kinetic Models
- Physical
I Parameters
|
v
. Robot Sys. —
—Q —= + Erorapp] CONTONET WIADS:_ ) o] Transfer  pmmmmmoiive posiionrr orgue———p{ S0
d Parameters ; Pos
Functions
A T
B Calc. Drive
Modifications
Desired Drive
T Performance Actual Drive using
Index | e Seeparate Feedback
Sensors
Decision Measure
Logic
Feedback, Q,
8 October 2014 -25
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Controllability matrix

* If you can write it in CCF, then the system equations must
be linearly independent.

» Transformation by any nonsingular matrix preserves the
controllability of the system.

» Thus, a nonsingular controllability matrix means x can be
driven to any value.

@ METR 4202: Robotics 8 October 2014 -27

State evolution

« Consider the system matrix relation:
x=Fx+ Gu
y=Hx+Ju

The time solution of this system is:
t

x(t) = eFt=t) x(ty) + f = eF(t-7) Gu(v)dr
to

If you didn’t know, the matrix exponential is:

1 1
et =1+ Kt + 5, Kot +§K3t3 + -

Q@z METR 4202: Robotics 8 October 2014 -28
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Stability

» We can solve for the natural response
to initial conditions xy:

x(t) = ePilx,
~ x(t) = p;ePitx, = FePilx,

Clearly, a system will be stable provided
eig(F) <0

@ METR 4202: Robotics
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Characteristic polynomial

« From this, we can see Fx, = p;x,
of, (pil —F)xg =0
which is true only when det(p;1 — F)x, = 0
Aka. the characteristic equation!

« We can reconstruct the CP in s by writing:

Q@z METR 4202: Robotics
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Great, so how about control?

+ Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F —GK) < 0

* In fact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

@ METR 4202: Robotics 8 October 2014 -31

Example: PID control
« Consider a system parameterised by three states:

— X1,X2,X3
— where x, = x; and x5 = X,

1
xX= 1
-2

y=1[0 1 O0]x+0u

x — Ku

X, 1S the output state of the system;
x11S the value of the integral;
x5 1S the velocity.

Q@z METR 4202: Robotics 8 October 2014 -32
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« We can choose K to move the eigenvalues of the system
as desired:

1—-K;
det 1-K, =0
—2—K;
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

@ METR 4202: Robotics
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Just scratching the surface

« There is a lot of stuff to state-space control

« One lecture (or even two) can’t possibly cover it all in

depth

Go play with Matlab and check it out!
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Discretisation FTW!

» \We can use the time-domain representation to produce
difference equations!

KT+T

x(kT +T) = efT x(kT) + f eFUT+T-D) Gy (1) dt
KT

Notice u(7) is not based on a discrete ZOH input, but rather
an integrated time-series.

We can structure this by using the form:
u(t) = u(kT), kT <t <kT+T

= METR 4202: Robotics 8 October 2014 -35
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Discretisation FTW!

« Put this in the form of a new variable:
Nn=kT+T—1

Then:
kT+T

x(kT +T) = efTx(kT) + (J eF"dn> Gu(kT)
k

T

Let’s rename ® = efT and T = (fkkTTJrT eF"dn) G

Q@z METR 4202: Robotics 8 October 2014 -36
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Discrete state matrices

So,
x(k+1) =dx(k) +Tu(k)

y(k) = Hx(k) + Ju(k)
Again, x(k + 1) is shorthand for x(kT + T)

Note that we can also write ® as:

® =1+4+FTWP

where
FT F?T?
Y=1I+ 2'+ 3

@ METR 4202: Robotics
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Simplifying calculation

« We can also use W to calculate T’

— Note that:
ka

= PTG
Y jtself can be evaluated with the series:

FT FT FT FT
lI'EI+—{I+—I+--- <l+—)]}
2 3 n—1 n

Q@z METR 4202: Robotics
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State-space z-transform

We can apply the z-transform to our system:
(z —d)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:
Y@ =G(z) =H(zI-®)"'r
X(2)
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State-space control design

« Design for discrete state-space systems is just like
the continuous case.

— Apply linear state-variable feedback:
u=—Kx
such that det(zl — ® +T'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[T &r o&o?r ... on1r] to be full-rank.

= METR 4202: Robotics 8 October 2014 -40
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2"d Order

System Response

2"d Order System Response

2

— , T
_—4¢=0
1.8¢ .
02
1.6

 Response of a 2" order system to increasing levels of
damping-

\\ 0.4
141 / 06
121 \\\ ‘
g 1k SgE— =
0.8F /
0.6 6708
all 1
1.0
0.4 - 4
0.2
0 - 1 L 1
1] 2 4 8 10 12
w,t
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Damping and natural frequency

z=eSTwheres = —(w, + jw,/1 — {2

10~ s z ] : o e !
e A AN
08 I N o e N
0 A0 N

1 A

| \\ AN
3 L, Re(2)

-1.b -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1\0
[Adapted from Franklin, Powell and Emami-Naeini]
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Pole positions in the z-plane

» Poles inside the unit circle
are stable

« Poles outside the unit circle -
unstable W

« Poles on the unit circle
are oscillatory

+ Realpolesat0<z<1
give exponential response

+ Higher frequency of
oscillation for larger

» Lower apparent damping
for larer andr

N/ 2: Robotics October 2014 -44
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2" Order System Specifications
Characterizing the step response:

1%
[ i

0.1

* Rise time (10% - 90%): i~ %  Steady state error to unit step:
e~ TE €ss
. Overshoot; Mp*= S +  Phase margin:
o 46 ¢pp = 100¢
+ Settling time (to 1%): ¢, = "~
Cwo

@ METR 4202: Robotics
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2"d Order System Specifications
Characterizing the step response:

S 4
y ya \_ﬁ.{ﬁ:&r_—:'::__.f__

0.1

—

* Risetime (10% -> 90%) & Overshoot:
t, M, 2 , o, : Locations of dominant poles
+ Settling time (to 1%):
t, = radius of poles: |:<co1
» Steady state error to unit step:
e, = final value theorem e, = lim {(z = 1) F (2)}

:7 METR 4202: Robotics
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Ex: System Specifications - Control Design [1/4]

Design a controller for a system with: o1

» A continuous transfer function:% () = =573
« A discrete ZOH sampler

« Sampling time (T,): T,=1s

* Cup =—0.5u;,_1 + 13 (e, — 0.88¢;_1)

The closed loop system is required to have:
* M, <16%

« t,<10s

« e.<1
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Ex: System Specifications - Control Design [2/4]

1. (a) Find the pulse transfer function of G(s) plus the ZOH

7 e | u(t } 0] 5y
O D) [ 200 O G [ ol
- : G(2) i

G(z)=(1- flﬂ{@} =L : 1)2{52(5)0:0.1)}

e.g. look up Z{a/s*(s +a)} in tables:

01— 14e 0z 4+ (1—e 01— 0.16*0-1))
0.1(z —1)2(z — e 01)

6 = & - (0

0.0484(z + 0.9672)

T (2 —1)(2 — 0.9048)

(b) Find the controller transfer function (using = = shift operator):

U(z) (1-088:"1) . (z—0.88)
E(z) (1405271 — 77 (240.5)

=D(z)=13

= METR 4202: Robotics 8 October 2014 -48
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ess = klim ep = ilg{(z —1)E(z)

&

@ METR 4202: Robotics

SO ess = lim

— ess < 1

Ex: System Specifications - Control Design [3/4]

2. Check the steady state error e55 when 7, = unit ramp

c— 00
E U v E(z) _ 1 ,
D(z) G(2) » R(z) 1+ D(2)G(7)
Tz
R(z) = (z—1)2
. Tz 1 ) T
Hl{(” - (z—1)21+ D(z)(?(z)} = Iy (z— 1)D(2)G(z)
i T 10 e e
T [ DO 0067 s
: (z — 1)(z — 0.9048) 5
® 6}
1—0.9048 5
= =0.96 g
0.0181(1 F 00672 D)~ % S S
£ 2
(as required) ©
O

5
Time (sec)
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Ex: System Specifications - Control Design [4/4]

3. Step response: overshoot M, < 16% — ¢ > 0.5

settling time ¢, < 10 = |z| < 0.01%* = 0.63

The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.

1+13

(= — 0.88) 0.0484(z + 0.9672)

— z = 0.88, —0.050 £ ;0.304

(z4+0.5) (z—1)(z —0.9048) —

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and

z = —0.050 £ j0.304 = et — {

r=0.31,

¢ =0.56

Output y and input u/10
@

T
1

Time (sec)

0 =173

all specs satisfied!
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