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Linear Quadratic Regulation (LQR) 
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This lecture introduces the most general form of the linear quadratic regulation problem 
and solves it using an appropriate feedback invariant. 
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6. LQR in MATLAB® 
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20.1 DETERMINISTIC LINEAR QUADRATIC REGULATION (LQRl 

Attention! Note the 
negative feedback and 
the absence of a 
reference signal in 
Figure 20.1. 

Figure 20.1 shows the feedback configuration for the linear quadratic regulation (LQR) 
problem. The process is assumed to be a coritinuous-time LTl system of the form 

x = Ax + Bu, 

y =Cx, 

z = Gx + Hu, 

and has two distinct outputs. 

x E jRn, U E jRk, 

Y E jRm, 

_Z E jRe, 

1. The measured output yet) corresponds to the signal(s) that ca~ be measured 

u(t) E ]Rk 
Z 

C)---- controller process 
I--

(t) E]Rl 

- _0 y(t) 

Figure 20.1. Linear quadratic regulation (LQR) feedback configuration 
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Note. Measured 
outputs are typically 
determined by the 
availab le sensors. 

Note. Contro lled 
outputs are selec ted 
by the controller 
designer and should 
be viewed as design 
parameters. 

LECTURE 20 

and are therefore available for control. 

2. The controlled output z(t) corresponds to the signal(s) that one would like to 

make as small as possible in the shortest possible time. 

Sometimes z(t) = yet) , which means that our control objective is simply to 
make the measured output very small. At other times one may have 

[
yet)] 

z(t) = yet) , 

which means that we want to make both the measured output yet) and its 
derivative Yet) very small. Many other options are possible. 

20.2 OPTIMAL REGULATION 

Note 11. A simple 
choice fo r the 
matrices Q and R is 
given by Bryson's 
rule. ~ p. 196 

The LQR problem is defined as follows. Find the control input u(t) , t E [0,00) that 
makes the following criterion as small as possible: 

(20.1) 

where p is a positive constant. The term 

corresponds to the energy of the controlled output, and the term 

corresponds to the energy of the control signal. In LQR one seeks a controller that 
minimizes both energies. However, decreasing the energy of the controlled output 
will require a large control signal, and a small control signal will lead to large con­
trolled outputs. The role of the constant p is to establish a trade-off between these 
conflicting goals. 

1. When we chose p very large, the most effective way to decrease hQR is to 
employ a small control input, at the expense of a large controlled output. 

2. When we chose p very small, the most effective way to decrease hQR is to 
obtain a very small controlled output, even if this is achieved at the expense of 
employing a large control input. 

Often the optimal LQR problem is defined more generally and consists of finding 
the control input that minimizes 

hQR := 10
00 

z(t)' Qz(t) + p u(t)' Ru(t) dt , (20.2) 



r 
LINEAR QUADRATIC REGULATION (LQR) 193 

where Q E JR.exe and R E JR.m xm are symmetric positive-definite matrices and p is a 
positive constant. 

We shall consider the most general form for a quadratic criterion, which is 

hQR:= la oo 
x(t)' Qx(t) + u(t)' Ru(t) + 2x(t)' Nu(t)dt. (J-LQR) 

Since z = Gx + H u, the criterion in (20.1) is a special form ofthe criterion (J-LQR) 
with 

Q = G'G, R = H'H+pI, N=G'H 

and (20.2) is a special form of the criterion (J-LQR) with 

Q = G'QG, R=H'QH+pR, N=G'QH. 

20.3 FEEDBACK INVARIANTS 

Note. A functional 
maps functions (in 
this case signals, i.e. 
functions of time) to 
scalar values (in this 
case real numbers). 

Note. This concept 
was already 
introduced in 
Lecture 10, where 
Proposition 20.1 was 
proved. ~p.88 

Given a continuous-time LTI system 

x = Ax + Bu, (AB-CLTI) 

we say that a functional 

H(xO; uO) 

that involves the system's input and state is a feedback invariant for the system (AB­
CLTI) if, when computed along a solution to the system, its value depends only on 
the initial condition x(O) and not on the specific input signal uO. 

Proposition 20.1 (Feedback invariant). For every symmetric matrix P, the functional 

H(x(.); liO) := - la oo 
(Ax(t) + Bu(t»)' Px(t) + x(t)'P(AX(t) + B:Ct)) dt 

is a feedback invariant for the system (AB-CLTI), as long as lim/-+oo x(t) = O. 0 

20.4 FEEDBACK INVARIANTS IN OPTIMAL CONTROL 

Suppose that we are able to express a criterion J to J;>e minimized by an appropriate 
choice of the input u(·) in the form 

J = H(x( .); uO) + la oo 
A(x(t), u(t»)dt, (20.3) 

where H is a feedback invariant and the function A(x, u) has the property that for 
every x E JR.n 

min A(x, u) = O. 
UElRk 



194 

Note. If one wants to 
restrict the 
optimization to 
solutions that lead to 
an asym ptotically 
stable dosed-loop 
system. then H needs 
to be a feedback 
invariant only for 
inputs that lead to 
x(t) ->- 0 (as in 
Proposition 20.1). 
However. in this case 
one must check that 
(20.4) does indeed 
lead to X(I) ->- O. 

20.5 

Attention! To keep 
the formulas short. in 
the remainder of this 
section we drop the 
time dependence (I) 
when the state x and 
the input u appear in 
time integrals. 

In this case, the control 

u(t) = arg min1\(x, u), 
uElRk 

LECTURE 20 

(20.4) 

minimizes the criterion J, and the optimal value of J is equal to the feedback invari­
ant 

J = H(xO; uO). 

Note that it is not possible to get a lower value for J, since (1) the feedback invariant 
H(xO; u(.») will never be affected by u, and (2) a smaller value for J would require 
the integral in the right-hand side of (20.3) to be negative, which is not possible, since 
1\ (x (t), u(t») can at best be as low as zero. 

OPTIMAL STATE FEEDBACK 

It turns out that the LQR criterion 

hQR := 10
00 

x(t)' Qx(t) + u(t)' Ru(t) + 2x(t)' Nu(t)dt (J-LQR) 

can be expressed as in (20.3) for an appropriate choice of feedback invariant. In fact, 
the feedback invariant in Proposition 20.1 will work, provided that we choose the 
matrix P appropriately. To check that this is so, we add and subtract this feedback 
invariant to the LQR criterion and conclude that 

hQR:= 10
00 

x' Qx + u'Ru + 2x' Nu dt 

= H(x( .); uO) 

+ 10
00 

x' Qx +u'Ru + 2x' Nu + (Ax + Bu)' Px + x' P(Ax + Bu) dt 

= H(x( .); uO) + 10
00 

x'(A' P + P A + Q)x + u'Ru + 2u'(B' P + N')x dt. 

By completing the square, we can group the quadratic term in u with the cross-term 
in u times x: 

(u' + x' K')R(u + Kx) 

= u'Ru + x ' (P B + N)R- 1 (B' P + NI)x + 2u l (BI P + N')x, 

where 

from which we conclude that 

hQR = H(x(.); uO) + 10
00 

x'(A' P + PA + Q - (PB + N)R-1(B' P + N'»)x 

+ (u' + x' K')R(u + Kx) dt. 



'. 

LINEAR QUADRATIC REGULATION (LQR) 195 

Notation. 
Equation (20.5) is 
called an algebraic 
Riccati equation 
(ARE). 

Notation. Recall that 
a matrix is Hurwitz or 
a stability matrix if all 
its eigenvalues have a 
negative real part. 

Note. Asymptotic 
stability of the closed 
loop is needed, beca use 
we need to make sure 
that the proposed input 
u (t) leads to the 
assumed fact tha t 
liml--+oo X(I) P x(t) = 
o. 

MATLAB® Hint 42. 
lqr solves the ARE 
(20.5) and computes 
the optimal state 
feedback 
(20.6) . ~ p. 195 

If we are able to select the matrix P so that 

A' P + PA + Q - (PB + N)R- 1(B' P + N') = 0, (20.5) 

we obtain precisely an expression such as (20.3) with 

A(x, u) := (u' + x' K')R(u + Kx), 

which has a minimum equal to zero for 

u = -Kx, 

leading to the closed-loop system 

i = (A - BR- 1(B' P + N'»)x. 

The following has been proved. 

Theorem 20.1. Assume that there exists a symmetric solution P to the algebraic Ric­
cati equation (20.5) for which A - BR- 1(B' P + N') is a stability matrix. Then the 
feedback law 

u(t) := -Kx(t), Vt:::: 0, (20.6) 

minimizes the LQR criterion (J-LQR) and leads to 

hQR := 10
00 

x' Qx + u'Ru + 2x' Nu dt = x'(O)Px(O). o 

20.6 LQR IN MATLAS® 

Example. See 
Example 22.1. 

MATLAB® Hint 42 (lqr). The command [K , P, EJ =lqr (A, B I Q I R, N) solves 
the algebraic Riccati equation 

A'P + PA+ Q - (PB + N)R - 1(B'P + N') = 0 

and computes the (negative feedback) optimal state feedback matrix gain 

K = R- 1(B'P + N') 

that minimizes the LQR criteria 

J := 10
00 

x'Qx + u'Ru + 2x'NU dt 

for the continuous-time process 

X =Ax +Bu . 

This command also returns the poles E of the closed-loop system 

x = (A - BK)x. o 
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20.7 ADDITIONAL NOTES 

Note 11 (Bryson's rule). A simple and reasonable choice for the matrices Q and R 
in (20.2) is given by Bryson's rule [6, p. 537]. Select Q and R diagonal, with 

- 1 

Q;; = maximum acceptable value of zr' iE{1,2, ... ,E}, 

- 1 
R j j = 2' 

maximum acceptable value of U j 
j E {I, 2, . . . , k}, 

which corresponds to the following criterion 

In essence, Bryson's rule scales the variables that appear in hQR so that the maximum 
acceptable value for each term is 1. This is especially important when the units used for 
the different components of u and z make the values for these variables numerically 
very different from each other. 

Although Bryson's rule usually gives good results, often it is just the starting point 
for a trial-and-error iterative design procedure aimed at obtaining desirable proper­
ties for the dosed-loop system. We shall pursue this further in Section 22.3. 0 

20.8 EXERCISES 

20.1 (Feedback invariant). Consider the nonlinear system 

i = I(x, u) , 

and a continuously differentiable function V : JRn -+ JR, with V (0) = O. Verify that 
the functional . . - . 

l
°o av 

H(x(.); uO) := - - (x(t) )/(x(t), u(t») dt 
o ax 

is a feedback invariant as long as limt-+oo x(t) = O. o 
20.2 (Nonlinear optimal control). Consider the nonlinear system 

i = I(x , u), 

Use the feedback invariant in Exercise 20.1 to construct a result parallel to Theo­
rem 20.1 for the minimization of the criterion 

J :=100 Q(x) + u'R(x)u dt, 

where R(x) is a state-dependent positive-definite matrix. o 
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The Algebraic Riccati Equation (ARE) 

CONTENTS 

This lecture addresses the existence of solutions to the algebraic Riccati equation. 

1. The Hamiltonian Matrix 

2. Domain of the Riccati Operator 

3. Stable Subspaces 

4. Stable Subspace of the Hamiltonian Matrix 

5. Exercises 

21.1 THE HAMILTONIAN MATRIX 

The construction of the optimal LQR feedback law in Theorem 20.1 required the 
existence of a symmetric solution P to the ARE, 

A' P + P A + Q - (P B + N) R- 1 (B ' P + N ' ) = 0, (21.1 ) 

for which A - B R-1 (B' P + N') is a stability matrix. To study the solutions of this 
equation, it is convenient to expand the last term in the left-hand side of (21.1), which 
leads to 

(A - BR- 1 N ' ).' P + peA - BR - 1N' ) + Q - N R- 1 N ' - P BR - 1 B' P = o. 
(21.2) 

This equation can be compactly rewritten as 

(21.3) 

where 

is called the Hamiltonian matrix associated with (21.1). 
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21 .2 

Notation. We write 
H E Ric when H is in 
the domain of the 
Riccati operator. 

Notation. In general 
the ARE has multiple 
solutions, but only the 
one in (21.4) makes 
the closed-loop 
system asymptotically 
stable. This solution is 
called the stabilizing 
solution. 

Note. We shall 
confirm in 
Exercise 21.1 that the 
matrix in the 
left-hand side of 
(21.5) is indeed 
symmetric. 

Note. This same 
argument was used in 
the proof of the 
Lyapunov stability 
theorem (Theorem 
8.2). 

LECTURE 21 

DOMAIN OF THE RICCATI OPERATOR 

A Hamiltonian matrix H is said to be in the domain of the Riccati operator if there 
exist square matrices H_, P E jRnxn such that 

HM = MH_ , M'= [I] . p' (21.4) 

where H_ is a stability matrix and I is the n x n identity matrix. 

Theorem 21.1. Suppose that H is in the domain of the Riccati operator and let P, H_ E 

jRnxn be as in (21.4). Then the following properties hold. 

1. P satisfies the ARE (21.1), 

2. A - B R- 1 (B I P + N I
) = H_ is a stability matrix, and 

3. P is a symmetric matrix. o 

Proof of Theorem 21.1. To prove statement 1, we left-multiply (21.4) by the matrix 
[p - I] and obtain (21.3). 

To prove statement 2, we just look at the top n rows of the matrix equation (21.4): 

from which A - BR-\B I P + N I
) = H_ follows. 

To prove statement 3, we left-multiply (21.4) by [ - pi I] and obtain 

[_pi r] H [~J = (P - P')H_. '. (21.5) 

Moreover, using the definition of H, we can conclude that the matrix in the left-hand 
side of (21.5) is symmetric. Therefore 

(P - P')H_ = H~(pl - P) = -H~(P - p\ (21.6) 

Multiplying this equation on the left and right byeR.:t and eH- t , respectively, we 
conclude that 

eH~t (P _ P')H_e H- t + eH~IH~ (P - pl)eH- 1 = 0 

{} :t eH~t (P - pl)eH_t = 0, 

\It, which means that eH~t (P - pl)eH_t is constant. However, since H....: isa stability 
matrix, this quantity must also converge to zero as t --+ 00. Therefore it must actually 
be identically zero. Since eH _ t is nonsingular, we conclude that we must have P = 
pl. • 
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21.3 STABLE SUBSPACES 

Note. See 
Exercise 21.3. 

Note. From P21.1, we 
can see that the 
dimension of V_ is 
equal to the number 
of eigenvalues of M 
with a negative real 
part (with 
repetitions) . 

21 . 4 

Given a square matrix M, suppose that we factor its characteristic polynomial as a 
product of polynomials 

where all the roots of .0.-Cs) have a negative real part and all roots of t.+Cs) have 
positive or zero real parts. The stable subspace of M is defined by 

v _ := ker .0.-CM) 

and has a few important properties, as listed below. 

Properties (Stable subspaces). Let V_be the stable subspace of M. Then 

P21.1 dim V_ = deg .0._Cs), and 

P21.2 for every matrix V whose columns form a basis for V _, there exists a stability 
matrix M_ whose characteristic polynomial is .0.-Cs) such that 

(21.7) 

STABLE SUBSPACE OF THE HAMILTONIAN MATRIX 

Our goal now is to find the conditions under which the Hamiltonian matrix H E 

JR.
2
nx2n belongs to the domain of the Riccati operator, i.e., those for which there exist 

symmetric matrices H_, P E JR.nxn such that 

HM=MH_, 

- . 
where H_ is a stability matrix and I is the n x n identity matrix. From the properties 
of stable subspaces, we conclude that such a matrix H_ exists if we can find a basis 
for the stable subspace V_of H of the appropriate form M = [I pI]'. For this to 
be possible, the stable subspace has to have dimension precisely equal to n, which is 
the key issue of concern. We shall see shortly that-the .structure .[I pI]' for Mis, 
relatively simple to produce. 

21.4.1 DIMENSION OF THE STABLE SUBSPACE OF H 

To investigate the dimension of V _, we need to compute the characteristic polyno­
mial ofH. To do this, note that 

H[ 0 
-I 

I] [ BR-1B
I 

o = CA - BR-1N')' 
-I] HI o . 

Therefore, defining J := [..?[ 6], 

H= -JH'J-1 • 

. ' 
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Notation. The symbol 
(.)* denotes complex 
conjugate transpose. 

Attention! The 
notation used here 
differs from that of 
MATLAB®. Here 0' 
denotes transpose and 
(.)* denotes complex 
conjugate transpose, 
whereas in 
MATLAB®, (.) .' 
denotes transpose and 
(.) , denotes complex 
conjugate transpose. 

LECTURE 21 

Since the characteristic polynomial is invariant with respect to similarity transforma­
tions and matrix transposition, we conclude that 

6.(s) := det(sl - H) = det(sl + JHI J-I) = det(sl + HI) 

= det(s 1 + H) = (_1)2n det« -s)1 - H) = 6.( -s), 

which shows that if A is an eigenvalue of H, then - A is also an eigenvalue of H with 
the same multiplicity. We thus conclude that the 2n eigenvalues ofH are distributed 
symmetrically with respect to the imaginary axis. To check that we actually have 
n eigenvalues with a negative real part and another n with a positive real part, we 
need to make sure that H has no eigenvalues over the imaginary axis. This point is 
addressed by the following result. 

Lemma 21.1. Assume that Q - N R- I N I :::: O. When the pair (A, B) is stabilizable 
and the pair (A - BR-INI, Q - NR-IN/) is detectable, then 

1. the Hamiltonian matrix H has no eigenvalues on the imaginary axis, and 

2. its stable subspace V_has dimension n. o 

Attention! The best LQR controllers are obtained for choices of the controlled output 
z for which N = GI H = 0 (cf. Lecture 22). In this case, Lemma 21.1 simply requires 
stabilizability of (A, B) and detectability of (A, G) (cf. Exercise 21.4). 0 

Proof of Lemma 21.1. To prove this result by contradiction, let x : = [x~ x~]', 
XI, X2 E en be an eigenvector of H associated with an eigenvalue A := jw, w E lR. 
This means that 

[
jWI - A + BR- I N I 

Q - NR-IN I 
BR-

I 
BI ] [Xl] _ 0 

jw+(A-BR-IN/)1 X2 - . 
(21.8) 

Using the facts that (A, :XYi~ '~~ 'eigenvalue/eigenvectoi pair ofH and that"this matrix 
is real-valued, one concludes that 

[X~ Xn H [~~] + [xt x~] HI [~~] 

= [x~ xn (Hx) + (Hx)* [~~] 

(21.9) 

On the other hand, using the definition of H, one concludes that the left-hand side 
of (21.9) is given by 
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[
(A - BR-IN')' 

+ [X *I X*] 2 -BR-IB' 

Since this expression must equal zero and R- I > 0, we conclude that 

(Q - N R- I N')xI = 0, B'X2 = o. 

From this and (21.8) we also conclude that 

(jwl - A + BR- I N')xI = 0, (jw + A')X2 = o. 

But then we have an eigenvector X2 of A' in the kernel of B' and an eigenvector XI of 
A - BR- I N' in the kernel of Q - N R- 1 N'. Since the corresponding eigenvalues 
do not have negative real parts this con tradicts the stabilizability and detectability 
assumptions. 

The fact that V_has dimension n follows from the discussion preceding the state­
ment of the lemma. • 

21.4.2 BASIS FOR THE STABLE SUBSPACE OF H 

Note. Under the 
assumptions of 
Lemma 21.1, VI is 
always nonsingular, as 
shown in [5, Theorem 
6.5, p. 202). 

Suppose that the assumptions of Lemma 21.1 hold and let 

V := [~~J E ~2n x n 

be a matrix whose n columns form a basis for the stable subspace V_of H. Assuming 
that VI E jRnxn is nonsingular, then 

VV- I = [I] 
I p' 

is also a basis for V _. Therefore, we conclude from property P21.2 that there exists a 
stability matrix H_ such that 

(21.10) 

and therefore H belongs to the domain of the Riccati operator. Combining Lemma 21.1 
with Theorem 21.1, we obtain the following main result regarding the solution to the 
ARE. 

Theorem 21.2. Assume that Q - N R-1 N' 2': O. Vi'hen the pair (A, B) is stabilizable 
and the pair (A - B R-1 N' , Q - N R- I N') is detectable, 

1. H is in the domain of the Riccati operator, 

2. P satisfies the ARE (21.1), 
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Note 12. When the 
pair 
(A - BR-IN', Q­
NR - 1N') is 
observable, one can 
show that P is also 
positive­
definite. ~ p. 202 
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3. A - B R- I (B' P + N') = H_ is a stability matrix, and 

4. P is symmetric, 

where P, H_ E IRnxn are as in (21.10). Moreover, the eigenvalues ofH- are the 
eigenvalues ofH with a negative real part. 0 

Attention! It is insightful to interpret the results of Theorem 21.2, when applied to 
the minimization of 

hQR:= 100Z'QZ+PU'Rudt, z:=Gx+Hu, p,Q,R>O, 

which corresponds to 

Q = G'QG, R = H'QH +pR, N = G'QH. 

When N = 0, we conclude that Theorem 21.2 requires the detectability of the pair 
(A, Q) = (A, G' QG). Since Q > 0, it is straightforward to verify (e.g., using the 
eigenvector test) that this is equivalent to the detectability of the pair (A, G), which 
means that the system must be detectable through the controlled output z. 

The need for CA, B) to be stabilizable is quite reasonable, because otherwise it is 
not possible to make x -+ 0 for every initial condition. The need for (A, G) to be 
detectable can be intuitively understood by the fact that if the system had unstable 
modes that did not appear in z, it could be possible to make hQR very small, even 
though the state x might be exploding. 0 

Note 12. To prove that P is positive-definite, we rewrite the ARE 

(A - BR- 1 N')' P + peA - BR- 1 N') + Q - N R- I N' - P BR- 1 B' P = 0 

in (21.2) as 

H~P + PH_ = -S, S:= (Q - NR-1N') + PBR-IB' P. 

The positive definiteness of P then follows from the Lyapunov observability test as 
long as we are able to establish the observability of the pair (H_, S). 

To show that the pair (H_, S) is observable, we use the eigenvector test. To prove 
this by contradiction, assume that x-is an ·eigenvector.ofH_ that lies in the kernel of 
S; i.e., 

Since Q - N R- 1 N' and P B R-1B' P are both symmetric positive-semidefinite ma­
trices, the equation Sx = 0 implies that 

x'((Q-NR-1N')+PBR-1B'P)x=0::::} (Q-NR-1N')x=0, B'px=O. 

We thus conclude that 

(A - BR- 1 N')x = Ax, 

which contradicts the fact that the pair (A - B R- 1 N', Q - N R-1 N') is observable. 
o 
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21.5 EXERCISES 

21.1. Verify that for every matrix P, the following matrix is symmetric: 

where H is the Hamiltonian matrix. 0 

21.2 (Invariance of stable subspaces). Show that the stable subspace V_of a matrix 
M is always M-invariant. 0 

21.3 (Properties of stable subspaces). Prove Properties P21.1 and P21.2. 

Hint: Transform M into its Jordan normal form. o 
21.4. Show that detectability of (A, G) is equivalent to detectability of (A, Q) with 
Q:=G'G. 

Hint: Use the eigenvector test and note that the kernels of G and G' G are exactly the 
m~ 0 



LECTURE 22 

Frequency Domain and Asymptotic Properties of LQR 

CONTENTS 

This lecture discusses several important properties of LQR controllers. 

1. Kalman's Equality 

2. Frequency Domain Properties: Single-Input Case 

3. Loop Shaping using LQR: Single-Input Case 

4. LQR Design Example 

5. Cheap Control Case 

6. MATLAB® Commands 

7. Additional Notes 

8. The Loop-shaping Design Method (review) 

9. Exercises 

22.1 KALMAN'S Ec;JUALITY 

Attention! This 
condition is /lot being 
added for simplicity. 
We shall see in 
Example 22.1 that, 
without it, the results 
in this section are not 
valid. 

Consider the continuous-time LTI process 

i = Ax + Bu, z=Gx+Hu, 

for ~hich one wants to minimize th~ LQR crite.~io,n 

hQR := 100 

Ilz(t)11 2 + pllu(t)1I
2 

dt, 

where p isa positive constant. Throughout this whole lecture we assume that 

N:= G'H =0, 

for which the optimal control is given by 

u = -Kx, K:=R- 1B'P, R:= H'H +pl, 

where P is the stabilizing solution to the ARE 

A'P + PA + G'G - PBR- 1 B'P = o. 

(22.1 ) 

(22.2) 
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Note. Kalman's 
equality follows 
directly from simple 
algebraic 
manipulations of the 
ARE 
(cf. Exercise 22.1). 

u 

x=Ax+Bu 

x 

Figure 22.1. State feedback open-loop gain. 

We saw in the Lecture 20 that under appropriate stabilizability and detectability as­
sumptions, the LQR control results in a closed-loop system that is asymptotically 
stable. 

LQR controllers also have desirable properties in the frequency domain. To under­
stand why, consider the open-loop transfer matrix from the process input u to the 
controller output u (Figure 22.1). The state-space model from u to u is given by 

i = Ax + Bu , u = -Kx, 

which corresponds to the following open-loop negative-feedback k x k transfer matrix 

L(s) = KCsI - A)-l B. 

Another important open-loop transfer matrix is that from the control signal u to the 
controlled output z, 

T(s) = G(sI - A)-l B + H. 

These transfer matrices are related by the so-called Kalman's equality: 

Kalman's equality. For the LQR criterion in (22.1) with (22.2), we have 

(I + LC-s)')R(I + £(s») =R + H'H + T(-s)'Tcs). (22.3) 

Kalman's equality has many important consequences. One of them is Kalman's 
inequality, which is obtained by setting s = jw in (22.3) and using the fact that for 
real-rational transfer matrices 

£(-jw)' = L(jw)*, TC-jw)' = T(jw)*, H'H + T(jw)*T(jw)::: O. 

Kalman's inequality. For the LQR criterion in (22.1) with (22.2), we have 

(22.4) 

22.2 FRE4IUENCY DOMAIN PROPERTIES: SINGLE-INPUT CASE 

We focus our attention in single-input processes (k = 1), for which £(s) is a scalar 
transfer function. Dividing both sides of Kalman's inequality (22.4) by the scalar R, 
we obtain 

Note 13. For multiple 
input systems, similar 
conclusions could be 
drawn, based on the 
multivariable Nyquist 
criterion. ~ p. 216 

which expresses the fact that the Nyquist pIal of i(jev) does not enter a circle of ra­
dius 1 around the point -1 of the complex plane. This .is represented graphically in 
Figure 22.2 and has several significant implicllLi.0ns, which arc discussed next. 
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Note. The first 
inequality results 
directly from the fact 

that 11 + L(jw)1 2: I, 
the second ftdm the -
fact that 
T(s) = 1 - S(s), and 
the last two from the 
fact that the second 
inequality shows that 
T(jw) must belong to 
a circle of radius 1 
around the point + 1. 

LECTURE 22 

Re 

Figure 22.2. Nyquist plot for a LQR state feedback controller. 

POSITIVE GAIN MARGIN . If the process gain is multiplied bya constant k > 1, 
its Nyquist plot simply expands radially, and therefore the number of encirclements 
does not change. This corresponds to a positive gain margin of +00. 

NEGATIVE GAIN MARGIN. If the process gain is multiplied by a constant 0.5 < 
k < 1, its Nyquist plot contracts radially, but the number of encirclements still does 
not change. This corresponds to a negative gain margin of20 log 10 (.5) = -6 dB. 

P HAS E MAR GIN. If the process phase increases bye E [- 60°,60°], its Nyquist 
plot rotates bye, but the number of encirclements still does not change. This corre­
sponds to a phase margin of ±60°. 

SENSITIVITY AND COMPLEMENTARY SENSITIVITY FUNCTIONS. The 
sensitivity and the complementary sensitivity functions are given by 

A 1 
S(s) := A, 

1 + L(s) 

£(s) 
T(s) := 1 - S(s) = ---:---

1 + L(s) 

respectively. Kalman's inequality guarantees that 

IS(jev) I :::: 1, IT(jev) - 11 :::: 1, IT(jev)l:::: 2, m[T(jev)]:::: 0, "lev E IR. 

(22.5) 

We recall the following facts about the sensitivity function. 

1. A small sensitivity function is desirable for good disturbance rejection. Gener­
ally, this is especially important at low frequencies. 

2. A complementary sensitivity function close to 1 is desirable for good reference 
tracking. Generally, this is especially important at low frequencies. 

3. A small compleinentary sensitivity function is "desirable for good noise rejec­
tion. Generally, this is especially important at high frequencies. 
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Note. If the transfer 
function from u to y 
has two more poles 
than zeros, then one 
can show that 
C B = 0 and H = O. 

Attention! Kalman's inequality is valid only when N = G' H = O. When this is not 
the case, LQR controllers can exhibit significantly worse properties in terms of gain 
and phase margins. To some extent, this limits the controlled outputs that should be 
placed in z. For example, consider the process i = Ax + Bu, y = Cx and suppose 
that we want to regulate 

z = y = Cx. 

This leads to G = C and H = O. Therefore G' H = 0, for which Kalman's inequality 
holds. However, choosing 

leads to 

and therefore 
In this case, Kalman's 
inequality holds also G' H = A' C' C B, 
for this choice of z. 

22.3 

Note. Loop shaping 
consists of designing 
the controller to meet 
specifications on the 
open'-loop gain -L(s). 
A brief review of this 
control design 
method can be found 
in Section 22.8. 

MATLAB® Hint 43. 
sigma (sys) draws 
the norm-Bode plot 
of the system 
sys. ~ p. 216 

which may not be equal to zero. 0 

LOOP SHAPING USING LQR: SINGLE-INPUT CASE 

Using IVllman's inequal.iLy, we saw that any LQR controller automatically provides 
some upper bounds on the magnitude of the sensitivity function and its comple­
mentary. However, UJese bounds are frequency-independent and may not result in 
appropriate loop shaping. 

We discuss next a few rules that allow us to perform loop shaping using LQR. We 
continue to restrict our attention to the single-input case (k = O. 

LOW-FREC<JUENCY OPEN-LOOP GAIN. Dividing both sides of Kalman's equality 
(22.3) by the scalar R:= H' H + p, we obtain 

H' H IIT( 'UJ)11 2 
11 + L( 'UJ)1 2 = 1 + + _...:...1 __ 

1 H'H+p / H'H+p 

Therefore, for the range of frequencies for which IL(jUJ) I » 1 (typically low fre­
quencies), 

which means that the open-loop gain for the optimal feedback L(s) follows the shape 
of the Bode plot from u to the controlled output z. To understand the implications 
of this formula, it is instructive to consider two fairly typical cases. 
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Note. Although the 
magnitude of L(jw) 
mimics the magnitude 
ofT(jw), the phase of 
the open-loop gain 
LUw) always leads to 
a stable closed loop 
with an appropriate 
phase margin. 

LECTURE 22 

1. When z = y, with y := Cx scalar, we have 

where 

is the transfer function from the control input u to the measured output y. In 
this case, 

(a) the shape of the magnitude of the open-loop gain L(jw) is determined 

by the magnitude of the transfer function from the control input u to the 
measured output y, and 

(b) the parameter p moves the magnitude Bode plot up and down (more 
precisely H' H + p). 

2. When z = [y yy J', with y := Cx scalar, i.e., 

we conclude that 

A [ P(S)] [ 1 ] A res) = A = pes), 
ys pes) ys 

and therefore 

pes) := C(sl - A)-I B, 

11 + jywIIP(jw)1 

,JH'H + p 
(22.6) 

In this case, the low-frequency open-loop gain mimics the process transfer 
function from u to y, with an extra zero at l/y and scaled by ~. Thus 

H'H+p 

(a) p moves the magnitude Bode plot up and down (more precisely H' H + 
p), and 

(b) large values for y lead to a low-frequency zero and generally result in a 
larger phase margin (above the minimum of 60°) and a smaller overshoot 
in the step response. However, this is often achieved at the expense of a 
slower response. 
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Attention! It sometimes happens that the above two choices for z still do not pro­
vide a sufficiently good low-frequency open-loop response. In such cases, one may 
actually add dynamics to more accurately shape L(s). For example, suppose that one 
wants a very large magnitude for L (s) at a particular frequency Wo to reject a specific 
periodic disturbance. This could be achieved by including in z a filtered version of the 
output y obtained from a transfer function with a resonance close to Wo to increase 
the gain at this frequency. In this case, one could define 

z = [~~] , 
Y2Y 

where ji is obtained from y through a system with transfer function equal to 

for some small E > O. Many other options are possible, allowing one to precisely 
shape L(s) over the range of frequencies for which this transfer function has a large 
magnitude. 0 

HIGH-FRE~UENCY OPEN-LOOP GAIN. Figure 22.2 shows that the open-loop 
gain L(jw) can have at most -900 phase for high-frequencies, and therefore the 
roll-off rate is at most -20 dB/decade. In practice, this means that for w » 1, 

~ c 
IL(jw)l~ w.JH'H+p' 

for some constant c. Therefore the cross-over frequency is approximately given by 

Thus 

c 
--:~~=~1 
wcross.J H' H + p 

C 

Wcross ~ JH'H + p' 

1. LQR controllers always exhibit a high-frequency magnitude decay.of -20 dB/ 
decade, and 

2. the cross-over frequency is proportional to 1/ J H' H + p, and generally small 
values for H' H + p result in faster step responses. 

Attentionl The (slow) -20 dB/decade magnitude decrease is the main shortcoming 
of state feedback LQR controllers, because it may not be sufficient to clear high­
frequency upper bounds on the open-loop gain needed to reject disturbances and/or 
for robustness with respect to process uncertainty. We will see in Section 23.5 that 
this can actually be improved with output feedback controllers. 0 
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22.4 LQR DESIGN EXAMPLE 

MATLAB® Hint 44. 
See MATLAB®Hint 
42. ~p. 195 

Example 22.1 (Aircraft roll dynamics). Figure 22.3 shows the roll angle dynamics of 
an aircraft [15, p. 381]. Defining x := [8 w r]', we can write the aircraft dynamics 
as 

where 

-0.875 
o 

x = Ax + Bu, 

o PEN-LO 0 P GAl N s. Figure 22.4 shows Bode plots of the open-loop gain L(s) = 
K (s I - A) - l B for several LQR controllers obtained for this system. The controlled 
output was chosen to be z := [8 ye]', which corresponds to 

G:= [~ o 
y fI := [~J . 

The controllers minimize the criterion (22.1) for several values of p and y. The 
matrix gains K and the Bode plots of the open-loop gains can be computed using the 
following sequence of MATLAB®commands: 

A [0,1,0;0,-.875,-20;0,0,-50]; 

G [l,O,O;O,gamma*l,O] ; 

Q G' *G; R = H' *H+rho; 

K=lqr(A,B,Q,R,N) ; 

GO=ss (A, B, K, 0) ; 

bode(GO) ; 

B 

H 

N 

[0; 0; 50] ; 

% process dynamics 
[0; 0] ; 

% controlled output z 
G'*H; 
% weight matrices 
% compute LQR gain 
% open-loop gain' 

___ .. ___ fQr 1h~.differ~nt y'alq~s_of ga,mrn~ __ ,!-n~_~r-0" 

T applied torque 

Figure 22.3. Aircraft roll angle dynamics. 

e=w 
w = -0.875w - 20r 

i = -50r +50u 
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Note. The use of LQR 
.. , controllers to drive an 

output variable to a 
set point will be 
studied in detail later 
in Section 23.6. 

100fj'El<: ' . 
"W~~"'~' 

OOJ"" ' ~, lG""" . 
in "''''';~~~,'h~ .• 
~ 0 -JQ~~~~~~ •. 
.~ -50 - - . P(s) from u to a J ~~~~_11 
~ -100 .-<c)- L(s) lory • • 01, p. 01 

~L(s)lor.,=.01,p=1 ...... 
- fSO ~_~ LI&) IOrT= ,Ot P = 100 

10' 10' 

-BO I-~~--""----~--

-100 ~"':~,"-,..ti' iI*',# ." .-i ... .. 't~ , ... U fJ :!-~,; 

i-120 
:," ~1)'y..-0/· . "'\ .. , 

a-140 " -~~'.: \. 

-l S0 

10° 10t 
frequency (fad'sJ 

..J 

10' 

ro' 

10' 

(a) Open-loop gain for several values of p. 
This parameter allows us to move the whole 
magnitude Bode plot up and down. 

1:'iS_~~_=_~~-._ ~'_~, _~' 11 
- ' - P(s) Irom u 10 B ::3' 

... j L(s)forp= .01.y", .01 ... , -: 
~L(s) lorp= 01,y= 1 

-!!-- Lt~l ror p = 01 , T= 3 

-80 

-100 -

~ 
~ -1 20 

~ -a -140 

-!(j(J 

10-2 10·t 10° 10' 102 103 

rrequency [fad/sJ 

(b) Open'loop gain for several values of y. 
Larger values for this parameter result in a 
larger phase margin. 

Figure 22.4. Bode plots for the open-loop gain of the LQR controllers in Example 22. L As ex­
pected, for low frequencies the open-loop gain magnitude matches that ofthe process transfer 
function from u to e (but with significantly lower/better phase), and at high-frequencies the 
gain magnitude falls at -20 dB/decade. 

Figure 22A(a) hows the open-I.oop {,rain for several values of p, where we CRn sec 
that p al lows us t mov the wh01e magnitude Bode plot up and down. Figure 22.4(h) 
shows the open- loop gain for several va lues of y, where we an see that a larger )I 

results in a larger phase margin. As expected, for low frequencies the open-loop 
gain magnitude matches that of the process transfer runction hom u lo. () (hul with 
significantly lower/better f hase), and at high frequencies the gain magnitude fa lls at 
- 20 dB/decade. 

STEP RES PO N S ES. Figure 22.5 shows step responses for the state feedback 
LQR controllers whos~ Bode plots for the open-loop gain are shown in figure 22.4 . 
Figure 22.5(a) shows that smaller values of p lead to faster responses, and Figure 
22.5(b) shows that larger values for y lead to smaller overshoots (but slower re­
sponses). 

NYQU 1ST PLOTS. Figure 22.6 shows Nyquist plots of the open-loop gain L(s) = 
K(sI - A)-lB for p = 0.01, but different choices of the controlled output z. In 
Figure 22.6(a) z := [e OJ', which corresponds to 
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1.4~-~--~----~-~--~ 

1,2 

, (-':~ 
0 ,6 , -

I 
0.6 , 

I 
0.4 I 

0,2 , , 
I J 

o ' o 

[

--Y= 01,P= .01J 
- - - Y = 01 P = 1 

- P 01 01' = 100 

2 3 
Urn. 

(a) Step response for several values of p. 
This parameter allows us to control the 
speed of the response. 
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1.4r---~--~-~--~---~ 

12 

l ' f;-:-.---- - ~-
I _,-

06 I 

0.61 f,/ 
--

0.4 11 

r
- p = ·Ol,Y= 01 

0,2 

3 
time 

- - -p= .Ol,y= .l 
-- - p= 01,y= 3 

(b) Step response for several values of y. 
This parameter allows us to control the 
overshoot. 

Figure 22.5. Closed-loop step responses for the LQR controllers in Example 22.1. 

In this case, H' G = [0 0 0], and Kalman's inequality holds, as can be seen in the 
Nyquist plot. In Figure 22.6(b), the controlled output was chosen to be z := [e i: J', 
which corresponds to 

G:= [~ o 
o 

In this case, we have H' G = [00 -2500], and Kalman's inequality does not hold. We 
can see from the Nyquist plot that the phase and gain margins are very small and there 
is little robustness with respect to unmodeled dynamics, since a small perturbation 
in the process can lead to an encirclement of the point -1. 0 

:~----l 
3, 

phase merom .. 72.8 
~ 

P"IISI>!MllIln • 9,S 

~ 
~ 0 -Z ' 

'~ 

~ 
-1 -1 

-2 -? 

-3 ~----~-~-~--------~ -3 
-~ -3 -2 -1 -4 -3 -2 -1 

real axis real axis 

(a) G'H =0 (b) G'H #0 

Figure 22.6. Nyquist plots for the open-loop gain of the LQR controllers in Example 22.l. 
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22.5 CHEAP CONTROL CASE 

In view of the LQR criterion 

by making p very small one does not penalize the energy used by the control signal. 
Based on this, one could expect that, as p --+ 0, 

1. the system's response becomes arbitrarily fast, and 

2. the optimal value of the criterion converges to zero. 

This limiting case is called cheap control and it turns out that whether or not the above 
conjectures are true depends on the transmission zeros of the system. 

22.5.1 CLOSED-LOOP POLES 

Note. 
Cf. Exercise 22.2. 

Note. The transfer 
matrix r(s) that 
appears in (22.7) can 
be viewed as the 
transfer function from 
the control input u to 
the controlled output 
z. 

We saw in Lecture 21 (cf. Theorem 21.2) that the poles of the closed loop correspond 
to the stable eigenvalues of the Hamiltonian matrix 

[
A -BR-1 BIJ m2nx2n 

H:= -G'G -A' E IN>. , 

To determine the eigenvalues ofH, we use the fact that 

det(s I - H) = ct..(s)t..( -s) det (R - H' H + 1'( -S)'f(S»), (22.7) 

where c := (_l)n det R- 1 and 

t..(s) := det(sl - A), 1'(s) := G(sI - A)-IB + H. 

As P --+ 0, H' fI -~ R, and i:h-eretore 

det(sI - H) --+ ct..(s)t..(-s)detT(-s)'1'(s). (22.S) 

We saw in Theorem lS.2 that th~re exist unimodular real polyno~ialmatrices L(s) E 
JR[s]eXe, R(s) E JR[s]kxk such that - - - - -- -- - --- -- -

where 

1'(s) = L(s)SMr(s)R(s), 

o 

I1r(S) 
1/fr{S) 

o 
000:'] 

(22.9) 

E JR(s)exk 

is the Smith-McMillan form of l' (s). To proceed, we should consider the square and 
nonsquare cases separately. 

" 
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Note. Recall that the 
poles of the 
closed-loop system 
are only the stable 
eigenvalues ofH, 
which converge to 
either ai + j bi and 
-ai - jbi' depending 
on which of them has 
negative real part. 

SQUARE TRANSFER MATRIX . When T(s) is square and full rank (i.e., £ = k = 
r ), 

where ZT (s) and PT (s) are the zero and pole polynomials of 6(s), respectively, and c 
is the (constant) product of the determinants of all the unimodular matrices. When 
the realization is minimal, pTCs) = t,(s) (cf. Theorem 19.3) and (22.9) simplifies to 

det(sI -H) ---+ CCZT(S)ZT(-S). 

Two conclusions can be drawn. 

l. When T (s) has q transmission zeros 

ai+jbi, iE{I,2, ... ,q}, 

then 2q of the eigenvalues of H converge to 

±ai ±jbi, i E {1,2, ... ,q}. 

Therefore q closed-loop poles converge to 

-Iail + jbi, i E {I, 2, ... , q}. 

2. When f (s) does not have any transmission zero, H has no finite eigenvalues as 
p ---+ O. Therefore all closed-loop poles must converge to infinity. 

NONSQUARE TRANSFER MATRIX. When T(s) is not square and/or not full 
rank, by substituting (22.9) into (22.8), we obtain 

." l;ll~=~~ 
det(sI - H) ---+ ct,(s)t,( -s) det : 

o "(~') l 
1/fr(-s) 

. r $~~~~ 
X Lr(-s)'Lr(s) l ~ "~') l " ' 

1/fr(s) 

where Lr(s) E JR[s]lxr contains the leftmost r columns of L(s). In this case, when 
the realization is minimal, we obtain 

det(sI - H) ---+ CZT(S)zr(-s) det Lr (-s)'Lr (s), 

which shows that for nonsquare matrices det(s I - H) generally has more roots than 
the transmission zeros ofT(s). In this case, one needs to compute the stable roots of 

t,(s)t,( -s) det T( -s)'fcs) 

to determine the asymptotic locations of the closed-loop poles. 
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Note. This property 
ofLQR resembles a 
similar property of the 
root locus, except that 
now we have the 
freedom to choose the 
controlled output to 
avoid problematic 
zeros. 

Attention! This means that in general one wants to avoid transmission zeros from the 

control input u to the controlled output z, especially slow transmission zeros that will 
attract the poles of the closed loop. For nonsquare systems, one must pay attention 
to all the zeros ofdeti(-s)'T(s). D 

22.5 . 2 COST 

Note. Here we use the 
subscript p to 
emphasize that the 
solution to the ARE 
depends on this 
parameter. 

Note. This result can 
be found in [9, 
Section 3.8.3, 
pp.306-312; 
cf. Theorem 3.14J. A 
simple proof for the 
SISO case can be 
found in [13, 
Section 3.5.2, 
pp.145-146J . 

Notation. A square 
matrix S is called 
orthogonal if its 
inverse exists and is 
equal to its transpose; 
i.e., SS' = S'S = I. 

We saw in Lecture 20 that the minimum value of the LQR criterion is given by 

hQR := 10
00 

IIz(t) 112 + pllu(t)1I2 dt = x'(O)Ppx(O), 

where p is a positive constant and Pp is the corresponding solution to the ARE 

Rp := H'H + pl. (22.10) 

The following result makes explicit the dependence of Pp on p, as this parameter 
converges to zero. 

Theorem 22.1. When H = 0, the solution to (22.10) satisfies 

1

=0 

lim Pp 
p-+O # ° 

#0 

e = k and all transmission zeros ojT(s) have negative or zero real 

parts, 

e = k and T (s) has transmission zeros with positive real parts, 

e > k. 

o 

Attention! This result shows a fundamental limitation due to unstable transmission 
zeros. It shows that when there are transmission zeros from the input u to the con­
trolled output z, it is not possible to reduce the energy of z arbitrarily, even if one is 
willing to spend much control energy. D 

Attention! Suppose that e = k and all transmission zeros of T(s) have negative 
or zero real parts. Taking limits on both sides of (22.10) and using the fact that 
limp-+o Pp = 0, we conclude that 

lim ~PpBB' Pp = lim pK~Kp = G'G, 
p-+O p p-+O 

where Kp := R;;l B' Pp is the state feedback gain. Assuming that G is full row rank, 
this implies that 

lim .jjJKp = SG, 
p-+O 

" 
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for some orthogonal matrix S (cf. Exercise 22.3). This shows that asymptotically We 
have 

1 
Kp = -SG 

y'p 

and therefore the optimal control is of the form 

1 1 
u = Kpx = -SGx = -Sz; 

y'p y'p 

i.e., for these systems the cheap control problem corresponds to high-gain static feedback 
of the controlled output. 0 

22.6 MATLAS® COMMANDS 

MATLAB® Hint 43 (sigma). The command sigma (sys) draws the norm­
Bode plot of the system sys. For scalar transfer functions, this command plots the 
usual magnitude Bode plot, but for MIMO transfer matrices, it plots the norm of the 
transfer matrix versus the frequency. 0 

MATLAB® Hint 45 (nyquist). The command nyquist (sys) draws the 
Nyquist plot of the system sys. 

£Specia lly wben there are poles very close to the imaginary xis (e .g., because they 
were a.ctua lly on the ax.is and YOll moved them slightly to tbe left), the automatic scale 
may nOl be very good, beca use it may be bard to distinguish the point - I from the 
origin. In this case, you call use the zoom features of MATLAJ3® to see what is going 
on near - 1. Try clicking on the magnifying gla.ss and selecting a regi 11 of interest, 
or try left-clicking with the mouse and selecting "zoom on (-1, 0)" (without the 
magnifying glass selected): . 0 

22.7 ADDITIONAL.·NOTES 

Note. The Nyquist 
plot should be viewed 
as the image of a 
clockwise contour 
that goes along the 
axis and closes with a 
right-hand side loop 
at 00 . 

Note 13 (Multivariable Nyquist criterion), The Nyquist criterion is used to investi­
gate the stability of the negat1ve-feedback connection in Figure 22.7. It allows one to 
CO\11pute the number of unstable (j.e., in the closed right-hand side plane) poles of 

the closed-loop transfer matrix (I + L(sJ) -I as a function ofthenumber of unstable 

poles of the open-loop transfer matrix L(s). 

To apply the criterion, we start by drawing the Nyquist plot of L(s), which is done 
by evaluating det (I + L(jU))) from U) = -00 to U) = +00 and plotting it in the 
complex plane. This leads to a closed curve that is always symmetric with respect to 

r 
[(.I') _ _ 1--1 -.-~./ 

Figure 22.7. Negative feedback. 
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MATLAB® Hint 45. 
nyquist (sys) 
draws the Nyquist 
plot of the system 
sys. ~p.216 

Note. To compute 
#ENC, we draw a ray 
from the origin to 00 

in any direction and 
add 1 each time the 
Nyquist plot crosses 
the ray in the 
clockwise direction 
(with respect to the 
origin of the ray) and 
subtract 1 each time it 
crosses the ray in the 
counterclockwise 
direction. The final 
count gives #ENC. 

22.8 

Note. The 
loop-shaping design 
method is covered 
extensively, e.g., in 
[6J. 

the real axis. This curve should be annotated with arrows indicating the direction 
corresponding to increasing w. 

Any poles of L (s) on the imaginary axis should be moved slightly to the left of the 
axis, because the criterion is valid only when L(s) is analytic on the imaginary axis. 
E.g., 

~ s + I 
L s) = - - ­

s(s - 3 

A S + 1 
--? Lf(s) ~ ----­

(s + E)(S - 3) 
~ s R 

L(s) = $2 + 4 = s + 2j)(s - 2j) 
A S 

--? Lf (s) ~ -,------::-,.....,....---­
(s + E + 2j)(s + E - 2j) 

s 

- (s + E)2 + 4 

for a small E > O. The criterion should then be applied to the perturbed transfer 
matrix if (s). If we conclude that the closed loop is asymptotically stable for if (s) 

with very small E > 0, then the closed loop with i(s) is also asymptotically stable 
and vice versa. 

Nyquist stability criterion. The total number of unstable (closed-loop) poles of (I + 
L(s)r

l 
(HCUP) is given by 

HCUP = HENC + HOUP, 

where HOUP denotes the number of unstable (open-loop) poles of i(s) and HENC is the 
number of clockwise encirclements by the multivariable Nyquist plot around the origin. 
To have a stable closed-loop system, one thus needs 

HENC = -HOUP. o 

Attention! For the multivariable Nyquist criteria, we count encirclements around the 
origin and not around -1, because the multivariable Nyquist plot is shifted to the 
right by adding the 1 to in det (I + L(jw»). 0 

THE LOOP-SHAPING DESIGN METHOD (REVIEW) 

The goal of this section is to briefly review the l ool?-shap~g control design method 
for SISO systems. The basi idea beh i nd loop shaping' is to convert the desired speci­
fications for the dosed-loop system in figure 22.8 into constraints on the open-loop 
gain 

L(s) := C(s)Pcs). 

The controller C(s) is then designed so that the open-loop gain i(s) satisfies these 
constraints. The shaping of L(s) can be done using the classical methods briefly 
mentioned in Section 22.8.2 and explained in much greater detail in [6, Chapter 6.7). 
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Attention! The review 
in this section is 
focused on the SISO 
case, so it does not 
address the state 
feedback case for 
systems with more 
than one state. 
However, we shall see 
in Lecture 23 that we 
can often recover the 
LQR open-loop gain 
just with output 
feedback. ~ p. 230 

22.B.1 

Notation. The 
distance between the 
phase of L(jwc) and 
-180° is called the 
phase margin. 

LECTURE 22 

Figure 22.S. Closed-loop system. 

However, it can also be done using LQR state feedback, as discussed in Section 22.3, 
or using LQG/LQR output feedback controllers, as we shall see in Section 23.5. 

OPEN-LOOP VERSUS CLOSED-LOOP SPECIFICATIONS 

We start by discussing how several closed-loop specifications can be converted into 
constraints on the open-loop gain L(s). 

STABILITY. Assuming that the open-loop gain has no unstable poles, the stability 
of the closed-loop system is guaranteed as long as the phase of the open-loop gain is 
above -180° at the cross-over frequency We, i.e., at the frequency for which 

OVERSHOOT. Larger phase margins generally correspond to a smaller overshoot 
for the step response of the closed-loop system. The following rules of thumb work 
well when the open-loop gain L(s) has a pole at the origin, an additional real pole, 
and no zeros. 

Phase margin (deg) 

65 

60 
45 

Overshoot (%) 

::'S5 
::'S1O 
::'S 15 

REFERENCE TRACKING. Suppose that one wants the tracking error to be at 
least kT « 1 times smaller than the reference, over the range of frequencies [0, WT J. 
In the frequency domain, this can be expressed by 

(22.11) 

where £(s) and R(s) denote the Laplace transforms of the tracking error e := r - y 
and the reference sign·al r, respectively, in the absence of noise and disturbances. For 
the closed-loop system in Figure 22.8, 

~ 1 ~ 
E(s) = --::~,---R(s). 

1 + L(s) 
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Therefore (22.11) is equivalent to 

h 1 
11 + L(jw)1 2': kT' vw E [0, WT]. 

This condition is guaranteed to hold by requiring that 

h 1 
IL(jev)1 2': kT + 1, "lev E [0, evT]. (22.12) 

DISTURBANCE RE.JECTION.. Suppose that one wants input disturbances to ap­
pear in the output attenuated at least kD « 1 times, over the range of frequencies 
[0, evD). In the frequency domain, this can be expressed by 

1 ~(jev)1 ::: kD, "lev E [0, evD), 
ID (jw)1 

(22.13) 

where Yes) and D(s) denote the Laplace transforms of the output y and the input 
disturbance d) respectively, in the absence of reference and measurement noise. For 
the closed-loop system in Figure 22.8, 

pes) 
yes) = -----:h-D(s), 

1 + L(s) 

and therefore (22.13) is equivalent to 

I P(jev) I 
------,-- ::: kD, "lev E [0, evD] 
11 + i(jev) I 

This condition is guaranteed to hold as long as one requires that 

(22.14) 

No I S E R E.J ECTI 0 N. Suppose that one wants measurement noise to appear in the 
output attenuated at least kN « 1 times, over the range of frequencies [evN, 00). In 
the frequency domain, this can be expressed by 

(22.15) 

where Yes) and N(s) denote the Laplace transforms of the output y and the mea­
surement noise n, respectively, in the absence of reference and disturbances. For the 
closed-loop system in Figure 22.8, 

yes) = 
L(s) 

-----:h,-----N (s) , 
1 + L(s) 
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Table 22.1. Summary of the Relationship between Closed-loop Specifications and Open-loop 
Constraints for the Loop-shaping Design Method 

Closed-loop specification 

Overshoot::s 10% (::s 5%) 

IE(jw)1 
~-- ::s kT, 'Vw E [0, WT] 
IR(jw)1 

IY(jw)1 
~-- ::s kD, 'Vw E [0, WD] 
ID(jw)1 

IY(jw)1 
~--C.-~ ::: kN, 'Vw E [WN, 00) 
IN(iw)1 

Open-loop constraint 

~ 1 
IL(jw)l2: kT + 1, 'Vw E [0, WT] 

li(jw)l2: IP~-:)I + 1, 'Vw E [0, WD] 

~ kN 
IL(jw)1 ::: 1 + kN' 'Vw E [WN, 00) 

and therefore (22.15) is equivalent to 

li(jw)1 
----0-- ::s kN, 'Vw E [WN, 00) 
11 + i(jw)1 I 1 I 1 1+-- > -

i(jw) - kN' 
'Vw E [WN, 00) . 

This condition is guaranteed to hold as long as one requires that 

Table 22.1 and Figure 22.9 summarize the constraints on the open-loop gain Go(jw) 
discussed above . . 

Attention! The conditions derived above for the open-loop gain i (jw) aJ"csl4ficicnt 
for the original closed-loop specw alions to hold, but they are n l ll Bccssary. When 
the open-loop gain "almost" ver.i£ies the cond itions derived, it may be VI rth it Lo 

check directly whethcril vcrifles the original closed-loop condition . 0 

22.B.2 OPEN-LOOP GAIN SHAPING 

In classicallead/lag compensation, one starts with a basic unit-gain controller 

LUw) PUw) 1 --+ 
.kD 

C(s) = 1 

Figure 22.9. Typical open-loop specifications for the loop-shaping control design. 
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Note. One actually 
does not "add" to the 
controller. To be 
precise, one multiplies 
the controller by 
appropriate gain, lead, 
and lag blocks. 
However, this does 
correspond to 
additions in the 
magnitude (in dBs) 
and phase Bode plots. 

Note. A lead 
compensator also 
increases the 
cross-over frequency, 
so it may require some 
trial and error to get 
the peak of the phase 
right at the cross-over 
frequency. 

Note. A lag 
compensator also 
increases the phase, so 
it can decrease the 
phase margin. To 
avoid this, one should 
only introduce lag 
compensation away 
from the cross-over 
frequency. 

and "adds" to it appropriate blocks to shape the desired open-loop gain 

L(s) := C(s)Pcs), 

so that it satisfies the appropriate open-loop constraints. This shaping can be achieved 
using three basic tools. 

1. Proportional gain. Multiplying the controller by a constant k moves the mag­
nitude Bode plot up and down, without changing its phase. 

2. Lead compensation. Multiplying the controller by a lead block with transfer 
function 

A Ts + 1 
Clead(S) = , 

aTs + 1 

increases the phase margin when placed at the cross-over frequency. Figure 
22.1O(a) shows the Bode plot of a lead compensator. 

3. Lag compensation. Multiplying the controller by a lag block with transfer func­
tion 

A s/z + 1 
Clag(S)= s/p+l' p < z 

decreases the high-frequency gain. Figure 22.1O(b) shows the Bode plot of a 
lag compensator. 

1 

T 

" .' ' 

aT 

.. "1 '''. , , , 

! cf>max ''' ', . • 

I 
COrnu = ..;aT 

(a) Lead 

a 

" , 

E 
p z z 

COrna. = ,jjii 

'. '. 
- I .;~ 
.:1" 

(b) Lag 

." 

Figure 22.10. Bode plots of lead/lag compensators. The maximum lead phase angle is given 
by ¢max = arcsin [:;:~; therefore, to obtain a desired given lead angle ¢max one sets a = 
l-sin¢max 
l+sin¢max . 
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22.9 EXERCISES 

Notation. A square 
rna tr ix S is called 
orthogonal if its 
inverse exists and is 
equal to its transpose; 
i.e., SS' = SiS = I. 

22.1 (Kalman equality). Prove Kalman's equality (22.3). 

Hint: Add and subtract (s P) to the ARE and then left- and right-multiply it by - B' (s f + 
A')-l and (sf - A)-l B, respectively. 0 

22.2 (Eigenvalues of the Hamiltonian matrix). Show that (22.7) holds. 

Hint: Use the following properties of the determinant: 

det [Ml M2] = detMl detM4det (I - M3 MI 1M2Mil), 
M3 M4 

det(/ + XY) = det(/ + Y X) 

(cf, e.g., [9, equations 1-235 and 1-20lj). 

(22.16a) 

(22.16b) 

o 
22.3. Show that given two matrices X, M E jRnxC with M full row rank and X' X = 
M'M, there exists an orthogonal matrix S E jRcxc such that M = SX. 0 



LECTURE 23 

Output Feedback 

CONTENTS 

This lecture addresses the feedback control problem when only the output (not the whole 
state) can be measured. 

1. Certainty Equivalence 

2. Deterministic Minimum-Energy Estimation (MEE) 

3. Stochastic Linear Quadratic Gaussian (LQG) Estimation 

4. LQRlLQG Output Feedback 

5. Loop Transfer Recovery (LTR) 

6. Optimal Set Point Control 

7. LQRlLQG with MATLAB® 

8. LTR Design Example 

9. Exercises 

23.1 CERTAINTY EQUIVALENCE 

The state feedback LQR formulation considered in Lecture 20 suffered from the 
drawback that the optimal control law 

u(t) = -Kx(t) (23.1) 

required the whole state x of the process to be measured. A possible approach to 
overcome this difficulty is to construct an estimate x of the state of the process based 
solely on the past values of the measured output y and control signal u, and then use 

- u(t) = -Kx(t) 

instead of (23.1). This approach is usually known as certainty equivalence and leads 
to the architecture in Figure 23.1. In this lecture we consider the problem of con­
structing state estimates for use in certainty equivalence controllers. 

23.2 DETERMINISTIC MINIMUM-ENERGY ESTIMATION (MEEl 

Consider a continuous-time LTl system of the form 

i = Ax + Bu, y = ex, 
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Note 14. In particular, 
we assume that 
i(t) -+ ° and 
y(t) -+ 0, as 
t -+ -00. 

LECTURE 23 

Figure 23.1. Certainty equivalence controller. 

where u is the control signal and y is the measured output. Estimating the state 
x at some time t can be viewed as solving (CLT!) for the unknown x(t), for given 
u(r), y(r), r .::; t. 

Assuming that the model (CLT!) is exact and observable, we saw in Lecture 15 that 
x(t) can be reconstructed exactly using the constructibility Gramian 

x(t) = WCn(tO, f)-I 

X (1
t 
eA'(r-t)C'y(r)dr + 1t t eA'(r-t)C'CeA(r-s) Bu(s)dsdr), 

to to ir 
where 

(cf. Theorem 15.2). 

WCn(tO, t) := 1t eA'(r-t)C'CeA(r-t)dr 
to 

In practice, the model (CLT!) is never exact, and the measured output y is gener­
ated by a system of the form 

i=Ax+Bu+Bd, y=Cx+n, x ElRn
, uElRk, dElRq , YElRm

, 

(23.2) 

where d represents a disturbance and n measurement noise. Since neither d nor n 
are known~ solving (23.2) for x no longer yields a unique solution, since essentially 
any state value could explain the measured output for sufficiently large noise and 
disturbances. 

Minimum-energy estimation (MEE) consists of finding a state trajectory 

x=Ai+Bu+Bd, y=Ci+n, iElRn
, uElRk, dElRq

, yElRm (23.3) 

that starts at rest as t ~ -00 and is consistent with the past measured output y and 
control signal u for the least amount of noise n and disturbance d, measured by 

JMEE := 1:00 n(i)i Qn(r) + d(r)' Rd(r)dr, (23.4) 

where Q E lRm xm and R E lRq xq are symmetric positive-definite matrices. Once 
this trajectory has been found, based on the data collected on the interval (-00, f], 
the minimum -energy state estimate is simply the most recent value of i, 

x(t) = i(t). 

The role of the matrices Q and R can be understood as follows. 
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1. When we choose Q large, we are forcing the noise term to be small, which 
means that we "believe" in the measured output. This leads to state estimators 
that respond fast to changes in the output y. 

2. When we choose R large, we are forcing the disturbance term to be small, 
which means that we "believe" in the past values of the state estimate. This 
leads to state estimators that respond cautiously (slowly) to unexpected changes 
in the measured output. 

23.2.1 SOLUTION TO THE MEE PROBLEM 

Note. The reader may 
recall that we had 
proposed a state 
estimator of this form 
in Lecture 16, but had 
not shown that it was 

. optimal. 

23.2.2 

Note. See 
Exercise 23.1 for an 
alternative set of 
conditions that also 
guarantees a solution 
to the dual ARE. 

The MEE problem is solved by minimizing the quadratic cost 

JMEE = f~oo (Cx(r) - y(r))' Q(Cx(r) - y(r») + d(r)' Rd(r)dr 

for the system (23.3) by appropriately choosing the disturbance d(·). We shall see 
in Section 23.2.4 that this minimization can be performed using arguments like the 
ones used to solve the LQR problem, leading to the following result. 

Theorem 23.1 (Minimum-energy estimation). Assume that there exists a symmetric 
positive-definite solution P to the following ARE 

(-A')P + PC-A) + C' QC - P BR- 1 i1' P = 0, (23.5) 

for which - A - B R-i S' P is a stability matrix. Then the MEE estimator for (23.2) for 
the criteria (23.4) is given by 

i = (A - LC)x + Bu + Ly, L:= P-1C'Q. (23.6) 

DUAL ALGEBRAIC RICCATI.EQUATION 

To determine conditions for the existence of an appropriate solution to the ARE 
(23.5), it is convenient to left- and right-multiply this equation by S := p- i and 
then multiply it by -1. This procedure yields an equivalent equation called the dual 
algebraic Riccati equation, 

AS + SA' + BR- i B' - sc' QCS = O. (23.7) 

The gain L can be written in terms of the solution S to-the dual ARE as L := SC' Q. 

To solve the MEE problem, one needs to find a symmetric positive-definite solu­
tion to the dual ARE for which - A - B R~ 1 B' S-i is a stability matrix. The results 
in Lecture 21 provide conditions fol." the existence of an appropriate solution to the 
dual ARE (23.5). 

Theorem 23.2 (Solution to the dual ARE). Assume that the pair (A, in is control­
lable and that the pair (A, C) is detectable. 

1. There exists a symmetric positive-definite solution S to the dual ARE (23.7), for 
which A - LC is a stability matrix. 
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Note. 
Cf. Exercise 23.2. 

23.2.3 

Note. Why? Because 
the poles of the 
transfer matrices from 
d and n to e are the 
eigenvalues of 
A-Le. 

23.2.4 

LECTURE 23 

2. There exists a symmetric positive-definite solution P := S-l to the ARE (23.5), 
for which -A - BR- 1 B' P = -A - BR- 1 B' S-l is a stability matrix. 0 

Proof of Theorem 23.2. Part 1 is a straightforward application of Theorem 21.2 for 
N = 0 and the following facts. 

1. The stabilizability of (A', C') is equivalent to the detectability of (A, C), 

2. the observability of (A', B') is equivalent to the controllability of (A, E), and 

3. A' - C'L' is a stability matrix if and only if A + LC is a stability matrix. 

The fact that P := S-l satisfies (23.5) has already been established from the con­
struction of the dual ARE (23.7). To prove part 2, it remains to show that - A -
B R- 1 B' S-l is a stability matrix. To do this, we rewrite (23.7) as 

(-A - BR- 1 B'S-l)S + S(-A' - S-l BR- 1 B') = -Y, 

where Y := SC'QCS + BR-1B'. The stability of -A - ER-1B'S-1 then fol­
lows from the Lyapunov stability theorem (Theorem 12.5), because the pair (-A -
B R- 1 B' S-l , Y) is controllable. • 

CONVERGENCE OFTHE ESTIMATES 

The MEE estimator is often written as 

.£ = Ax + Bu + L(y - .9), .9 =Cx, L:= SC'Q . (23.8) 

Defining the state estimation error e = x - x, we conclude from (23.8) and (23.2) 
that 

e = (A - LC)e + Ed - Ln. 

Since A - LC is a stability matrix, we conclude that, in the absence of measurement 
noise and disturbances, e(t) -+ 0 as t -+ 00 and therefore IIx(t) - x(t)1I -+ 0 as 
t -+ 00. 

In the presence of noise, we have BIBO stability from the inputs d and n to the 
"output" e, so x(t) may not converge to xU), but at least does not diverge from it. 

PROOF OF THE MEE THEOREM 

Due to the exogenous term y (r) in the MEE criteria, we need a more sophisticated 
feedback invariant to solve this problem. 
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Note. Although HO 
must not depend on 
dO and x(·), it may 
depend on u(·) and 
y(.), since these 
variables are given 
and are not being 
optimized. 

Note. Here, by 
feedback invariant we 
mean that the value of 
H(xC·); dO) does 
not depend on the 
disturbance signal 
d (-) that needs to be 
optimized. 

Note. To keep the 
formulas short, we do 
not explicitly include 
the dependency on r 
for the signals inside 
the integral. 
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Proposition 23.1 (Feedback invariant). Suppose that the input u (.) E ~k and output 
y(.) E ~m to (23.3) are given up to some time t > O. For every symmetric matrix P, 
differentiable signal f3 : (-00, t] -+ ~n, and scalar Ho that does not depend on d(·) 
and xO, the functional 

H(x(.); dO) 

:= Ho + f~oo ((AX(r) + Bu(r) + iMCr) - ~(r»)' P(xCr) - f3(r») 

+ (x(r) - f3(r»)' P(Ax(r) + Bu(r) + iJd(r) - ~(r») )dr 

- (x(t) - f3(t»)' p(x(t) - f3(t») 

is a feedback invariant for (23.3), as long as limr---+ -00 (x (r) - f3 (r») = O. 0 

Proof of Proposition 23.1. We can rewrite H as 

H (x ( . ); d (-) ) 

= Ho + [00 ((.':(r) - ~Cr»)' P(xCr) - f3(r») 

+ (x(r) - f3(r»)' P(x(r) - ~(r») )dr - (x(t) - f3(t))' p(x(t) - f3(t)) 

it d(x(r) - f3(r»)'P(x(r) - f3(r») 
= Ho + dr -00 dr 

- (x(t) - f3(t))' p(x(t) - f3(t») 

= Ho + lim (x(r) - f3(r»)' P(x(r) - f3(r») = Ho, 
r---+-oo 

as long as limr---+_oo (x(r) --f3(r)~ - =-O. - • 
If we now add and subtract this feedback invariant to our iMEE criterion, we obtain 

iMEE = H(x(.); dO) - Ho + (x(t) - f3(t))' p(x(t) - f3(t)) 

+ f~oo (X'(-A' F - P-A-+ c' QC)x + y' Qy + 2f3' P(Bu -~) 
- 2x'(-A' Pf3 + P Bu + C' Qy - P~) + d' Rd 

- 2d' iJ' P(x - (3) ) dr. 

In preparation for a minimization with respect to d, we complete the square to com­
bine all the terms that contain d _into a single quadratic form, which, after tedious 
manipulation, eventually leads to 

iMEE = H(x(.); dO) - Ho + (x(t) - f3(t»)' p(x(t) - f3(t)) 

+ f~oo (X'(-A' P - P A + C' QC - P iJR-1 iJ' P)x 
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Note. Since f3 
depends only on u(·) 
and y(.), the scalar Ho 
also depends only on 
these signals, as stated 
in Proposition 23.1. 

Note. It is very 
convenient that 
equation (23.10), 
which generates f3(')' 
does not depend on 
the final time t at . 
which the estimate is 
being computed. 
Because of this, we 
can continuously 
obtain from this 
equation the current 
state estimate 
x(t) = f3(t). 

Note. Recall that 
y -+ 0 (cf. Note 14. 
p. 224) and also that 
f3 -+ 0 as t -+ - 00. 

23.3 

LECTURE 23 

- 2x'((-A' P - PBR - 1 8' P)fJ + PBu + c' Qy - p~) 

+ y' Qy + 2fJ' P(Bu -~) - fJ' P 8R - 1 8' PfJ 

+ (d - R- 1 8' P(x - fJ))' R(d - R- J 8' P(x - fJ)) )dT. (23.9) 

Suppose now that we pick 

1. the matrix P to be the solution to the ARE (23.5), 

2. the signal fJ to satisfy 

P~ = -(A' P + pjjR- i 8' P)fJ + PBu + C'Qy = 0 

{:} ~ = (A - p-1c' QC)fJ + Bu + p-ic' Qy, 

initialized so that limr --+ _oo fJ(T) = 0, and 

3. the scalar Ho given by 

Ho:= f~oo (l Qy + 2fJ' P(Bu -~) - fJ' P 8 R- i 8' PfJ )dT. 

In this case, (23.9) becomes simply 

IMEE = H(xO; dO) + (x(t) - fJ(t))' p(x(t) - fJ(t)) 

+ f~oo (d - R- i jj' P(x - fJ»)' R(d - R- i 8' P(x - fJ) )dT. 

(23.10) 

which, since H (x (.); d (.) ) is a feedback invariant, shows tha t IMEE can be minimized 
by selecting 

xCt) = fJ(t), d(T) = R- i 8' P(x(r) - fJ(r»). Vr < t. 

These choices, together with the differential equation (23.3), completely define the 
optimal trajectory x(r), T :s t that minimizes IMEE. Moreover, (23.10) computes 
exactly the MEE x (t) = x (t) = fJ (t) at the final time t. Note that under the choice 
ofd(r), Vr < t, we conclude from (23.3) and (23.10) that 

(x - ~) 

= Ax + Bu + 8R- i 8' p(x - fJ) - (A - p-1c' QC)f3~_ Bu - p - ic' Qy 

= (A + 8R - 1 jj' P)(x - fJ) + p - 1c' Q(CfJ - y). 

Therefore x - fJ -* 0 as t -* -00, because -A - jj R-1 jj' P is a stability matrix, as 
stated in Proposition 23.1. • 

STOCHASTIC LINEAR QUADRATIC GAUSSIAN (LQGl 

ESTIMATION 

The MEE introduced before also has a stochastic interpretation. To state it, we con­
sider again the continuous-time LTl system 

i: = Ax + Bu + Ed, y = Cx + n, x E IRn, u E IRk, d E IRq, y E IRm. 
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Note. In this context, 
the estimator (23.6) is 
usually called a 
Kalman filter. 

MATLAB® Hint 46. 
kalman computes 
the optimal 
MEE/LQG estimator 
gain L. ~ p. 235 
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but now assume that the disturbance d and the measurement noise n are uncorrelated 
zero-mean Gaussian white-noise stochastic processes with covariance matrices 

E[d(t)d'(r)] = 8(t - r)R- 1, E[n(t)n'(r)] = 8(t - r)Q-', R, Q > O. 
(23.11) 

The MEE state estimate x(t) given by equation (23.6) in Section 23.2 also minimizes 
the asymptotic norm of the estimation error, 

hQG := lim E[lIx(t) - x(t)1I 2
]. 

1-+00 

This is consistent with what we saw before regarding the roles of the matrices Q and 
R in MEE: 

1. A large Q corresponds to little measurement noise and leads to state estimators 
that respond fast to changes in the measured output. 

2. A large R corresponds to small disturbances and leads to state estimates that 
respond cautiously (slowly) to unexpected changes in the measured output. 

23.4 LQR/U:YG OUTPUT FEEDBACK 

MATLAB® Hint 47. 
reg(sys,K , L) 
computes the 
LQG/LQR positive 
output feedback 
controller for the 
process sys with 
regulator gain K and 
estimator gain 
L. ~p. 235 

We now go back to the problem of designing an output feedback controller for the 
continuous-time LTI process 

x = Ax + Bu + Bd, 

y = Cx + n, 

z=Gx+Hu, 

x ElRn
, uElRk

, dElRq , 

y, n E lRm , 

Z E lRe. 

Suppose that we designed a state feedback controller 

u = -Kx 

that solves an LQR problem and constructed an LQG/MEE state estimator 

; = (A_- LC}x + Bu + Ly. 

(23.12a) 

(23.12b) 

(23.12c) 

(23.13) 

We can obtain an output feedback controller by using the estimated state x in (23.13), 
instead of the true state x. This leads to the output feedback controller 

. . 
x = (A - LC)x + Bu + LY-= (A - LC - BK)x + Ly, u = ~Kx, (23.14) 

with negative-feedback transfer matrix given by 

C(s) = K(sI - A + LC + BK)-l L. 

This is usually known as an LQG/LQR output feedback controller. Since both A - B K 
and A - LC are stability matrices, the separation principle (cf. Theorem 16.10 and 
Exercise 23.3) guarantees that this controller makes the closed-loop system asymp­
totically stable. 

.. 
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23.5 LOOP TRANSFER RECOVERY (LTR) 

Note. This ARE 
would arise from the 
solution to an MEE 
problem with cost 
(23.4) or an LQG 
problem with 
disturbance and noise 
satisfying (23.11). 

Note. iJ = B 
corresponds to an 
input disturbance, 
since the process 
becomes 
;i; = Ax + B(u + d). 

Note. In general, the 
larger Wmax is, the 
larger a needs to be 
for the gains to match. 

MATLAB® Hint 48. 
In terms of the input 
parameters to the 
kalman function, 
this corresponds to 
making QN = / and 
RN = (j /, with (j := 
Ija ...... O. ~p. 235 

We saw in Lecture 22 that a state feedback controller 

u = -Kx 

for the process (23.12) has desirable robustness properties and that we can even shape 
its open-loop gain 

L(s) = K(sI - A)-1 B 

by appropriately choosing the LQR weighting parameter p and the controlled output 
z. 

Suppose now that the state is not accessible and that we constructed an LQG/LQR 
output feedback controller with negative-feedback transfer matrix given by 

C(s) = K(sI - A + LC + BK)-1 L, 

where L := SC' Q and S is a solution to the dual ARE 

AS + SA' + iJR- 1iJ' - SC'QCS = 0 

for which A - LC is a stability matrix. 

In general there is no guarantee that LQG/LQR controllers will inherit the open­
loop gain of the original state feedback design. However, for processes that do not 
have transmission zeros in the closed right-hand side complex plane, one can recover 
the LQR open-loop gain by appropriately designing the state estimator. 

Theorem 23.3 (Loop transfer recovery). Suppose that the transfer matrix 

Pes) := C(sI - A)-1 B 

from u to y is square (k = m) and has no transmission zeros in the closed right 
half~plane. Selecting 

jj;= B. R:= J, Q:= aI, a> 0, 

the open-loop gain for the output feedback LQG/LQR controller converges to the open­
loop gain for the LQR state feedback controller over a range of frequencies [0, wmaxJ as 
we make a ~·+oo, i.e., 

C(jw)P(jw) 
a -+ +00 

L(jw), Vw E [0, wmaxl. D 

Attention! The following items should be kept in mind regarding Theorem 23.3. 

1. To achieve loop-gain recovery, we need to chose Q = a I, regardle.ss of the noise 
. statistics. 

2. One should not make a larger than necessary, because we do not want to re­
cover the (slow) -20 dB/decade magnitude decrease at high frequencies. In 
practice we should make a just large enough to get loop recovery until just above 
or at cross-over. For larger values of w, the output feedback controller may ac­
tually behave much better than the state feedback one. 
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3. When the process has zeros in the right half-plane, loop-gain recovery will gen­
erally work only up to the frequencies of the nonminimum-phase zeros. 

When the zeros are in the left half-plane but close to the axis, the closed loop will 
not be very robust with respect to uncertainty in the position of the zeros. This 
is because the controller will attempt to cancel these zeros. 0 

23.6 OPTIMAL SET POINT CONTROL 

Note. For R- = I, we 
can take Ueq = 0 
when the matrix A 
has an eigenvalue at 
the origin, and this 
mode is observable 
through z 
(cf. Exercise 23.6) 

Attention! This 
Rosenbrock's matrix is 
obtained by regarding 
the controlled output 
z as the only output of 
the system. 

Note. Recall that a 
transmission zero of a 
transfer matrix is 
always an invariant 
zero of its state-space 
realizations (cf. 
Theorem 19.2). 

Consider again the continuous-time LTI process 

i = Ax + Bu, z=Gx+Hu, (23.15) 

but suppose that now one wants the controlled output z to converge as fast as possible 
to a given nonzero constant set point value r, corresponding to an equilibrium point 
(xeq, ueq ) of (23.15) for which z = r. This corresponds to an LQR criterion of the 
form 

hQR := 100 

z(t)' Qz(t) + p u(t)' Ru(t) dt, 

where Z := z - r, u := U - ueq . 

Such equilibrium point (xeq , Ueq) must satisfy the equation 

(

AXeq + BUeq = 0 

r = GXeq + HUeq [
-A 

-G 
B] [-xeq] _ [0] 
H (nHl x (n+kl ueq - r . 

(23.16) 

(23.17) 

To understand when these equations have a solution, three distinct" cases should be 
considered. 

1. When the number of inputs k is strictly smaller than the number of controlled 
outputs C; we have an underactuated system. In this case, the system of equa­
tions (23.17) generally does not have a solution, because it presents more equa­
tions than unknowns. 

2. When the number of inputs k is equal to the number of controlled outputs e, 
(23.17) always has a solution as long as Rosenbrock's system matrix 

pes) := [SI_-GA BJ 
. fI 

is nonsingular for s = 0. This means that s = 0 should not be an invariant 
zero of the system, and therefore it cannot also be a transmission zero of the 

transfer matrix G(s 1- A)-1 B + H. 

Intuitively, one should expect problems when s = ° is an invariant zero of the 
system, because when the state converges to an equilibrium point, the control 
input u(t) must converge to a constant. By the zero-blocking property, one 
should then expect the controlled output z(t) to converge to zero and not to r. 

.' 
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Note. We shall 
confirm in 
Exercise 23.4 that 
(23.18) is indeed a 
solution to (23.17). 

Note. 
P (0)' (p (0) P (0)')-\ 
is called the 
pseudoinverse of P (O) 
(cf. Definition 17.2). 

LECTURE 23 

3. When the number of inputs k is strictly larger than the number of controlled 
outputs £., we have an overactuated system, and (23.17) generally has multiple 
solutions. 

When P(O) is full row-rank, i.e., when it has n + £. linearly independent rows, 
the (n + £) x (n + £.) matrix P(O)P(O)' is nonsingular, and one solution to 

(23.17) is given by 

(23.18) 

Also in this case, s = 0 should not be an invariant zero of the system, because 
otherwise P (0) cannot be full rank. 

23.6.1 STATE FEEDBACK: REDUCTION TO OPTIMAL 

REGULATION 

Note. As seen in 
Exercise 23.6, the 
feed-forward term Nr 
is absent when the 
process has an 
integrator. 

The optimal set point problem can be reduced to that of optimal regulation by con­
sidering an auxiliary system with state x := x - Xeq, whose dynamics are 

x = Ax + Bu = A(x - Xeq) + B(u - ueq ) + (Axeq + Bueq ) 

Z = Gx + Hu - r = G(x - Xeq) + H(u - ueq ) + (Gxeq + HU eq - r). 

The last terms on each equation cancel because of (23.17), and we obtain 

x = Ax + Bu, z = Gx + Hu. (23.19) 

We can then regard (23.16) and (23.19) as an optimal regulation problem for which 
the optimal solution is given by 

u(t) = -Kx(t), 

as in Theorem 20.1. Going back to the original input and state variables U and x, we 
conclude that the optimal control for the set point problem defined by (23.15) and 
(23.16) is given by . 

U(t) = -K(x(t) - Xeq) + ueq , t ::: o. (23.20) 

Since the solution to (23.17) can be written in the form 

Xeq = Fr, Ueq = Nr, 

for appropriately defined matrices F and N, this correspondS'to the control architec­
ture in Figure 23.2. 
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Note. N + KF is 
always nonzero, since 
otherwise the 
reference would not 
affect the control 
input. 

233 

Ueq 

Figure 23.2. Linear quadratic set point control with state feedback. 

CLOSED-LOOP TRANSFER MATRICES. To determine the transfer matrix from 
the reference r to the control input u, we use the diagram in Figure 23.2 to conclude 
that 

where L(s) := K(sl - A)-l B is the open-loop gain of the LQR state feedback 
controller. We therefore conclude the following: 

1. When the open-loop gain LCs) is small, we essentially have 

u ~ (N + KF)r. 

Since at high frequencies i (s) falls at - 20 dB/decade, the transfer matrix from 

r to u will always converge to N + K F =1= 0 at high frequencies. 

2. When the open-loop gain L(s) is large, we essentially have 

To make this transfer matrix small, we need to increase the open-loop gain 
L(s). 

The transfer matrix from r to the controlled output z can be obtained by compos­
ing the transfer matrix from r to u just computed with the transfer matrix from u to 
z, 

where T.(s) .:= G(sl - A)-l B + H. We therefore concl~de the following: 

1. When the open-loop gain L(s) is small, we essentially have 

z ~ TCs)(N + KF)r, 

and therefore the closed-loop transfer matrix mimics that of the process. 

2. When the open-loop gain L(s) is large, we essentially have 
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Note. Since z 
converges to a 
constant r, we must 
have 
lIi(O)1I = 11,0(0)11· 
Therefore when 
lIi(O)II» 1,wemust 
have 

LECTURE 23 

Moreover, from Kalman's equality, we also have IIL(jw)1I ~ )p1I1'(jw) II 

when IIL(jw)1I » 1, R := pI, and H = ° (d. Section 22.3). In this case 
we obtain 

IIz(jw)1I ~ liN + K Fllllr(jw)ll, 
.j15 

liN + K FII ~ .JP. which shows a flat Bode plot from r to Z. 

23.6.2 OUTPUT FEEDBACK 

Note. When z = y, 
wehaveG = C, 
H = 0, and in this 
case CXeq = r. This 
corresponds to 
CF = 1 in 
Figure 23.3. When the 
process has an 
integrator, we get 
N = 0 and obtain the 
usual unity-feedback 
configuration. 

When the state is not accessible, we need to replace (23.20) by 

U(t) = -K(x(t) - Xeq) + ueq , t :::: 0, 

where x is the state estimate produced by an LQG/MEE state estimator 

; = (A - LC)x + Bu + Ly = (A - LC - BK)x + BKxeq + BUeq + Ly. 

Defining x := Xeq - x and using the fact that AXeq + BUeq = 0, we conclude that 

x = -(A - LC - BK)x + (A - BK)xeq - Ly 

= (A - LC - BK)x - L(y - Cxeq ). 

This allows us to rewrite the equations for the LQG/LQR set point controller as 

x = (A - LC - BK)x - L(y - Cxeq ), U = Ki + ueq , 

which corresponds to the control architecture shown in Figure 23.3. 

(23.21 ) 

CLOSED-LOOP TRANSFER MATRICES. The closed-loop transfer matrices from 
the reference r to the control input U and controlled output z are now given by 

u = (I + C(s)p(s)r1(N + C(s)CF)r, 

y = 1'(s)(I + C(s)p(s)r1(N + C(s)CF)r, 

where 

C(s) := K(sI ~ A + LC + BK)-l L, pes) := C(sI--' A)-J B. 

z 1; G I 
, CF ~I x=(A_-LC-BK)i+LV ~I x=Ax+Bu I 

+ l '~Kx +. y~Cx J ' 
Figure 23.3. LQG/LQR set point control. 
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When LTR succeeds, i.e., when 

C(jw)P(jw) ~ iUw), Vw E [0, wmax ], 

235 

the main difference between these and the formulas seen before for state feedback is 
that the matrix N + K F multiplying by r has been replaced by the transfer matrix 
N + C(s)CF. 

When N = 0, this generally leads to smaller transfer matrices when the loop gain 
is low, because we now have 

u ~ C(s)CFr, y ~ Tcs)C(s)C Fr, 

and C(s) falls at least at -20 dB/decade. 

23.7 L4IR/L4IG WITH MATLAB® 

Note. As discussed in 
Section 23.3, this LQG 
estimator is also an 
MEE estimator with 
cost (23.4), where 
Q = RN- 1 and 
R = QN- 1 (pay 
attention to the 
inverses and the 
exchange between Qs 
and Rs). 

Note. See 
Example 23.1. 

23.B 

MATLAB® Hint 49. 
See MATLAB® Hints 
46 (p. 235) and 47 
(p.235). 

MATLAB® Hint 46 (kalm.an). The command 

[est,L,Pl=kalman(sys,QN,RN} 

computes the optimal LQG estimator gain for the process 

i = Ax + Bu + BBd, y = Cx +n, 

where d(t) and net) are uncorrelated zero-mean Gaussian noise processes with co­
variance matrices 

E[d(t)d'(r») = o(t - r)QN, E[n(t)n'(r)] =o(t -r)RN. 

The variable sys should be a state-space model created using 

sys=ss(A, [B BBl,C,O). 

This command returns the optimal estimator gain L, the solution P to the corre­
sponding algebraic Riccati equation, and a state-space model es t for the estimator. 
The inputs to est are [u; y], and its outputs are [y; x]. 

For loop transfer rec<?very (LTR)"one should set 

BB=B, QN= I, . RN = aI, a ~ O. o 

MATLAB® Hint 47 (reg). The function reg (sys , K, L) computes a state-space 
model for a positive output feedback LQG/LQR controller for the process with state­
space model sys with regulator gain K and estimator gain L. 0 

LTR DESIGN EXAMPLE 

Example 23.1 (Aircraft roll dynamics,continued). Figure 23.4(a) shows Bode plots 
of the open-loop gain for the state feedback LQR state feedback controller versus the 
open-loop gain for several output feedback LQG/LQR controllers obtained for the 
aircraft roll dynamics in Example 22.1. The LQR controller was designed using the 
controlled output z := [8 y e]', with y = 0.1 and p = 0.01 (see Example 22.1). 
For the LQG state estimators, we used the parameters for the loop transfer recovery 
theorem (Theorem 23.3): i3 = B, R = I, and Q = a for several values of a 
in the MEE cost (23.4) [or the corresponding LQG disturbance and noise (23.11)]. 
The matrix gain L, the LQG/LQR output feedback controller, and the corresponding 
Bode plot of the open-loop gain can be computed using the following sequence of 
MATLAB® commands: 
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23.9 

Note. This result is 
less interesting than 
Theorem 23.2. 
because often (A, C) 
is not observable. just 
detectable. This can 
happen when we 
augmented the state 
of the system to 
construct a "good" 
controlled output z. 
but these augmented 
states are not 
observable through y. 

l 00!r---~----------~----~---' 

50 

o -, ~. ,~ __ 

-50 ____ LOR open-loop gain T 'o~~ I 

-100 -B- LQG/lQA open-loop gain, <1= 1('2 ~rtne.. 
~... LOG/LQA open-loop gain. (1 = l OIS 

-1 50 LOG/LOR Dpnn-kJop GRW1, n:o 1t1B 

10' 10' 10' 10' 

-BDr---------__ --------____ -. 

-100 

! -120 

~ a -140 
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100 10' 
frequency [rad/s] 
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I , 

I .~ 
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o~ r"i! ~ r-------L~QR-o-p-en--I-oo-p-ga-'n-------oJ 
- - - LQGIlQR open-loop garn, 0'= l (Q 
- - LQGILQR open-loop gain, 0' = l e5 

LQG/lQR open-loop gain, 0 = 1GB 
o 
o 0.5 15 

lime 

(b) 

Figure 23.4. Bode plots of the open-loop gain and closed-loop step response for the LQR 
controllers in Example 23.1. 

R=l; Q=sigma; 
Pka l=ss(A, [B BJ ,C,O); 

% weight matrices 
% process for the kalman() 
% command 

[est,Lj=kalman(Pkal,inv(R) ,inv(Q)); % compute LQG gain 
P=ss(A,B,C,O); % process for the reg() 

% command 
Cs=-reg(P,K,L) ; 

bode (Cs*P) ; 

% LQG/LQR controller 
% (negative feedback) 
% bode plot of the 
% open-loop gain 

We can see that, as a increases, the 'range of frequencies over which the open-loop 
gain of the output feedback LQG/LQR controller matches that of the state feedback 
LQR state feedback increases. Moreover, at high frequencies the output feedback 
controllers exhibit much faster (and better!) decays of the gain's magnitude. D 

EXERCISES 

23.1 (Solution to the dual ARE). Assume that the pair (-A, 8) is stabilizable and 
that the pair (A. C) is observabh~. Prove the following. 

(a) There exists a symmetric positive-definite solution P to the ARE (23.5), for 
which - A - 8 R -181 P is a stability matrix. 

(b) There exists a symmetric positive-definite solution S 
(23.7), for which A - LC is a stability matrix. 

._ p-l to the dual ARE 
D 

23.2. Show that ifthe pair (A, B) is controllable, then the pair 

Y := SCI QC S + 8 R- 1 81
• 
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is also controllable for Q and R symmetric and positive-definite. 

Hint: Use the eigenvector test. 
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o 
23.3 (Separation principle). Verify that the LQG/LQR controller (23.14) makes the 
closed-loop system asymptotically stable. 

Hint: Write the state of the closed-loop system in terms of x and e := x-x. 0 

23.4. Verify that a solution to (23.17) is given by (23.18). 

Hint: Use direct substitution of the "candidate" solution into (23.17). o 
23.5. Verify that the LQG/LQR set point controller (23.21) makes the closed-loop 
system asymptotically stable. 

Hint: Write the state of the closed loop in terms of x - Xeq and e := x-x. 0 

23.6 (Set point control with integrator). Show that for a single controlled output 
(l = 1), we can take ueq = 0 in (23.17) when the matrix A has an eigenvalue at 
the origin and this mode is observable through z. Note that in this case the process 
has an integrator. 0 




