
PREFACE 

The age of modern control theory was ushered in at the launching of the first 
sputnik in 1957. This achievement of Soviet technology focused attention of 
scientists and engineers in general, and the automatic-control community in 
particular, eastward toward the USSR. By worldwide consensus, Moscow was 
the appropriate location for the First Congress of the International Federation 
of Automatic Control in 1960. 

J n turning their attention to the Soviet Union, control system scientists and 
engineers discovered a different approach to control theory than the approach 
with which they were familiar. Differential equations replaced transfer functions 
for describing the dynamics of processes; stability was approached via the 
theory of Liapunov instead of the frequency-domain methods of Bode and 
Nyquist; optimization of system performance was studied by the special form of 
the calculus of variations developed by Pontryagin instead of by the Wiener
Hopf methods of an earlier era. 

In a few years of frenzied effort, Western control theory had absorbed and 
mastered this new "state-space" approach to control system analysis and 
design, which has now become the basis of much of modern control theory. 

State-space concepts have made an enormous impact on the thinking of 
those control scientists and engineers who work at the frontiers of technology. 
These concepts have also been used with notable success in a number of 
important high-technology projects-the U.S. Apollo project was a highly 
visible example. Nevertheless, the majority of control systems implemented at 
the present time are designed by methods of an earlier era. 

Many control engineers schooled in the earlier methods have felt that the 
modern state-space approach is mathematically esoteric and more suited to 
advanced graduate research than to the design of practical control systems. I 
can sympathize with the plight of the engineer who has waded through a morass 
of mathematics with the hope of learning how to solve his practical problem 
only to return empty-handed; I have been there too. One thesis of this book is 
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that state-space methods can be presented in a style that can be grasped by the 
engineer who is more interested in using the results than in proving them. 
Another thesis is that the results are useful. I would even go so far as to say that 
if one had to choose between the frequency-domain methods of the past and the 
state-space methods of the present, then the latter are the better choice. 
Fortunately, one does not need to make the choice: both methods are useful 
and complement each other. Testimony to my continued faith in frequency
domain analysis is a long chapter, Chap. 4, which presents some of the basic 
methods of that approach, as a review and for those readers who may not be 
knowledgeable in these methods. 

This book is addressed not only to students but also to a general audience 
of engineers and scientists (e.g., physicists, applied mathematicians) who are 
interested in becoming familiar with state-space methods either for direct 
application to control system design or as a background for reading the 
periodical literature. Since parts of the book may already be familiar to some of 
these readers, I have tried, at the expense of redundancy, to keep the chapters 
reasonably independent and to use customary symbols wherever practical. It 
was impossible, of course, to eliminate all backward references, but I hope the 
reader will find them tolerable. 

Vectors and matrices are the very language of state-space methods; there is 
no way they can be avoided. Since they are also important in many other 
branches of technology, most contemporary engineering curricula include them. 
For the reader's convenience, however, a summary of those facts about vectors 
and matrices that are used in the book is presented in the Appendix. 

Design is an interplay of science and art-the instinct of using exactly the 
right methods and resources that the application requires. It would be pre
sumptuous to claim that one could learn control system design by reading this 
book. The most one could claim is to have presented examples of how 
state-space methods could be used to advantage in several representative 
applications. I have attempted to do this by selecting fifteen or so examples and 
weaving them into the fabric of the text and the homework problems. Several of 
the examples are started in Chap. 2 or 3 and taken up again and again later in 
the book. (This is one area where backward references are used extensively.) To 
help the reader follow each example on its course through the book, an 
applications index is furnished (pages 503 to 505). Many of the examples are 
drawn from fields I am best acquainted with: aerospace and inertial instrumenta
tion. Many other applications of state-space methods have been studied and 
implemented: chemical process control, maritime operations, robotics, energy 
systems, etc. To demonstrate the wide applicability of state-space methods, I 
have included examples from some of these fields, using dynamic models and 
data selected from the periodical literature. While not personally familiar with 
these applications, I have endeavored to emphasize some of their realistic 
aspects. 

The emphasis on application has also motivated the selection of topics. 
Most of the attention is given to those topics that I believe have the most 
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practical utility. A number of topics of great intrinsic interest do not, in my 
judgment, have the practical payoff commensurate with the effort needed to 
learn them. Such topics havc received minimal attention. Some important 
concepts are really quite simple and do not need much explaining. Other 
concepts, although of lesser importance, require more elaborate exposition. It is 
easy to fall into the trap of dwelling on subjects in inverse proportion to their 
significance. I have tried to avoid this by confining the discussion of secondary 
topics to notes at the end of each chapter, with references to the original 
sources, or to the homework problems. 

Much of practical engineering design is accomplished with the aid of 
computers. Control systems are no exception. Not only are computers used for 
on-line, real-time implementation of feedback control laws-in applications as 
diverse as aircraft autopilots and chemical process controls-but they are also 
lIsed extensively to perform the design calculations. Indeed, one of the major 
advantages of state-space design methods over frequency-domain methods is 
that the former arc better suited to implementation by digital computers. 
Computer-aided design, however, creates a dilemma for the author. On the one 
hand, he wants to make the concepts understandable to a reader who doesn't 
have a computer. On the other hand the full power of the method is revealed 
only through applications that require the use of a computer. My decision has 
been a compromise. I have tried to keep the examples in the text simple enough 
to be followed by the reader, at least part of the 'Nay, 'Nithout recourse to a 
computer for numerical calculation. There are a number of homework prob
lems, however, some of which continue examples from the text, for which a 
computer is all but essential. 

The reader is certainly not expected to write the software needed to perform 
the numerical calculations. During the past several years a number of organi
zations have developed software packages for computer-aided control system 
design (CACSD). Such software is available for mainframes and personal 
computers at prices to suit almost any budget and with capabilities to match. 
Several of these packages would be adequate for working the homework 
problems that require a computer and for other applications. Anyone with more 
than a casual interest in state-space methods would be well advised to consider 
acquiring and maintaining such software. 

The education of most engineers ends with the bachelor's or master's degree. 
Hence, if state-space methods are to be widely used by practicing engineers, they 
must be included in the undergraduate or first-year graduate curriculum-they 
must not be relegated to advanced graduate courses. In support of my commit
ment to state-space methods as a useful tool for practicing engineers, I have 
endeavored to teach them as such. A number of years ago I presented some 
introductory after-hours lectures on this subject to fellow employees at the 
Kearfott Division of The Singer Company. These lectures served as the basis of 
an undergraduate elective I have been teaching at the Polytechnic Institute of 
N ew York. For want of.. a more suitable textbook, I have been distributing hard 
copies of the overhead transparencies used in the lectures. It occurred to me that 
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the material I had assembled in these overhead transparencies was the nucleus 
of the book I had needed but had been unable to locate. And so I embarked 

upon this project. 
It is a pleasure to acknowledge the contributions made by a number of 

individuals to this project. Most of the manuscript was patiently and expertly 
typed by Win Griessemer. Additional typing and editorial assistance, not to 
mention moral support, was provided when needed most by my wife and daugh
ters, to whom this book is dedicated. My associates at The Singer Company, 
Dave Haessig, Appa Madiwale, Jack Richman, and Doug Williams between them 
read most of the manuscript, found many errors large and small, and offered a 
number of helpful suggestions. A preliminary version of this book was used as 
a text for my undergraduate course at the Polytechnic Institute of New York and 
for a similar course, taught by Professor Nan K. Loh, at Oakland University 
(Michigan). The students in these courses provided additional feedback used in 
the preparation of the final manuscript. 

The vision of this book has long been in my mind's eye. To all those named 
above, and others not named but not forgotten, who have helped me realize this 

vision, my gratitude is boundless. 

Bernard Friedland 



CHAPTER 

ONE 

FEEDBACK CONTROL 

1.1 THE MECHANISM OF FEEDBACK 

No mechanism in nature or technology is more pervasive than the mechanism 
of feedback. 

By the mechanism of feedback a mammal maintains its body temperature 
constant to within a fraction of a degree even when the ambient temperature 
fluctuates by a hundred degrees or more. 

Through feedback the temperature in an oven or in a building is kept to 
within a fraction of a degree of a desired setting even though the outside 
temperature flllctuates by 20 or 30 degrees in one day. 

An aircraft can maintain its heading and altitude and can even land, all 
without human intervention, through feedback. 

Feedback is the mechanism that makes it possible for a biped to stand erect 
on two legs and to walk without falling. 

When the Federal Reserve Bank exercises its controls in the interest of 
stabilizing the national economy, it is attempting to use feedback. 

When the Mayor of New York City asks, "How'm I doing?" he is invoking 
the mechanism of feedback. 

Hardly a process occurring in nature or designed by man does not, in one 
way or another, entail feedback. 

Because feedback is ubiquitous, it is taken for granted except when it is not 
working properly: when the volume control of a public address system in an 
auditorium is turned up too high and the system whistles; then everyone 
becomes aware of " feedback." Or when the thermostat in a building is not 
working properly and all the occupants are freezing, or roasting. 
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Process 

H 
Input Output Figure \.1 Oren -loop control . Input " is selected LO pro

duce desired output .1'. 

To get an appreciation of the mechanism of feedback, suppose that there is 
a process H that we wish to contro!' Call th e input to the process tI and the 
output from the process y. Suppose that we have a complete description of the 
process: we know what the output y will be for any input. Supposc that there is 
one particular input, say ii, which corresponds to a specified, desired output, 
say ji. One way of controlling the process so that it produces the desired output 
y is to supply it with the input ii. This is "open-loop contra!''' (Fig. 1.1.) A 
billiard player uses this kind pf control. With an instinctive or theoretical 
knowledge of the physics of rolling balls that bouncc off resilient cushions, an 
expert player knows exactly how to hit the cue ball to make it follow the 
planned trajectory. The blow delivered by the cue stick is an opcn-Ioop contro!. 
In order for the ball to follow the desired trajectory, the player must not only 
calculate exactly how to impart that blow, but also to execute it faultl ess ly. [s it 
any wonder that not everyone is an expert? On the other hand, suppose one 
wants to cheat at billiards by putting some kind of sensor on the cue ball so that 
it can always "see" the target-a point on another baIlor a cushion-and by 
some means can contwl its motion-"steer " - to the target. Finally, put a tiny 
radio in the ball so that the cheater can communicate the desired target to the 
cue ball. With such a magic cue ball the cheater cannot but win every gamc. He 
has a cue ball that uses the mechanism of feedback. 

The magic cue ball has two of the characteristics common to every feedback 
system: a means of monitoring its own behavior ("How'm I doing") and a 
means of correcting any sensed deviation therefrom. These elements of a 
feedback control system are shown in Fig. 1.2. Instead of controlling the output 
of the process by picking the control signal ii which produces the desired .y, the 
control signal u is generated as a function of the "system error," defined as the 
difIercnce between the desired output 51 and the actual output y 

Desired 
output 

Amplifier 

u 

e = )'-y 

Process 

H 
y 

Actual 
output 

( I. I) 

Figure 1.2 Feedback control system. Input u is proportional to dilIercnce between desired and 
actual output. 
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This error, suitably amplified, as shown by the output of the box labeled 

"amplifier," is the input to the process. 
Suppose that the operation of the process under control can be represented 

by a simple algebraic relation 

y = Hu ( 1.2) 

and that the amplifier can similarly be described 

u = Ke (1.3) 

Combine (l.l) , (1.2), a nd (\.3) into the single relation 

y = HKe = HK(y - y) 

Solve for y and obtain 

HK 
y = 1 + HK Y 

(1.4) 

Although the output y is not exactly equa l to the desired output y, if the 

amplifier" gain" K is large enough (i .e., HK » I) then 

y= y ( 1.5) 

We can make the actual output y approach the desired output as closely as 
we wish imply by making the gain K la rge enough. Moreover, lhis result holds, 
ror any des ired output! We don'l have to know - in advan e as we did in 
c.letermining the open-100 p contro l ii. An~ cve n mOl"e re markab ly, lhis result 
ho lds ind ependent of the process-it d esn' l maLLer what 1-1 is. tn fa ct H can 
even cha nge ovcr the curse or time with o ut a ffecting lh e ba ic res ult. Th ese are 
among the wonders of feedback a nd help to c· plai n why it is so useful. 

Unfortunately, nature i not a simple as the above a na ly i wou ld suggest ; 
if it were, the re would be no need fo r thi book. Th pro lem is tha t the process 
whose input is u a nd whose output is y ca nn o t be represented I y a n algebraic 
equ ation a' simple a' ( 1.2). Because or the process dynamiCS, tbe relalionship 
between the output a nd the inpu t is much more complex than (1 .2). 

The cIIcct o f dyn a mi cs o n the behavior o f a feed back system is easily 
illu stra ted by a simple exam pl e. Suppo e that th e output or system H is an 
exact repli ca of the input, except delayed by a sma ll a mount of time, say r: 

yet) = u(t - r) ( 1.6) 

for any input u(t). (See Fig. 1.3.) We assume that (1.1) and (1.2) continue to 

hold for every time t. Then 

U(l - r) = Ke(t - r) = K[y(t - T) - y ( t - rn 
Subst,itute (1.7) into (1.6) to obtain 

yet) = K[yCt - T) - y(t - T» 

(1.7) . 

( 1.8) 
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Input 
u(t) 

Time, I 

Output 
yet) = u(t- r) 

Figure 1.3 Example of input and output of a process in which the output is an exact but delayed 
replica of the input. 

This is an example of a "difference equation" and describes how y( t) 
evolves as time t increases. Difference equations are a common way of describ
ing the dynamic behavior of discrete-time (sampled-data) systems but they are 
not studied extensively in this book. This equation, however, is so simple that it 
can be solved without any theory. 

Suppose the desired output is a "unit step" as shown in Fig. IA( a): 

y(t)={~ for t < 0 

for t > 0 
( 1.9) 

and also suppose that yet) = 0 for t < O. Then, by (1.8) and also by looking at 
Fig. 1.3, we can see that there is no output for the first 7 units of time. But the 
input to the process 

u(t) = K(l-O) = K for 0 < t < 7 

After an interval of 7 units of time the output starts to appear as shown in 
Fig. IA(b) 

yet) = K for 7 < t < 27 

For the next 7 units of time the input to the process is 

u(t) = K(l - K) = K - K2 for 7 < t < 27 

This is the value of yet) for the next 7 units of time, i.e., for 27 < t < 37. Pro
ceeding in this fashion we see that 

for nT < t < (n + 1)7 (1.10) 
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Time 

(a) 

0.375 
0.3 125 034375 

37 47 57 
Time 

(b) 

0.375 
(1 .3 125 

: : 

0.25 

I 
37 47 5T 

Time 

(c) 

Figure 1.4 Response of feedback control system to y = I when output is a replica of input delayed 
by 7 with gain K =!. (a) Desired output y(I); (b) Input to process U(I); (e) Output from process 
Y(I). 

If K is less than 1, then (1.10) implies that y(t) will eventually converge to 
a limit: 

234 K limy(t) = K - K + K - K + . . . = - -
/->00 1+ K 

(1.11) 

If K is exactly equal to 1, the output y(t) will flip between 0 and 1 
indefinitely. And if K> 1, the output will flip between positive and negative 
values, ever increasing in amplitude, and ultimately become infinite. 

Thus we see that the amplification factor (or gain) K of the amplifier 
cannot be made as large as 1 if we want the output to stabilize. (Also, as K 
approaches 1, the output is only half the value of the input. This can be 
corrected, however, by mUltiplying the desired output by (1 + K) before com
paring it with the actual output.) 
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Our earlier discussion suggests that we would like an amplifier gain 
approaching infinity, but here we see that we cannot even make the gain as 
large as unity without causing the system to break into unstable oscillation. All 
because the output of the process is delayed by a small amount of time-an 
arbitrarily small amount of time. In every real process there is always some 
delay. Does this mean that feedback control cannot be used in any real process? 
The answer of course is no. And the reason is twofold. First, while it is true that 
there is some amount of delay in any physical process, the output is rarely 
simply a delayed replica of the input. The output will also not look exactly like 
the input. The time-distortion of the output is a benefit for control system 
design. Second, the black box which we called an amplifier, with gain K, is 
usually more than just an amplifier. It also changes the shape of the signal that 
passes through it. The amplifier is a "compensator," which the control system 
engineer, knowing the dynamic characteristics of the process H, designs to 
achieve favorable operation. 

By proper design of the compensator it is generally possible to achieve 
satisfactory closed-loop performance for complex, even nasty processes. For 
example, it is possible to "close the loop" around a process H, which is itself 
unstable, in such a way that the closed-loop system not only is stable, but that 
the output y faithfully tracks the desired output y. 

1.2 FEEDBACK CONTROL ENGINEERING 

Feedback control engineering may be regarded as the conscious, intentional use 
of the mechanism of feedback to control the behavior of a dynamic process. 

The course that a typical feedback system design follows is exemplified by 
the hypothetical magic cue ball of the previous section. Suppose one has a 
client who comes prepared to pay the expense of the design and construction of 
such a technical marvel. How would one proceed? 

The performance requirements are easy to imagine. To escape detection, the 
entire system must fit inside a hollowed-out ball and its weight and inertia must 
exactly equal those of the material removed. If the cue ball is to be able to 
home-in on its target, it should be able to sense its position relative to the target. 
How can this be accomplished? Perhaps a miniature infrared sensor? Will the 
sensor be able to discriminate between the actual target and another cue ball 
that resembles the target? Perhaps the billiard table can have a hidden means of 
generating an electric or magnetic field that is altered by the presence of the 
balls and this information can be transmitted to the cue ball. 

Suppose we have tentatively solved the problem of sensing the motion of 
the cue ball. Next we need some means to alter its trajectory. Can we use tiny, 
barely visible gas jets? Perhaps we can use a movable weight inside the cue ball 
which will displace the center of mass from the geometric center and hence, with 
the aid of gravity, create moments which, when combined with friction, can 
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change the trajectory. Maybe we can use tiny, almost imperceptible bumps on 
the surface that can be moved to change the course of the ball. 

Conception of the means of measuring the behavior of the process-the cue 
ball-and affecting or altering its behavior is the first stage of control system 
design. Without a doubt, this is the stage that requires the greatest degree of 
inventiveness and understanding of what can be achieved at the current level of 
technology and at what price. 

If the project has not been abandoned at the first stage for want of suitable 
technological means, the next step is to acquire or design the sensors that have 
been chosen to measure the motion of the vehicle relative to the target and the 
actuation means that have been selected to alter the motion of the cue ball. 

After the hardware is all selected, the final stage of the design is begun. This 
is the stage in which it is decided how the feedback loop or loops are to be 
closed: how the data from the sensor or sensors are to be processed before 
being sent to the actuator. It is at this stage that the designer decides what the 
block box labeled "amplifier" must really do in order for the closed loop 
system to operate properly. This step is the design of the "control law" or 
"control algorithm." 

This last stage of control system design is the entire content of control 
theory. By the time control theory enters the picture, the system concept has 
already been established and the control hardware has already been selected. 
The whole apparatus of control theory, it would appear, deals with only a small, 
insignificant fraction of the overall problem. In this light, the effort devoted to 
the development of control theory-the subject matter of this book-hardly 
seems worth the effort. 

The magic cue ball design problem, however, does not represent the typical 
design problem. Although it is true enough that the control concept must be 
defined and the hardware must be selected for every control system design, not 
every design requires such inventiveness. In most cases, the process to be 
controlled is only slightly different from yesterday's. Today's control hardware 
is only slightly different from yesterday's, probably better (more accurate, 
cheaper, and more reliable). Hence the first design steps are taken almost 
unconsciously. The engineer, not without justification, forgets about the first 
two steps and believes that the control system design begins at the point that it 
is almost over. 

If today's process and control hardware are not changed much from 
yesterday's, why can't one simply use yesterday's' control law? Oftentimes, one 
can. Most control laws are probably designed by this very method: Take 
yesterday's control law and modify its parameters to account for the difference 
between yesterday's hardware and to day's. 

But the procedure is not always satisfactory. The new process may not be 
sufficiently similar to the old one. The new control hardware, although 
improved (say digital instead of analog) may have different characteristics that 
cannot be overlooked. And finally, the customer may demand a higher level of 
performance than yesterday's system was able to deliver. 
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1.3 CONTROL THEORY BACKGROUND 

This book is concerned with the third and final stage of control system 
engineering-the stage in which the dynamic characteristics of the compensator 
are designed, after the control concept has been established, after the hardware 
(sensors and actuators) have been selected, after the performance requirements 
have been determined. 

This aspect of control system engineering is generally called control 
" theory." The term " theory" is appropriate for several reasons. First, it is 
essentially mathematical in content, and mathematics is often equated to theory. 
Second, it deals not with the actual devices but with their idealized (theoretical, 
i.e., mathematical) models. Third, it constitutes a systematic body of knowl
edge : theorems, design algorithms, graphical methods, and the like which can 
be applied to control systems independent of the specific technology used in the 
practical implementation. 

The history of control theory can be conveniently divided into three 
periods. The first, starting in prehistory and ending in the early 1940s, may be 
termed the primitive period. This was followed by a classical period, lasting 
scarcely 20 years, and finally came the modern period which includes the 
content of this book. 

The term primitive is used here not in a pejorative sense, but rather in the 
sense that the theory consisted of a collection of analyses of specific processes 
by mathematical methods appropriate to, and often invented to deal with, the 
specific processes, rather than an organized body of knowledge that characterizes 
the classical and the modern period . 

Although feedback principles can be recognized in the technology of the 
Middle Ages and earlier, the intentional use of feedback to improve the per
formance of dynamic systems was started at around the beginning of the 
industrial revolution in the late 18th and early 19th centuries. The benchmark 
development was the ball-governor invented by James Watt to control the speed 
of his steam engine. Throughout the first half of the 19th century, engineers and 
"mechanics" were inventing improved governors. The theoretical principles 
that describe their operation were studied by such luminaries of 18th and 19th 
century mathematical physics as Huygens,[I] Hooke,[2] Airy,[3] and Max
well.[ 4] By the mid 19th century it was understood that the stability of a dynamic 
system was determined by the location of the roots of the algebraic characteristic 
equation. Routh[5] in his Adams Prize Essay of 1877 invented the stability 
algorithm that bears his name. 

Mathematical problems that had arisen in the stability of feedback control 
systems (as well as in other dynamic systems including celestial mechanics) 
occupied the attention of early 20th century mathematicians Poincare and 
Liapunov, both of whom made important contributions that have yet to be 
superseded. 

Development of the gyroscope as a practical navigation instrument during 
the first quarter of the 20th century led to the development of a variety of 
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autopilots for aircraft (and also for ships). Theoretical problems of stabilizing 
these systems and improving their performance engaged various mathematicians 
of the period. Notable among them was N. Minorsky[6] whose mimeographed 
notes on nonlinear systems was virtually the only text on the subject before 
1950. 

The classical period of control theory begins during World War II in the 
Radiation Laboratory of the Massachusetts Institute of Technology. (See Note 
l.t.) The personnel of the Radiation Laboratory included a number of 
engineers, physicists, and mathematicians concerned with solving engineering 
problems that arose in the war effort, including radar and advanced fire control 
systems. The laboratory that was assigned problems in control systems included 
individuals knowledgeable in the frequency response methods, developed by 
people such as Nyquist and Bode for communication systems, as well as by 
engineers familiar with other techniques. Working together, they evolved a 
systematic control theory which is not tied to any particular application. Use of 
frequency-domain (Laplace transform) methods made possible the representa
tion of a process by its transfer function and thus permitted a visualization of 
the interaction of the various subsystems in a complex system by the intercon
nection of the transfer functions in the block diagram. The block diagram 
contributed perhaps as much as any other factor to the development of control 
theory as a distinct discipline. Now it was possible to study the dynamic behavior 
of a hypothetical system by manipulating and combining the black boxes in the 
block diagram without having to know what goes on inside the boxes. 

The classical period of control theory, characterized by frequency-domain 
analysis, is still going strong, and is now in a "neoclassical" phase-with the 
development of various sophisticated techniques for multivariable systems. But 
concurrent with it is the modern period, which began in the late 1950s and early 
1960s. 

State-space methods are the cornerstone of modern control theory. The 
essential feature of state-space methods is the characterization of the processes 
of interest by differential equations instead of transfer functions. This may seem 
like a throwback to the earlier, primitive, period where differential equations 
also constituted the means of representing the behavior of dynamic processes. 
But in the earlier period the processes were: 'simple enough to be characterized 
by a single differential equation of fairly low order. In the modern approach the 
processes are characterized by systems of coupled, first-order differential 
equations. In principle there is no limit to the order (i.e., the number of 
independent first-order differential equations) and in practice the only limit to 
the order is the availability of computer software capable of performing the 
required calculations reliably. 

Although the roots of modern control theory have their origins in the early 
20th century, in actuality they are intertwined with the concurrent development 
of computers. A digital computer is all but essential for performing the 
calculations that must be done in a typical application. Only in the simplest 
examples can the calculations be performed without a digital computer. The 
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fact that calculations for simple applications can be done manually can some
times be misleading, because the design for such simple applications can 
usually be achieved more ctllciently by classical frequency-domain methods. 
State-space methods prove their mettle in applications which are intractable by 
classical methods. 

Digital computers of even modest capability can crunch out the numerical 
calculations of the design for a complicated system in a few seconds or minutes. 
It is thus very easy to arrive at a design which is correct numerically but not 
practical. (There is no inherent reason why this can't also happen with a design 
based on classical methods. But because of the labor entailed in achieving the 
design, the engineer is more likely to check intermediate results for reasonabil
ity rather than to wait for the final design to emerge as a unit.) The realization 
that there may be practical problems with a computer-aided design ought to 
make the designer especially cautious: both in making certain that the computer 
has good data to begin with, i.e., a proper model of the process to be controlled, 
and in testing the proposed design by all appropriate means including simu
lation. 

1.4 SCOPE AND ORGANIZATION OF THIS BOOK 

The vision of the early pioneers of modern control theory was that it would 
provide a single, unified framework for all feedback control systems: linear and 
nonlinear, continuous-time, and discrete-time, fixed and time-varying. That 
vision is a chimera. A few results of broad generality have been achieved, but 
for the most part the vaunted general theory has been achieved only for linear 
systems, and furthermore, the required calculations can be performed only for 
time-invariant, linear systems. This is nevertheless no mean accomplishment, 
because the theory that does exist is still able to cope with any design problem 
that the classical theory can cope with, because the frequency-domain approach 
is entirely predicated on linear, time-invariant models. 

Being an introduction to state-space methods, this book does not go beyond 
systems that can be characterized by linear, time-invariant models. (The sole 
exception is a missile guidance system which has time-varying dynamics that 
are so simple that they can easily be handled without the need for any special 
theory.) 

The first few chapters are intended as an introduction to the use of 
state-space methods for characterizing the behavior of dynamic systems. In 
particular, in Chap. 2, we learn how linear state-space models can be set up for 
various kinds of physical processes, and in Chap. 3 we study the basic 
properties of such models: such things as the state-transition matrix, the 
resolvent, the characteristic equation. Although the properties of linear, time
invariant systems can be gleaned without use of the Laplace transform, they are 
more readily obtained through its use. Since most readers of this book are 
familiar with the basic theory of Laplace transforms, we see no reason for not 
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making use of them. We also see no reason for abandoning classical, frequency
domain methods and the insights they provide. Hence, in Chap. 4, we provide 
a review of frequency-domain analysis, emph3si7.ing where rossible the connec
tion with state-space methods. Notwithstanding the length of Chap. 4, it is still 
only an overview; the reader is assumed to be already somewhat familiar with 
the material or prepared to consult one of the standard textbooks in the field to 
gain a more comprehensive understanding. 

Controllability and observability theory, one of the earliest unique achieve
ments of modern control theory, is the subject of Chap. 5. 

The first five chapters set the stage for the use of state-space methods for 
control system design. These are followed by three which show how state-space 
methods can be used in design. Chapter 6 is concerned with design of 
controllers that use " full-state" feedback , i.e., design under the assumption that 
all of the state variables are accessible to measurement, if needed [or the control 
law. This is an unrealistic assumption, and Chap. 7 shows how to design 
observers which are dynamic systems, the inputs to which are the measured 
inputs and outputs of the process under control. The state of the observer is an 
estimate of the state of the process under control. Chapter 8, which concludes 
the three introductory chapters on design, shows how the full-state feedback 
control of Chap. 6 can be combined with the observer of Chap. 7, to finally 
provide the design of a compensator which is typicaiiy the goai 01 the cUlltrui 
system designer. Chapter 8 is also concerned with the robustness of com
pensators designed by the methods of these three chapters: it aduresses the 
question of how well the compensator will work if the mathematical model used 
in the design is not exactly matched to the actual physical process. 

Although the methods of Chaps. 6 through 8 constitute a set of procedures 
for designing compensators for controllable and observable processes, they do 
not of themselves arrive at optimum designs. Optimization of these designs is 
the subject of Chaps. 9 through Il. 

In Chap. 9, we learn how to optimize the gain matrix of the full-state 
control law by choosing it to minimize a quadratic integral performance criterion. 
The weighting matrices in the integral are putatively chosen to correspond, at 
least approximately, to physical performance requirements. Computing the 
gain matrix is shown to entail solving for the appropriate (matrix) root of a 
matrix quadratic equation which has come to be known as the algebraic 
Riccali equation. Numerical solution of this equation is a job for the digital 
computer. 

The selection of the optimum gain for the observer is formulated as a 
statistical problem: to find the observer gain matrix that minimizes the estima
tion error variance under the hypothesis that the process is excited by white 
noise with a known spectral density matrix and that the observations are 
corrupted with white noise also with known spectral density. The resulting 
observer gain matrix is also the solution to an algebraic Riccati equation which 
has a structure quite similar to that of the algebraic Riccati equation for the 
optimum controller. The theory for the optimum observer, also known as a 
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Kalman filler, is developed in Chap. II. A minimal overview of the statistical 
prerequisites to Chap. II is presented in Chap. 10. 

Matrices and vectors are the very language of state-space methods. By now 
they are so commonplace in every branch of technology, that we can hardly 
imagine a reader unfamiliar with them. Nevertheless we have included an 
appendix in which the basic facts about matrices are summarized, without an 
attempt at proofs. If the reader wants proofs, there are innumerable texts 
available for that purpose. 

One of the objectives of this book has been to illustrate the use of 
state-space methods in various aspects of system analysis and design by means 
of examples that have some relationship to real-world applications. In line with 
that objective a number of "running examples" are provided. Each example 
occurs in several places in the text: to exemplify development of the model of a 
system an example may appear in Chap. 2. The same example may appear 
again to illustrate the calculation of open-loop response, and in various aspects 
of control system design. References to earlier and later appearances of the 
same example are given each time an example reappears. In addition, an index 
of the examples is given at the end of the book. By use of this index, the reader 
should be able to locate all references to an example and thereby trace the 
course of its development through the book. Thus each example constitutes 
something of a "case study." Some of the examples are the subject of home
work problems: the reader thereby actively participates in the development of 
the case study. 

NOTES 

Note 1.1 Historical antecedents 

Before World War II, feedback control systems were largely mechanical. The feedback paths, 
not generally identified as such, were implemented by means of ingenious combinations of springs, 
dashpots, pneumatic devices, and similar gadgets. The electrical components that were used were 
magnets and perhaps resi sto rs. Almost every new control system represented a genuine invention 
and many were in fact patented. Nothwithstanding the ingenuity that these inventions required[7, 8] 
the variety of functions that could be achieved with these devices was (and still is) extremely 
limited. Thus a mathematical theory of the function that a feedback compensator must perform 
would have been of little practical value, since no means of implementing the function was 
available. Electronic technology of the era was represented by large vacuum tubes enclosed in 
fragile glass envelopes, massive inductors and capacitors, and similar bulky and unreliable hard
ware. A few electrical components were used in the 1920s and 1930s,[9] but a control system 
designer proposing to use "electronics" to implement the feedback loops of a control system would 
very likely have been the object of ridicule. I3eforc World War II, the only industry with any serious 
interest in electronics was the communications industry-radio and telephony. 

Electronic technology underwent a major transformation during the war. Electronic com
ponents (i.e., tubes) became smaller and more reliable, and the functions that electronic systems 
were able to perform became more sophisticated as a result of concerted efforts by scientists and 
engineers and mathematicians working together in the war effort. A notable wartime development, 
among others, was radar. 
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At the Radiation Laboratory, established at the Massachusetts Institute of Technology in 1940 
to aid in the war effort, one of the technical groups was concerned with control
"servomechanism "-problems. Members of the group included physicists, communication 
engineers, mechanical engineers, mathematicians, and technicians. Each member brought different 
insights to the problems assigned to the group. The resulting collaboration laid the groundwork for 
the second, classical phase of control technology, in which the frequency-domain methods of 
communication engineering (transfer function analysis, Bode and Nyquist diagrams, and the like) 
were applied to the analysis and design of control systems. 

After the war, the results of the work at the Radiation Laboratory were published in a 
multivolume series. The volume by James, Nichols, and Phillips[IO] constituted the exposition of 
the classical frequency-domain methodology developed at that laboratory. . 

With the war concluded, research in control theory was continued along these lines at a 
number of universities. One of the centers of research in control theory was at Columbia University. 
Under the leadership of John R. Ragazzini, much of the classical (i.e., Z transform) theory for 
sampled-data systems was developed there during the decade of the 1950s. Into the hospitable 
environment that Ragazzini fostered at Columbia was welcomed an iconoclastic young graduate 
student who preached against the frequency-domain methods and taught a new doctrine: state-space. 
That student was Rudolf E. Kalman . 

Kalman argued with increasing success that the frequency-domain methods developed fOf 
communication systems were not the most appropriate for control systems: the methods were not 
readily adaptable to time-varying and nonlinear systems and even for linear, time-invariant systems 
they dealt with the wrong problems. Moreover, Kalman taught, the classical methods of analysis 
and design obscured the physical nature of the dynamic variables which the state-space methods 
preserved. 

The ranks of adherents to Kalman's state-space approach swelled during the decade of the 
1960s and the modern era of control theory thus became firmly established. But not everyone was 
persuaded that frequency-domain methods had been superseded. Debates, sometimes acrimonious, 
over the merits of the two approaches, which started then, continue unto the present time. 
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CHAPTER 

TWO 

STATE-SPACE REPRESENTATION 
OF DYNAMIC SYSTEMS 

2.1 MATHEMATICAL MODELS 

The most important task confronting the control system analyst is developing a 
mathematical model of the process of interest. In many situations the essence of 
the analytical design problem is in the modeling: once that is done the rest of 
the analysis falls quickly into place. 

The control system engineer is often required to deal with a system having 
a number of subsystems the physical principles of which depend on entirely 
different types of physical laws . A chemical process, for example, may comprise 
a chemical reactor, the dynamics of which are the subject of chemical kinetic 
theory, a heat exchanger which is governed by thermodynamic principles, and 
various valves and motors the dynamics of which depend on the physics of 
mechanical and electrical systems. The control of a typical aircraft entails an 
understanding of the interaction between the airframe governed by principles of 
aerodynamics and structural dynamics, the actuators which are frequently 
hydraulic or electrical, and the sensors (gyroscopes and accelerometers) which 
operate under laws of rigid body dynamics . And, if the human pilot of the 
aircraft is to be considered, aspects of physiology and psychology enter into the 
analysis. 

One of the attractions of control system engineering is its interdisciplinary 
content. The control system engineer sees the" big picture" in the challenge to 
harmonize the operation of a number of interconnected subsystems, each of 
which operates under a different set of laws. But at the same time the control 
system engineer is almost totally dependent on the other disciplines. It is simply 
impossible to gain a sufficient understanding of the details of each of the 

14 
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subsystcms in a typical control process without the assistance of individuals 
having an intimate understanding of these subsystems. These individuals often 
have the knowledge that the control system analyst requires, but are not 
accustomed to expressing it in the form that the analyst would like to have it. 
The analyst must be able to translate the information he receives from others 
into the form he needs for his work. 

The analyst needs mathematical models of the processes in the system under 
study: equations and formulas that predict how the various devices will behave 
in response to the inputs to these devices. From the viewpoint of the systems 
analyst each device is the proverbial "black box," whose operation is governed 
by appropriate mathematical models. The behavior of the overall process is 
studied and controlled by studying the interaction of these black boxes. 

There are two modeling and analysis approaches in customary use for 
linear systems: the transfer-function or frequency-domain approach, to be 
di~cussed in Chap. 4, and the state-space approach which is the subject of the 
present chapter. 

The feature of the state-space approach that sets it apart from the 
frequency-domain approach is the representation of the processes under 
examination by systems of first-order differential equations. This method of 
representation may appear novel to the engineer who has become accustomed 
to thinking in terms of transfer functions, but it is not at all a new way of 
looking at dynamic systems. The state-space is the mode of representation of a 
dynamic system that would be most natural to the mathematician or the 
physicist. Were it not that much of classical control theory was developed by 
electrical engineers, it is arguable that the state-space approach would have 
been in use much sooner. 

State-space methods were introduced to the United States engineering 
community through the efforts of a small number of mathematically oriented 
engineers and applied mathematicians during the late 1950s and early 1960s. 
The spiritual father of much of this activity was Professor Solomon Lefschetz 
who organized a mathematical systems research group at the Research Institute 
of Advanced Studies (RIAS) in Baltimore, Md. Lefschetz, already a world
famous mathematician, brought together a number of exceptionally talented 
engineers and mathematicians committed to the development of mathematical 
control theory. At Columbia University another group, under the aegis of 
Professor J. R. Ragazzini, and including R. E. Kalman and J. E. Bertram among 
others, was also at work developing the foundations of modern control theory. 

In the Soviet Union there was less of an emphasis on transfer functions 
than on differential equations. Accordingly, many of the earliest uses of 
state-space methods were made by investigators in the Soviet Union. Much of 
the activity in the United States during the late 1950s entailed translation of the 
latest Russian papers into English. The Moscow location of the First Congress 
of the International Federation of Automatic Control (IFAC) in 1960 was 
entirely appropriate, and provided the first major opportunity for investigators 
from all over the world to meet and exchange ideas. Although the IF AC 
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congress was concerned with components and applications as well as with 
control theory, much of the interest of the meeting was on the newest theoretical 
developments. 

2.2 PHYSICAL NOTION OF SYSTEM STATE 

The notion of the state of a dynamic system is a fundamental notion in physics. 
The basic premise of newtonian dynamics is that the future evolution of a 
dynamic process is entirely determined by its present state . Indeed we might 
consider this premise as the basis of an abstract definition of the state of a 
dynamic system: 

The state of a dynamic system is a set of physical quantities, the specifica
tion of which (in the absence of external excitation) completely determines 
the evolution of the system. 

The difficulty with this definition, as well as its major advantage, is that the 
specific physical quantities that define the system state are not unique, although 
their number (called the system order) is unique. In many situations there is an 
obvious choice of the variables (state variables ) to define the system state, but 
there are also many cases in which the choice of state variables is by no means 
obvious. 

Newton invented calculus as a means of characterizing the behavior of 
dynamic systems, and his method continues in use to this very day. In 
particular, behavior of dynamic systems is represented by systems of ordinary 
differential equations. The differential equations are sa id to constitute a mathe
maticaL modeL of the physical process. We can predict how the physical process 
will behave by solving the differential equations that are used to model the 
process. 

In order to obtain a solution to a system of ordinary differential equations, 
it is necessary to specify a set of initial conditions. The number of initial 
conditions that must be specified defines the order of the system . When the 
differential equations constitute the mathematical model of a physical system, 
the initial conditions needed to solve the differential equations correspond to 
physical quantities needed to predict the future behavior of the system. It thus 
follows that the initial conditions and physical state variables are equ al in 
number. 

In analysis of dynamic systems such as mechanical systems, electric 
networks, etc. the differential equations typically relate the dynamic variables 
and their time derivatives of various orders. In the state-space approach, all the 
differential equations in the mathematical model of a system are first-order 
equations: only the dynamic variables and their first derivatives (with respect to 
time) appear in the differential equations. Since only one initial condition is 
needed to specify the solution of a first-order equation, it follows that the 
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number of first-order differential equations in the mathematical model is equal 
to the order of the corresponding system. 

The dynamic variables that appear in the system of first-order equations are 
called the state variables. From the foregoing discussion, it should be clear that 
the number of state variables in the model of a physical process is unique, 
although the identity of these variables may not be unique. A few familiar 
examples serve to illustrate these points. 

Example 2A Mass acted upon by friction and spring forces The mechanical system consisting of 
a mass which is acted upon by the forces of fricti€ln and a spring is a paradigm of a 
second-order dynamic process which one encounters time and again in control processes. 

Consider an object of mass M moving in a line. In accordance with Newton's law of 
motion, the acceleration of the object is the total force I acting on the object divided by the 

mass. 

(2A.1) 

where the direction of I is in the direction of x. We assume that the force I is the sum of two 
forces, namely a friction force I, and a spring force 12' Both of these forces physically tend to 
resist the motion of the object. The friction force tends to resist the velocity: there is no friction 
force unless the velocity is nonzero. The spring force, on the other hand, is proportional to the 
amount that the spring has been compressed, which is equal to the amount that the object has 

been displaced. Thus 

1=1,+12 

where I, = -i3(~~) 
12 = -K(X) 

Thus 

(2A.2) 

A more familiar form of (2A.2) is the second-order differential equation 

d2
x (dX) M-2 + i3 - + K(X) = 0 

dt dt 
(2A.3) 

But (2A.2) is a form more appropriate for the state-space representation. Differential equation 
(2A.2) or its equivalent (2A.3) is a second-order differential equation and its solution requires 
two initial conditions: xo, the initial position, and xo, the initial velocity. 

To obtain a state-space representation, we need two state variables in terms of which the 
dynamics of (2A.2) can be expressed as two first-order differential equations. The obvious 
choice of variables in this case are the displacement x and the velocity v = dx/ dt. The two 
first-order equations for the process in this case are the equation by which velocity is defined 

dx 
-= v 
dt 

and (2A.2) expressed in terms of x and v. Since d 2x/dt2 
= dv/dt, (2A.2) becomes 

dv 
- = -[i3(v) + K(X}]/ M 
dt 

(2A.4) 

(2A.S) 
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Thus (2A.4) and (2A.S) constitut e a sys tem or Iwo first -order dille r'ent ia l equations in 

tc rm s or the statc va riabl es x and v. 
II' we wish to control th e motion or the object we would include an additional force ;;, 

external to the system which would h e <rdded to the right-hand side of (2A.5) 

dv 
-- co - [,I:J( u) + K(X)l! M -I- ,ft,! M (2A .A) 
cit 

How s uch a con trol force would be produced is a mattcr or concern to the control syste m 

des ig ncr. But it is not considered in the present example. 

In a practical system both the fri ction force and the s pring force arc nonlinear fun ctions 

of their rcspective variables and a realistic prediction of thc system hehJvior would cntail 

solution of (2A.4) and (2A.S) in which [J(v) and K(X) arc lIon/incar functions of th e ir 

argumcnts . As an approximation, howeve r, it may be permi ss ible to trcat these l"trncti{ln s as 

being linea r 

(t1x) dx 
,I:J d; = 1Jd; 

K(X) = Kx 

where /I and K are co nsta nts. Often,I:J( ) a nd K( ) arc treated as linear functions ror purposc, 

of co ntrol sy, tem design, but the accurate nonlinear functions are used in cV<ll uating how the 

dcs ig n performs. 

A block diagram rcpresentation of the differential equations (2A.4) a nd (21\.6), in 

accordance with the discussion or Sec. 2.3, is shown in Fig . 2. 1. 

Example 2B Electric motor with ioertia load One or the mos t common uses of feedback control 

i, to position an inertia load using an c lectric moto r. (See Fig . 2.2.) The inertia load m"y 

consis t of a very largc , mass ive object s uch as a radar antenna or a small object s uc h as a 
precis ion instrument. An important aspect of the control sys tem des ign is the se lection of a 

suitable motor', capable of achieving the dcsired dynamic response and suited to the objec tive 

in cost, s ize, weight, etc. An electric motor is a device that co nverts electrical cnergy (input) to 

Illechanical energy (output). The electro-mechanical energy transducer relations are idealiz 

ati ons of I:araday's law of induction and Ampere's law for the rorcc pl'Odu ccd on a conductor 

mo ving in a magneti c ficld , In parti cular. under ideal circumstances th e torque developed at 

th e shaft of a motor is proportional to the input current to the Illotor; the induccd emf' u 
(" back emr") is proportional to the speed w or rotation 

10 

Spring 
force 

Velocity 

x 

Displacement 

(213.1 ) 

(21l_2) 

Figure 2.1 flIock diagram representing motion of mass with friction and spring rcaction forces. 
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Figure 2.2 DC motor driving 
inertia load. 

The electrical power Pe input to the motor is the product of the current and the induced 
emf 

Pe = vi = K2wr/ K, (2B.3) 

The mechanical output power is the product of the torque and the angular velocity 

Pm = UJT 

Thus, from (2B.3) 

K2 
Pe = KI Pm 

If the energy conversion is 100 percent efficient, then 

K, = K2 = K 

If the energy-conversion efficiency is less than 100 percent then K2/ K, > I. 
To completely specify the behavior of the system we need the relationships between the 

input voltage e and the induced emf, and between the torque and the angular velocity of the 
motor. These are given by 

e - v = Ri (Ohm's law) 

where R is the electrical resistance of the motor armature, and 

dw 
r=J

dl 

where J is the inertia of the load. From (2B.I), (2B.5), and (2B.4) 

dw K, 
J-= K,i = -(e - v) 

dt R 

On using (2B.2) this becomes 

dw K, K,K2 J-=-e---w 
dt R R 

or 
dw K,K2 K, 
-=---w+-e 
dt JR JR 

(2B.4) 

(2B.5) 

(2B.6) 

(2B.7) 

which is a first-order equation with the angular velocity w as the state variable and with e 
serving as the external control input. 

The first-order model of (2B.7) is suitable for control of the speed of the shaft rotation. 
When the position 0 of the shaft carrying the inertia J is also of concern, we must add the 
differential equation 

dO 
-=lJ) 

dt 
(2B.8) 

This and (2B.7) together constitute a second-order system. 
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~----~A--ng-:-l-ar-"~ 
velocity angle 

Figure 2.3 Block diagram representing dynamics of dc motor driving inertia load. 

Equations (2B.7) and (2B.8) can be arranged in the vector-matrix form 

A block-diagram representation of the differential equations that represent this system is 
given in Fig. 2.3. 

Example 2C Electrical network and its thermal analog It is not generally required to design 
feedback control systems for electrical networks comprising resistors, capacitors, and inductors. 
But such networks often are mathematically analogous to mechanical systems which one does 
desire to control, and an engineer experienced in the analysis of electrical networks might be 
more comfortable with the latter than with the mechanical systems they represent. 

One class of mechanical system which is analogous to an electrical network is a thermal 
conduction system. Electrical voltages are analogous to temperatures and currents are 
analogous to heat flow ra tes . The paths of conduction of heat between various points in the 
system are represented by resistors; the mass storage of heat in various bodies is represented 
by capacitances; the input of heat by current sources; and fixed temperatures at the boundaries 
of the system by voltage sources. 

Table 2C.1 summarizes the thermal quantities and their electrical analogs . 

As an illustration of the use of electrical analogs of thermal systems, consider the system 
shown in Fig. 2.4 consisting of two masses of temperatures T, and T2 embedded in a thermally 

Table 2C.l Electrical analogs of thermal systems 

Thermal system 

Quantity 

Temperature 
Heat flux 
Thermal resistivity 
Thermal capacity 

Conduction equation 

Storage equation 

Symbol 

T 
q 
R 
C 

I 

Unit 

deg 

calls 
deg · slcal 
ca\jdeg 

q = R(T2 - T,) 

dT =.!L 
dl C 

Electrical system 

Quantity 

Voltage 
Current 
Resistance 
Capacitance 

Symbol 

v 

R 
C 

dv 
-=-i 
dl C 

Unit 

volt 
ampere 
ohm 
farad 
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, Figure 2.4 Thermal system with two 
capacitances. 

insulating medium contained in a metal container which, because of its high thermal 
conductivity, may be assumed to have a constant temperature To. The temperatures TI and T2 
of the masses are to be controlled by controlling the temperature To of the container. 

An electrical analog of the system is shown in Fig. 2.5. The capacitors C, and C2 

represent the heat capacities of the masses; the resistor R3 represents the path of heat flow 
from mass I to mass 2; R, and R2 represent the heat flow path from these masses to the metal 
container. 

The differential equations governing the thermal dynamics of the mechanical system are 
the same as the differential equations of the electrical system, which can be obtained by 
various standard methods. By use of nodal analysis, for example, it is determined that 

(2C.1) 

The appropriate state variables for the process are the capacitor voltages v, and v2 . The 
temperature of the case is represented by a voltage source eo which is the input variable to the 
process. Thus the differential equations of the process are 

(2C.2) 

RI 
R2 

+ 

VI V2 
eo 

R3 

CI C2 

Figure 2.5 Electrical analog of thermal system of Fig. 2.4. 
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The foregoing examples are typical of the general form of the dynamic 
equations of a dynamic process. The state variables of a process of order k are 
designated by XI, X 2, . .• , Xk and the external inputs by u" U2,' • . , U/ 

(2.1 ) 

These equations express the time-derivatives of each of the state variables as 
general functions of all the state variables, inputs, and (possibly) time. The dot 
over a variable is Newton's notation for the derivative with respect to time. 

To simplify the notation the state variables XI, X 2 , • •• , Xk and control 
variables U" U2, •.. , u/ are collected in vectors 

(2.2) 

called the state vector and the input vector, respectively. These are vectors in the 
mathematical sense and not necessarily in the physical sense. The components 
of a physical vector are usually projections of a physical quantity (e.g., force, 
velocity) along a set of reference axes. But the components of the state vector of 
a dynamic system generally do not have this interpretation and need not even 
represent the same kind of physical quantities: As our examples show, position 
and velocity are typical components of a mathematical state vector. 

In some books the state vector is printed in a special typeface such as 
boldface x, to distinguish it from a scalar variable x. We have chosen not to use 
any special typeface for the state vector since there is rarely any possibility of 
confusing the entire state vector x with one of its components Xi (always written 
with a SUbscript). In subsequent chapters we will make use of a boldface symbol 
x to denote the metastate of a system, which is the vector comprising the state 
(or error) vector, concatenated with the exogenous state vector Xo as explained 
in Chap. 5 and later. 

Using vector notation, the set of differential equations (2.1) that defines a 
general process can be written compactly as the single vector differential 
equation 

dx x = - =f(x u t) 
dt " 

(2 .3) 
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wherc f(x, u, t) is understood to be a k-dimensional vector·valued function of 
k + l + I arguments . When time t does not appear explicitly in any of the 
functions /; in (2.1), i.e., in the vector f of (2.3), the system is said to be 
time-invariant. If (2.3) is an accurate model of a physical process, we would 
expect it to be time-invariant, since we do not have physical laws that change 
with time. In many situations, however, the differential equations represented 
by (2.3) are only an approximate model of the physical world, either because a 
more accurate model is not known, or because it is too complicated to be useful 
in the intended application. Very often such approximate models are time
varying. 

An exact model of a physical process is usually nonlinear. But fortunately 
many processes can be adequately approximated by linear models over a 
significant range of operation. In the state-space model of a linear process, the 
general differential equations of (2.1) take the special form: 

(2.4) 

In vector notation, using the definitions of the state and control vectors as 
defined in (2.2), the linear dynamic model of (2.4) is written 

dx x = dt = A(t)x + B(t)u (2.S) 

where A(t) and B(t) are matrices given by 

l
atl(t) ... a1k(t)l 

A(t) = a2l(t)··· a2k(t) 
. . .. , .. . . ... . . 
akl (t) ... akk( t) 

(2.6) 

It is noted that the matrix A(t) is always a square (k by k) matrix, but that 
the matrix B(t) need not be square. In most processes of interest the number l 
of inputs is smaller than the number of state variables: B(t) is a tall , thin 
matrix. Often there is only one input and the matrix B(t) is only one column 
wide. 

When the system is time-invariant, none of the elements in the matrices A 
and B depend upon time. Most of this book is concerned with linear, time-
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invariant processes, having the dynamic equations 

x = Ax + Bu 

where A and B are constant matrices. 

(2.7) 

Although the concept of the state of a system is fundamental, there are 
many situations in which one is not interested in the state directly, but only in 
its effect on the system output vector yet) 

(2.8) 

for a system having m outputs. In a linear system the output vector is assumed 
to be a linear combination of the state and the input 

yet) = C(t)x(t) + D(I)u(t) (2.9) 

where C(t) is an m x k matrix and D(t) is an m x I matrix. If the system is 
time-invariant, C(I) and D(t) are constant matrices. 

The outputs of a system are generally those quantities which can be 
observed, i.e., measured by means of suitable sensors. Accordingly, the output 
vector is called the observation vector and (2.9) is called the observation 
equation. 

The presence of the matrix D in (2.9) means that there is a direct 
connection between the input u(t) and the output yet), without the intervention 
of the state x(t). Although there is no general reason for the matrix D to be 
absent in a practical application, it turns out that it is absent in the overwhelm
ing majority of applications. This is fortunate, because the presence of D 
increases the complexity of much of the theory. Thus most of our development 
will rest on the assumption that D = O. 

The input vector u in (2.7) represents the assemblage of all physical 
quantities that affect the behavior of the state. From the control system design 
standpoint, however, the inputs are of two types: 

Control inputs, produced intentionally by the operation of the control system, 
and 

" Exogenous" inputs, present in the environment and not subject to control 
within the system. 

It is customary to reserve the symbol u for the control inputs and to use another 
symbol for the exogenous inputs. (The word" exogenous," widely used in the 
field of economics and other social sciences, is gaining currency in the field of 
control theory.) In this book we shall find it convenient to represent the 
exogenous inputs by the vector Xo. The use of the letter" x" suggests that the 
exogenous inputs are state variables and so they may be regarded: Xo may be 
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regarded as the state of the environment. (Later in the book we shall concatenate 
the state x of the system to be controlled with the state Xo of the environment 
into a metastate of the overall process.) 

Thus, separating the input u of (2.7) into a control input and an exogenous 
input, (2.7) becomes 

x = Ax + Bu + Exo (2.10) 

which, together with (2.9) will s'erve as the general representation of a linear 
system. 

2.3 BLOCK-DIAGRAM REPRESENTATIONS 

System engineers often find it helpful to visualize the relationships between 
dynamic variables and subsystems of a system by means of block diagrams. 
Each subsystem is represented by a geometric figure (such as a rectangle, a 
circle, a triangle, etc.) and lines with arrows on them show the inputs and the 
outputs. For many systems, these block diagrams are more expressive than the 
mathematical equations to which they correspond. 

The relationships between the variables in a linear system (2.4) can be 
expressed using only three kinds of elementary subsystems: 

Integrators, represented by triangles 
Summers, represented by circles, and 
Gain elements, represented by rectangular or square boxes as shown in Fig. 2.6. 

An integrator is a block-diagram element whose output is the integral of the 
input; put in other words, it is the element whose input is the derivative of the 
output. 

(b) 

__ ~x~~~~r ____ k_(l_)~~ 

(c) 
Figure 2.6 Elements used in block-diagram representation of 
linear systems. (a) Integrator; (b) Summer; (c) Gain element. 
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A summer is a block-diagram element whose output is the sum of all its 
inputs. 

A gain element is a block-diagram element whose output is proportional to 
its input. The constant of proportionality, which may be time-varying, is placed 
inside the box (when space permits) or adjacent to it. 

Note that the integrator and the gain element are single-input elements; the 
summer, on the other hand, always has at least two inputs. 

A general block diagram for a second-order system (k = 2) with two 
external inputs UI and U2 is shown in Fig. 2.7. Two integrators are needed, the 
outputs of which are XI and X 2, and the inputs to which are XI and x2, 

respectively. From the general form of the differential equations (2.4) these are 
given by 

XI = allx l + al2x2 + blluj + bl2 U 2 

X2 = a21xI + a22x2 + b21 uI + bn U 2 

which are the relationships expressed by the outputs of the two summers shown 
in Fig. 2.7. 

The same technique applies in higher-order systems. If the A matrix has 
many nonzero terms, the diagram can look like a plate of spaghetti and 
meatballs. In most practical cases, however, the A matrix is fairly sparse, and 

Figure 2.7 Block diagram of general second-order linear system. 
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with some attention to layout it is possible to draw a block diagram with a 
minimum of crossed lines. 

To simplify the appearance of the block-diagram it is sometimes cC)llvenient 
to use redundant summers. This is shown in Fig. 2.7. Instead of using two 
summers, one feeding another, in front of each integrator we could have drawn 
the diagram with only one summer with four inputs in front of each integrator. 
But the diagram as shown has a neater appearance. Another technique to 
simplify the appearance of a block diagram is to show a sign reversal by means 
of a minus sign adjacent to the arrow leading into a summer instead of a gain 
element with a gain of -I. This usage is illustrated in Figs. 2.1 and 2.3 of the 
foregoing examples. 

Although there are several international standards for block-diagram sym
bols, these standards are rarely adhered to in technical papers and books. The 
differences between the symbols used by various authors, however, are not large 
and are not likely to cause the reader any confusion. 

The following examples illustrate the use of matrices and block diagrams to 
represent the dynamics of various processes. 

Often it is convenient to express relationships between vector quantities by 
means of block diagrams. The block-diagram symbols of Fig. 2.6 can also serve 
to designate operations on vectors. In particular, when the inputto an integrator 
of Fig. 2.6(a) is a vector quantity, the output is a vector each component of 
which is the integral of the corresponding input. The summer of Fig. 2.6( b) 
represents a vector summer, and the gain element box of Fig. 2.6(c) represents 
a matrix. In the last case, the matrix need not be square and the dimension of 
the vector of outputs from the box need not equal the dimension of the vector 

Control 
input vector 

u 

Xo 
Exogenous 
input vector 

D 

Figure 2.8 Block-diagram representation of general linear system. 
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of inputs. Using this mode of representation, the block diagram of Fig. 2.8 
represents the general system given by (2.9) and (2.10). 

Example 2D Hydraulically actuated t~Dk gun turret The control of a hydraulically actuated 
gun turret in an experimental tank has been studied by Loh, Cheok, and 8eck.[I] The 
linearized dynamic model they used for each axis (elevation, azimuth) is given by 

where XI = Ii = t4rrc;t angle 

O=w 

w=p+d, 

. Km Km 
P = -a p + - q - - w + d 

m I J P 

X 2 = w = tu~~ei angular rate 
X) = P = angular acceleration produced by hydraulic drive 
X. = q = hydraulic servo valve displacement 

u = control input to servo valve 
Km = servo motor gain 

J = turret inertia 
am = motor natural frequency 
Kv = servo valve gain 

K"p = differential pressure feedback coefficient 

(20.l) 

The quantities d" dp, and dq represent disturbances, including effects of nonlinearities not 
accounted for by the linearized model (20.1). 

With the state variable definitions given above, the matrices of this process are 

A-[l 
I 0 

- ~"/JJ .-[IJ 0 

Km/ I -Om 
0 -KvK"pI - KuLu 

dqlK v dpJ1Km d, 

Figure 2.9 Dynamic model of hydraulically actuated tank gun turret. 
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Table 2D.l Numerical values of parameters 
in tank turret control 

Numerical value 

Parameter Azimuth Elevation 

Kv 94.3 94.3 

Lv 1.00 1.07 
J (ft-lb . S2) 7900. 2070. 

Km 8.46 X 106 1.96 X 106 

Wm (rad/s) 45.9 17.3 

K"p 6.33 X 10-6 3.86 x 10- 5 

Numerical data for a specific tank were found by Loh, Cheok, and Beck to be as given in 
Table 2D.I 

A block-diagram representation of the dynamics represented by (2D.I) is shown in Fig. 2.9. 

2.4 LAGRANGE'S EQUATIONS 

The equations governing the motion of a complicated mechanical system, such 
as a robot manipulator, can be expressed very efficiently through the use of a 
method developed by the eighteenth-century French mathematician Lagrange. 
The differential equations that result from use of this method are known as 
Lagrange's equations and are derived from Newton's laws of motion in most 
textbooks on advanced dynamics.[2, 3] 

Lagrange's equations are particularly advantageous in that they automati
cally incorporate the constraints that exist by virtue of the different parts of a 
system being connected to each other, and thereby eliminate the need for 
substituting one set of equations into another to eliminate forces and torques of 
constraint. Since they deal with scalar quantities (potential and kinetic energy) 
rather than with vectors (forces and torques) they also minimize the need for 
complicated vector diagrams that are usually required to define and resolve the 
vector quantities in the proper coordinate system. The advantages of Lagrange's 
equations may also turn out to be disadvantages, because it is necessary to 
identify the generalized coordinates correctly at the very beginning of the 
analysis of a specific system. An error made at this point may result in a set of 
differential equations that look correct but do not constitute the correct model 
of the physical system under investigation. 

The fundamental principle of Lagrange's equations is the representation of 
the system by a set of generalized coordinates qi (i = 1,2, ... , r), one for each 
independent degree of freedom of the system, which completely incorporate the 
constraints unique to that system, i.e., the interconnections between the parts of 
the system. After having defined the generalized coordinates, the kinetic energy 
T is expressed in terms of these coordinates and their derivatives, and the 
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potential energy V is expressed in terms of the generalized coordinates. (The 
potential energy is a function of only the generalized coordinates and not their 
derivatives.) Next, the lagrangian function 

IS formed. And finally the desired equations of motion are derived usmg 
Lagrange's equations 

1= 1,2, ... , r (2.11 ) 

where Qi denotes generalized forces (i.e., forces and torques) that are external 
to the system or not derivable from a scalar potential function. 

Each of the differential equations in the set (2.11) will be a second-order 
differential equation, so a dynamic system with r degrees of freedom will be 
represented by r second-order differential equations. If one slate variable is 
assigned to each generalized coordinate and another to the corresponding 
derivative, we end up with 2r equations. Thus a system with r degrees of 
freedom is of order 2r. 

Example 2E Inverted pendulum on moving cart A typical application of Lagrange's equations is 
to define the motion of a collection of bodies that are connected together in some manner such 
as the inverted pendulum on a cart illustrated in Fig. 2.10. 

It is observed that the motion of the system is uniquely defined by the displacement of the 
cart from some reference point, and the angle that the pendulum rod makes with respect to the 
vertical. Instead of using 0, we could use the horizontal displacement, say y" of the bob 
relative to the pivot point, or the vertical height Z2 of the bob. But, whatever variables are used, 
it is essential to know that the system has only two degrees of freedom, and that the dynamics 
must be expressed in terms of the corresponding generalized coordinates. 

The kinetic energy of the system is the sum of the kinetic energy of each mass. The cart 
is confined to move in the horizontal direction so its kinetic energy is 

TI = !My2 

Z2 

y 

f 

Figure 2.10 Inverted pendulum on moving cart. 
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The bob can move in the horizontal and in the vertical direction so 

But the rigid rod constrains Z2 and Y2 

Thus 

Y2 = Y + I sin 0 

Z2 = I cos 0 

Y2 = Y + 10 cos 0 

i2 = -II) sin 0 

T = T, + T2 = ~My2 + ~m[(y + 10 cos 0)2 + 1202 sin 2 0] 

= ~My2 + ~m[y2 + 2yOl cos 0 + 1202] 

The only potential energy is stored in the bob 

V = mgz2 = mgl cos 0 

Thus the lagrangian is 

L = T - V = ~(M + m)y2 + ml cos OyO + !m1202 - mgl cos 0 (2E.1) 

The generalized coordinates having been selected as (y, 0), Lagrange's equations for this 
system are 

Now 

Thus (2E.2) become 

d (aL) aL di ay - ay = f 

~(aL) _ aL = 0 
dt ao ao 

aL . 
- = (M + m)y' + ml cos 00 
ay 

aL 
-=0 
ay 

aL . 
---;- = ml cos Oy + ml20 
aO 

aL . 
- = mgl sin 0 - ml sin OyO 
ao 

(M + m)y + ml cos 00 - ml02 sin 0 = f 

ml cos Oy + ml20 - mgl sin 0 = 0 

(2E.2) 

(2E.3) 

These are the exact equations of motion of the inverted pendulum on a cart shown in Fig. 2.10. 
They are nonlinear owing to the presence of the trigonometric terms sin 0 and cos 0 and the 
quadratic terms 02 and yO. If the pendulum is stabilized, however, then 0 will be kept small. 
This justifies the approximations 

cos 0 = I sin 0 = 0 

We may also assume that iJ and y will be kept small, so the quadratic terms are negligible. 
Using these approximations we obtain the linearized dynamic model 

(M + m)y + mlO = f 

my + mlO - mgO = 0 
(2E.4) 
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A state-variable representation corresponding to (2EA) is obtained by defining the state vector 

x = [y, (),y, 0]' 

Then 

dy . 
dl = Y 

d() . 
-=() 
dl 

(2E.5) 

constitute the first two dynamic equations and on solving (2EA) for ji and ii, we obtain two 
more equations 

with 

and 

d (.) .. f mg - y =y=---() 
dt M M 

d. .. f (M+ m) -(())=()=--+ -- g() 
dt MI MI 

The four equations can be put into the standard matrix form 

x = Ax + Bu 

-m:/M ~:] BJ ,L ] 
(M+m)g/MI 0 0 l - IIMI 

u = f = external force 

(2E.6) 

A block-diagram representation of the dynamics (2E.5) and (2E.6) is shown in Fig. 2.11. 

u 

(M + m)g 

Ml 

Figure 2.11 Block diagram of dynamics of inverted pendulum on moving cart. 

y 

() 
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2.5 RIGID BODY DYNAMICS 

The motion of a single rigid body has six dynamic degrees of freedom: three of 
these define the location of a reference point (usually the center of mass) in the 
body, and three define the orientation (attitude) of the body. Since each of the 
six degrees of freedom takes two state variables (one position and one velocity) 
a total of 12 first-order differential equations are required to completely describe 
the motion of the body. In most applications, however, not all of these 12 state 
variables are of interest and not all the differential equations are needed. In a 
gyroscope, for example, only the orientation is of interest. 

The motion of a rigid body is, of course, governed by the familiar 
newtonian laws of motion 

dp= ] 
dt 

dh 
- =T 
dt 

where p = [Px, PY' pz]' is the linear momentum of the body 
h = [hx, hy, hz ]' is the angular momentum of the body 
] = [fx,/Y,/zJ' is force acting on the body 
i = [Tx, Ty , T,], is torque acting on the body 

(2.12) 

(2.13) 

It is important to understand that (2.12) and (2.13) are valid only when the 
axes along which the motion is resolved are an inertial frame of reference, i.e., 
they are neither accelerating nor rotating. If the axes are accelerating linearly or 
rotating, then (2.12) and (2.13) must be modified to account for the motion of 
the reference axes. 

The rotational dynamics of a rigid body are more complicated than the 
translational dynamics for several reasons: the mass M of a rigid body is a 
scalar, but the moment of inertia J is a 3 x 3 matrix. If the body axes are chosen 
to coincide with the "principal axes," the moment of inertia matrix is diagonal; 
otherwise the matrix J has off-diagonal terms. This is not the only complication, 
however, or even the main one. The main complication is in the description of 
the attitude or orientation of the body in space. To define the orientation of the 
body in space, we can define three axes (XB' YB, ZB) fixed in the body, as shown 
in Fig. 2.12. One way of defining the attitude of the body is to define the angles 
between the body axes and the inertial reference axes (XI, y/, Z/). These angles 
are not shown in the diagram. Not only are they difficult to depict in a 
two-dimensional picture, but they are not always defined the same way. In texts 
on classical mechanics, the orientation of the body is defined by a set of three 
angles, called Euler angles, which describe the orientation of a set of non
orthogonal axes fixed in the body with respect to the inertial reference axes. In 
aircraft and space mechanics it is now customary to define the orientation of a 
set of orthogonal axes in the body (body axes) with respect to the inertial 
reference. 
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Figure 2.12 Inertial and body-fixed axes. 

Suppose the body axes are initially aligned with the inertial reference axes. 
Then, the following sequence of rotations are made to bring the body axes into 
general position: 

First, a rotation", (yaw) about the z axis 
Second, a rotation () (pitch) about the resulting y axis 
Third, a rotation ¢ (roll) about the resulting x axis 

By inspection of the diagrams of Fig. 2.13 we see that 

[
XOI] [ cos'" sin'" 0] [XI] 
YO I = -sin 1/1 cos II/ 0 y, 

ZOI 0 0 I z, 

[x.,] _ [00" 0 
-,in '][X'~ 

YB2 - 0 1 o YBI 

ZB2 sin () 0 cos () ZBI 

[X'] [x",] [' 
0 

o ] [X"] YB = YB3 = 0 cos ¢ sin ¢ YB2 

ZB ZB3 0 -sin </> cos </> ZB2 

Thus we see that 

(2.14) 

(2.15) 

(2.16) 
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Yr 

Zr 

(a) 

{!:-----~ Y B2 = Y BL 

ZB2 

(c) 

(b) 

(d) 

Figure 2.13 Sequence of rotations of 
body axes from reference to "gen
eral" orientation (z axis down in air
craft convention). (a) Axes in refer
ence position; (b) First rotation
about z axis-yaw ("'); (c) Second 
rotation-about y axis-pitch (8); 
(d) Third and final rotation-about 
x axis-roll (<p). 

where TOI is the matrix that rotates the body axes from reference position, and 
is the product of the three matrices in (2.14)-(2.16). 

T., ~ [~ 
0 

o ] ["0" 0 
-,in OJ [CO' • sin 1/1 

;J cos cf> sin cf> 0 1 o -sm 1/1 cos tjJ (2.17) 

-sin cf> cos cf> sin e 0 cos e 0 0 

Each factor of T8I is an orthogonal matrix and hence TBT is orthogonal, i.e., 

(2.18) 

Note that TB~ = T lo is the matrix that returns the body axes from the general 

position to the reference position. 
Note that the order of rotations implicit in TOI is important: the three matrices 

in (2.17) do not commute. 
Since any vector in space can be resolved into its components in body axes 

or in inertial axes, we can use the transformation (2.l7) to obtain the com
ponents of a vector in one set of axes, given its components in the other. In 
particular suppose ii is any vector in space. When it is resolved into components 
along an inertial reference we attach the subscript I; when it is resolved in body 

axes, we attach the subscript B 
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Using (2.17) we obtain 

(2.19) 

This relationship can be applied to (2.13) for the angular motion of a rigid body 
and, as we shall see later, for describing the motion of an aircraft along rotating 
body axes. 

In the case of a rigid body, the angular momentum vector is 

(2.20) 

where] is the moment of inertia matrix and w is the angular velocity vector. If 
the axes along which h is resolved are defined to be coincident with the physical 
principal axes of the body, then] is a diagonal matrix. Thus when h is resolved 
along principal body axes, we get from (2.17) 

(2.21) 

But (2.13) holds only when the vector h is measured with respect to an inertial 
reference: In the notation established above 

(2.22) 

The transformation TIB, however, is not constant. Hence (2.22) must be written 

TwhB + YwhB = il 

or, mUltiplying both sides by TBI = T[~: 

hB + TBrYIBhB = TBlir = iB 

which, in component form can be written 

(2.23) 

(2.24) 

These differential equations relate the components of the angular velocity 
vector, w projected onto rotating body axes 

to the torque vector also projected along body axes. To complete (2.24) we need 
the matrix TBrYIB• It can be shown that 

(2.25) 
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So that 

(See Note 2.1.) 
Hence (2.24) becomes 

IxWxB + (Jz - Iy)WyBW zB = TxB 

IyWyB + (Ix - Iz)WxBWzB = TyB 

IzWzB + (Iy - Ix)WXBWyB = TzB 

(2.26) 

(2.27) 

These are the famous Euler equations that describe how the body-axis com
ponents of the angular velocity vector evolve in time, in response to torque 
components in body axes. 

In order to completely define the attitude (orientation), we need to relate 
the rotation angles rp, 0, and '" to the angular velocity components. One 
way-not the easiest, however-of obtaining the required relations is via (2.17) 
and (2.25). It can be shown that 

ci> = Wx + (wy sin rp + W z cos rp) tan 0 

iJ = Wy cos rp - W z sin rp (2.28) 

.fr = (wx sin rp + Wy cos rp) / cos 0 

These relations, also nonlinear, complete the description of the rigid body 
dynamics. 

Example 2F The gyroscope One of the most interesting applications of Euler's equations is to 
the study of the gyroscope. This device (also the spinning top) has fascinated mathematicians 
and physicists for over a century. (See Note 2.2.) And the gyroscope is an extremely useful 
sensor of aircraft and spacecraft motion. Its design and control has been an important 
technological problem for half a century. 

In an ideal gyroscope the rotor, or "wheel," is kept spinning at a constant angular 
velocity. (A motor is provided to overcome the inevitable friction torques present even in the 
best of instruments. The precise control of wheel speed is another important control problem.) 
Suppose that the axis through the wheel is the body z axis. We assume that "zB is such that 
wzB = 0, i.e., that 

Hz = lzwz = const (2F.I) 

(Jz is called the "polar" moment of inertia in gyro parlance.) We can also assume that the 
gyroscope wheel is a "true" wheel: that the z axis is an axis of symmetry, and hence that 

(the " diametrical" moment of inertia) 

The first two equations of (2.27) then become 



38 CONTROL SYSTEM DESIGN 

Zc 

-~----Yc 

Yc 

Xc 

where 

Figure 2.14 Two-degrees-of-freedom 
gyro wheel. 

To use u gyro as a sensor. the wheel is mounted in an appropriate system of gimbals which 
permit it to move wi th respect 10 the oUI~r case of th e gyro. In 8 two-allis gyro, Lbo wheel is 
permilled two degrees of freedom with respect to ule case. as depicted in F'ig. 2. 14. The case 
of th . gyro is rigidly attuched to the body whose motion is to be measu red. 

The range of motion of the wheel aboll t its x and y body axe.~ relative to the gyro case is 
very small (u uaJly a fraction o r a degree). Hence the gyro must be "torqued ,. about Lbe axes 
in the plane normal to the spin axis to make the wheel keep up with its case, and as we shall 
see shortly, the torque required to do th is is a measure of the angular velocity of the case. 

Since the motion of the wheel relative to the case is very small, we do not need equations 
like (2.27) to relate the angular displacements of the gyro wheel from its null positioos in the 
case. We can write 

(2FJ) 

where W"IJ and w vc are the external angular velocities that the gyro is to measure. 
These equations, together with (2F.2), constiUlle the basic equations of an ideal gyro. A 

block.diagram representation of (2F.2) and (2F'.3), and a closed-loop feedback system for 
controlling the gyro is shown in Fig. 2.1 5. The feerlback system shows lhe control torques 
generated as function s of the displa~ments 8., and Ii)" TI,ese dispia~01ents can be measured 
by means of .. pick·olls "- small magnetic sensors located on the case and capable of 
measuring small tilts of the wheel . TIlc control torque needed to drive the" pick-off angles" Ii" 
and liy to zero can also be generated magnetica lly. 10 some designs the pick.off and torquer 
function s can be combined in a single device. TIle control system is designed to drive the 
angular displacements 8, and 8y to zero. If this is accomplished 

WxB = W xE {2F.4} 
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Feedback 
system 

Figure 2.1S Block diagram of two-axis gyro dynamics showing "capture" control system. 

If the angular velocity components W x B and WyB are constant 

Tx = HWyB = HWyE 

(2F.5) 
Tv = -HWxB = -HWxE 

where H is a constant of the gyro. If this constant is accurately calibrated, and if the input 
torque to the gyro is accurately metered, then the steady state torques about the respective axes 
that keep the wheel from tilting relative to its case (i.e., "capture" the wheel) are proportional 
to the measured external angular velocity components. 

The control system that keeps the wheel captured is an important part of every practical 
gyro. Some of the issues in the design of such a control system will be the subject of problems 
in later chapters. 

The differential equations of (2F.2) are idealized to the point of being all but unrealistic. 
In addition to the control torques acting on the gyro, other torques, generated internal to the 
gyro, are also inevitably present. These include damping torques (possibly aerodynamic). And 
in a so-called tuned-rotor gyro, the gimbals are implemented by a special flexure hinge which 
produces small but not insignificant spring torques. When these torques are included, (2F.2) 
becomes 
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Note that the damping coefficients D in both axes are assumed equal and that the 
"spring" matrix 

K = [-KD -KQ
] 

KQ -KD 

has a special kind of symmetry. This form of the matrix is justified by the physical 
characteristics of typical tuned-rotor gyros. 

2.6 AERODYNAMICS 

One of the most important applications of state-space methods is in the design 
of control systems for aircraft and missiles. 

The forces (except for gravitation) and moments on such vehicles are 
produced by the motion of Lhe vehicle through the air and are obtained, in 
principle, by integrating the aerodynami c pressure over the entire surface of the 
aircraft_ Computer program for actually performing this integration numeri
cally are currently available. In an earlier era this was accomplished by 
approximate analysis done by skillful aerodynamicists, and verified by extensive 
wind-tunnel testing. (Wind-tunnel tests are performed to this day, notwithstand
ing the computer codes_) 

Several textbooks, e.g., [4, 5], are available which give an exposition of the 
relevant aerodynamic facts of interest to the control system designer. The 
aerodynamic forces and moments are complicated, nonlinear functions of many 
variables and it is barely possible to scratch the surface of this subject here. The 
purpose of this section is to provide only enough of the principles as are needed 
to motivate the design examples to be found later on in the book. 

The aerodynamic forces and moments depend on the velocity of the aircraft 
relative to the air mass. In still air (no winds) they depend on the velocity of the 
aircraft along its own body axes; the orientation of the aircraft is not relevant in 
determining the aerodynamic forces and moments. But, since the natural axes 
for resolving the aerodynamic forces and moments are moving (rotating and 
accelerating), it is necessary to formulate the equations of motion in the moving 
coordinate system. 

The rotation motion of a general rigid body has been given in (2.24). In 
aircraft terminology the projections of the angular velocity vector on the body 
x, y, and z axes have standard symbols: 

Wy = q 

W z = r 

(roll rate) 

(pitch rate) 

(yaw rate) 

(2.29) 

(The logic of using three consecutive letters of the alphabet (p, q, r) to 
denote the projections of the angular velocity vector on the three consecutive 
body axes is unassailable. But the result is "amnemonic" (hard to remember): 
p does not represent pitch rate and r does not represent roll rate.) 
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Thus, assuming that the body axes are the principal axes of the aircraft, the 
rotational dynamics are expressed as 

· L 1z -1 p = _ _ ___ Y qr 
1x 1x 

· M 1x - 1z q =----pr 
1y 1y 

· N 1y - 1x 
r=---- pq 

1z 1z 

(2.30) 

where L, M, and N are the aerodynamic moments about the body x, y, and z 

axes respectively. Thus L is the rolling moment, M is the pitching moment, and 
N is the yawing moment. These are functions of various dynamic variables, as 
explained later. 

To define the translational motion of an aircraft it is customary to project 
the velocity vector onto body fixed axes 

(2.31 ) 

where u, v, and ware the projections of the vehicle velocity vector onto the 
body x, y, and z axes. The linear momentum of the body, in an inertial frame, is 

Hence, the dynamic equations for translation are 

(2.32) 

where 11 are the external forces acting on the aircraft referred to an inertial 
frame. Proceeding as we did in developing (2.24) we find that 

(2.33 ) 

where 1B = TBJI is the force acting on the aircraft resolved along the body
·fixed axes and 

-r q 1 o -p 

p 0 
(2.34) 

as given by (2.26) but using the p, q, r notation defined in (2.29) . 
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In component form (2.33) becomes 

1 
U = rv - qw + - ! xB 

m 

1 v = - ru + pw + - hB 
m 

1 
IV = qu - pv + - ho 

m 

(2.35) 

where !xB, ! yO, and !zB are the total forces (engine, aerodynamic, and gravita
tional) acting on the body. Since the aircraft axes are not in general in the 
direction of the gravity vector, each component !xo, !vB, and ho will have a term 
due to gravity. In addition to the force of gravity, there is the thrust force 
produced by the aircraft engine-generally assumed to act along the vehicle x 
axis-and the aerodynamic forces-the lift and drag forces. The acceleration 
terms rv, qw, etc., are Coriolis accelerations due to the rotation of the body axes. 

Complete dynamic equations of the vehicle consist of (2.30) which give the 
angular accelerations, (2.35) which give the linear accelerations, (2.28) which 
give the angular orientation, and finally the equations for the vehicle position : 

(2.36) 

This system of 12 first-order differential equations, with the moments and 
forces evaluated as functions of whatever they depend upon constitute the 
complete six-degrees-of-freedom description of the aircraft behavior. 

The aerodynamic forces and moments all depend on the dynamic pressure 

(2.37) 

where p is the air density and 

V = (u 2 + v 2 + W
2

)1 / 2 

is the speed of the aircraft. (Dynamic pressure has the dimension of force per 
unit area.) Thus the aerodynamic forces and moments can be expressed in the form 

!xA = QACx 

hA = QACy 

!zA = QAC 

L = IQACL 

M = IQACM 

N = IQACN 

(2.38) 

where Cx, Cy, C" C L , CM, CN, are dimensionless aerodynamic" coefficients," A 
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is a reference area (usually the frontal area of the vehicle), and I is a reference 
length- (In some treatments different reference lengths are used for roll, pitch, 
and yaw.) 

The aerodynamic coefficients in turn are functions of the vehicle velocity 
(linear and angular) components, and, for movable control surfaces, also 
functions of the deflections of the surfaces from their positions of reference. The 
variables of greatest influence on the coefficients are the vehicle speed (or, more 
precisely, the Mach number), the angle-oi-attack a and the side-slip angle {3. 
These, respectively, define the direction of the velocity vector relative to the 
vehicle body axes; a is the angle that the velocity vector makes with respect to 
the longitudinal axis in the pitch direction and {3 is the angle it makes with 
respect to the longitudinal axis in the yaw direction. (See Fig. 2.16.) From the 
figure 

= -
II 

(2.39) 

with the approximate expressions being valid for small angles. 
For purposes of control system design, the aircraft dynamics are frequently 

linearized about some operating condition or "flight regime," in which it is 
assumed that the aircraft velocity and attitude are constant. The control surfaces 
and engine thrust are set, or "trimmed," to these conditions and the control 
system is designed to maintain them, i_e., to force any perturbations from these 
conditions to zero. 

If the forward speed is approximately constant, then the angle of attack and 
angle of side slip can be used as state variables instead of wand v, respectively. 

(I 

Figure 2.16 Definitions of angle-of-attack a and 
side-slip angle {3. 
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Table 2.1 Aerodynamic variables 

Longitudinal Lateral 

a: angle of attack {3: side slip angle 

Rates q: pitch rate p: roll rate 
LlU : change in speed r: yaw rate 

0: pitch </>: roll angle 

Positions 
z: altitude </!: yaw angle 

x: forward displacement 
y: cross-track displacement 

Controls 
5E : elevator deflection SA : aileron deflection 

5R : rudder deflection 

Also in studying small perturbations from trim conditions it is customary to 
separate the longitudinal motion from the lateral motion. In many cases the 
lateral and longitudinal dynamics are only lightly coupled, and the control 
system can be designed for each channel without regard to the other. The 
variables are grouped as shown in Table 2.1. 

Elevator 
deflection 

Figure 2.17 Aircraft longitudinal dynamics. 

Angle of attack 

Speed 
change 
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The aircraft pitch motion is typica lly comrolled by a cont ro l surface called 
the elevator (or by callan] in th fronl of the vehicl e). he roll is controlled by 
a pair or ailerons, and the yaw is co nt roll ed by a rudder. These are a lso shown 
in table 2. 1. 

The function of most control system designs is to regulate small motion 
rather than to control absolute po ition (x, y. and z). Thus the inertial po ilion 
is frequently n t included in the stale equations. This leaves nine equation, 
four in the longitudinal channel and five in the lateral channel. These can be 
written in the following form: 

Longitudinal dynamics (See Fig. 2.17) 

~u = Xu~u + Xaa - gO + XEOE 

. Zu Za ZE 
a =-~u+-a+q+-8 

V V V s 

q = Mu~u + Maa + Mqq + Msos 

iJ = q 

Lateral dynamics (See Fig. 2.18) 

. y" Yp ( Yr ) g YA YR 
{3 =~{3+-p+ --I r+--I.+-o +-0 

V V V V'f' V A V R 

P = Lf3{3 + Lpp + Lrr + LAoA + LRo R 

f = Nf3{3 + Npp + Nrr + NAoA + NRo R 

¢ =p 

J,=r 

(2.40) 

(2.41 ) 

The symbols X, Y, Z, L, M, and N, with subscripts have become fairly 
standardized in the field of aircraft and missile control, although the sign 
conventions often differ from one user to another, which can often cause con
sternation. The symbols with the capital-letter subscripts, E, A, and R (for 
elevator, ailerons, and rudder), however, are not standard. It is customary to use 
cumbersome double subscript notation for these quantities. 

2.7 CHEMICAL AND ENERGY PROCESSES 

It is often necessary to control large industrial processes which involve heat 
exchangers, chemical reactors, evaporators, furnaces, boilers, driers, and the 
like. 

Because of their large physical size, such processes have very slow dynamic 
behavior-measured on a scale of minutes or hours rather than seconds as in 
the case for aircraft and instrument controls. Such processes are often slow 
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Aileron 
deflection 

Rudder 
deflection 

Figure 2.18 Aircraft la teral dyna mics. 

r 

Yaw 
rate 

Sideslip 

Yaw 

enough to be controlled manually: an experienced plant operator can monitor 
the instruments in the control room and (remotely) open and close the valves to 
maintain a satisfactory equilibrium condition. But slow as such processes are, 
they are not necessarily stable. If the operator is not constantly monitoring and 
actively intervening in its operation the process may run away with itself. The 
"Three-Mile Island" nuclear plant accident (See Note 2.3), is perhaps the most 
dramatic episode of this kind in recent years, but other episodes, less dramatic 
than Three-Mile Island, occur with regrettable frequency. 

Gross failures of the type of Three-Mile Island are probably not traceable 
to inadequate dynamic performance of the control system, but rather to 
failures in hardware that inadequate procedures and training permit to go 
without prompt repair. The considerations that apply to design of proper 
procedures and personnel practices are outside the scope of this book. Here we 
are concerned with the design of systems for normal, closed-loop operation, i.e., 
under the assumption that the sensors and actuators are maintained in good 
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working order. Often so much of lhe engineering effort is spent in selecting 
suitable hardware- and this effort i. totaUy justified-that litlle time is left to 
consider efficient operation under normal conditions. Large industrial proce ses 
are costly to operate, however, and even small perc ntage improvem nts (such 
as in reduced energy consumption) can be worth a con iderable sum . There is a 
celebrated design (See Note 2.4) in the paper industry in whi ch a small 
improvement in th e product quality ( ' base weight " of the pa per) returned 
many times the cost of installing a computer control system. 

One of the difficulties in working with large industri al processes is that they 
involve subsystems the behavior r which are not readily characterized by 
simple mathematical models. The physics and chemistry of devices like 
evaporators, heat exchangers, dri ers, and the like, are not as amenable to 
mathematical representation as arc the physics of simple electromechanical 
systems, or even of aircraft. It is often necessary to work with empirical models 
obtained by fitting curves to test data. And test data is often hard to come by 
because the processes are slow and there is considerable reluctance to shut them 
down long enough to amass a sufficient quantity of data with which to construct 
an empirical model. 

Still another difficulty in dealing with industrial processes is the large 
number of dynamic variables that must be considered. Unless suitable simplifi
cations are made, the number of variables can run into .the hundreds. Although 
the methods described in this book can be used for designing control systems 
for very high order processes, the insights that the engineer often can develop 
using low-order models will be lacking. 

To show how state-space methods can be applied to industrial processes we 
have selected several examples that have been described in the literature and 
are actually in operation. These examples show that it is possible to deal 
effectively with processes of considerable complexity using models of reason
ably low order. 

Example 2G Distillation column A distillation column is a complex process. A large number 
of variables (upward of 100) are needed to accurately model its dynamic behavior. 

In the interest of applying modern control techniques to the design of a control system 
for a distillation column, Gilles and Retzbach[6, 7, 8] manage ingeniously to reduce the 
number of state variables to only 4. Their study deals with an extractive column intended for 
separating isopropanol from a mixture with water, using glycol as an extractant. A schematic 
diagram of the column is shown in Fig. 2.19. The mixture of water and isopropanol is 
introduced at the feed stage FA and the glycol extractant is introduced near the top of the 
column. A controlled amount of heating steam is introduced near the bottom of the column 
where the bottom product-the extractant, glycol, is drawn off. In addition, the vapor side 
stream flow rate can be controlled by another valve. The objective of the process is to produce 
nearly pure isopropanol at the top of the column. 

The key to the simplified model of the distillation column developed by Gilles and 
Retzbach are the profiles of concentration and temperature in the column, sketched in Fig. 
2.19. There are two vertical locations in the tower at which the principal physical changes 
occur: Zt at which there is an interphase change between water and isopropanol, and a second 
location Z2 where there is an interphase change between the water and the glycol extractant. At 
each of these locations there is a sharp temperature gradient. 
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Extractant 

(glycol) 

FA 

(Water and 
ISOpro
panol 
mixture) Vapor 

sidestream 

s 
u 

Heating 
steam 

Bottom 
product 
(glycol) 

Concentrations Temperature 

Figure 2.19 Distillation column with profiles of concentration and temperature. (After Gilles and 

Retzbach.) 

By vatying the now rales 01' the \Valcr- i ~opropa \1 ol mi xllIre. the hea ting s team, and the 
Yll po r sid e strea m, tbc positio ns oj" these loci or .. fro nts" can be m oved up and down, but the 
hapes of Ih ~ d is trihut io lls arc otherwise Ilard ly changed. Thus by contro lling the positions of 

Ihese fro nts, the d istribu tion of' tempera ture and concentra tion ca ll bc contro lled th ro ugho ut 
Ihe colu mn . Thi ~ p roperty of the d i trib uliollS motivated G illes lmd Rctzbach to use the 
p OSilio'lS zi a nd Zz as sla te vari abl.es tha t call ad equate ly re present lhe behtlvio r of this 

complex process. 
In addition to these state variables, other state variables needed to represent the steam 

boiler are in'eluded in the overall model. 
The boiler dynamics are represented by 

(j,Q, = a,,!lQ, + b,,!lu, 

!l V = a2,!lQ, + a22!l V, 

where !lQ, = heat flow to reboiler "hOldUP"} 
!l V, = vapor flow rate changes from equilibrium 

!lUI = steam flow rate 

(2G.I) 

Gilles and Retzbach in [6] show that rates of change !li, and !li2 in the position of the 

interphase loci (fronts) are linearly related to the various flow rates: 

!li, = b32!lS + f 3l !lxFA , + f 32!lFA 

!li2 = b42!lS + f42!lFA 

where !lS = flow rate of vapor side stream} 
(j,XFA , = feed composition changes from equilibrium 

!lFA = feed flow rate 

(2G.2) 
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As noted, the steam flow rate and the flow rate of the vapor side-stream are control 
variables. Changes in the feed composition and flow rate are disturbances that the control 
system is to be designed to counteract. 

The positions of the fronts are determined in this process by measuring the temperatures 
with thermomocouples located near the desired positions of the fronts . It has been found that 
the temperature changes are approximately proportional to the front position changes: 

Ci TI = cJ)Ciz l 

Ci T2 = C24Ciz2 

The state, input, disturbance, and observation vectors are defined respectively by 

x = [~~:] 
Ciz l 

Ciz2 

In terms of these variables, the process has the standard state-space representation 

;i = Ax + Bu + Exo 

y= ex 

with 

[" 0 00] [b;' b:,] roo] (Il l lin o 0 o 0 
A- B= n .. 

0 Un o 0 0 . hI 132 

0 Q 42 o 0 0 b42 o 142 

C = [~ 0 CIJ c~J 0 0 

(2G.3) 

(2G.4) 

(2G.5) 

Numerical data for a specific process considered by Gilles and Retzbach are as follows: 

u ll =-30.3 b ll = 6.15 X \05 131 = 62.2 

a21 = 0.120 X \0-3 b32 = 3.04 132 = 5.76 

a22 = -6.02 b42 = 0.052 142 = 5.12 

a32 = -3.77 

{/42 = -2.80 c13 = -7.3 

C24 = -25.0 

Time is measured in hours, and temperature in degrees Celsius. 

Example 2" Double effect evaporator Over a period of several years in the mid 1970s a group 
of chemical engineering faculty members and students at the University of Alberta developed 
a laboratory pilot plant which could be used to test various concepts and control system design 
techniques. The results of some of these studies have been published in a number of technical 
journals and reprinted as a case study [9]. 

The pilot plant is a double-effect evaporator shown schematically in Fig. 2.20. According 
to Professors D. G. Fisher and D. E. Seborg, leaders of the project and authors of the case 
study: "The first effect is a short-tube vertical calandria-type unit with natural circulation. The 
9-in diameter unit has an operating holdup of 2 to 4 gallons, and its 32 stainless steel tubes, 
~-in o.d . by 18 in. long, provide approximately 10 square feet of heat transfer surface 
altogether. 
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Figure 2.20 Schematic diagram of pilot-scale evaporator and a conventional multi loop control system. 
(Reproduced with permission oJ" Industrial Engineering Chemistry, Process Design and Development" 

Copyright 1972, American Chemical Society. ) 

.. Th e second stage is a long-tube vertical effect setup for either natural or forced 
circulation. It has a heat transfer area of 5 square feet and is made up of three 6-ft long I-in 
o.d. tubes. Capacity of the circulating system is about 3 gallons."[IO] 

The inputs to the plant are steam and a concentrated solution of triethylene glycol. The 
outputs are glycol, the concentration and flow rate of which is to be controlled, and the 
condensate. 

The system is a relatively complicated dynamic process requiring many state variables 
for its ~ccurate description. A number of studies, reported in [11], were undertaken aimed at 
developing a model that represents a reasonable compromise between fidelity to the real 
process and amenability to control system designs. On the basis of such considerations the 
investigators found that a fifth-order model is in close agreement with a tenth-order model, the 
latter fitting the pilot plant test data very well. 

The fifth-order model uses the state variables 

and control variables 

x, = W, = first-effect" holdup" 
X2 = C, = first-effect concentration 
x, = H, = first-effect enthalpy 
X 4 = W2 = second-effect" holdup" 
Xs = C2 = second-effect concentration 

", = S, = first-effect steam How rate 
"2 = B, = first-effect" bottoms" How rate 
'" = B, = second-effect" bottoms" How rate 

(2H . l) 

(2H.2) 

In addition to the state and control variables there are also disturbance inputs to the process 

d, = F, = variations in feed flow rate 
d, = CF , = variations in feed concentration 
d) = HFI = variations in feed enthalpy 

(2H.3) 
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Figure 2.21 Fifth-order evaporator dynamic model. 
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The linearized differential equations for this process have been developed by Newell and 
Fisherf9] and are in the standard state space form 

x = Ax + Bu + Exo (2H.4) 

For one particular configuration of the system, the numerical values of the matrices were 
found to be [II] 

A = [~: = ::::~: -~ .::; : 
-.00128 -.1489 

.0605 .1489 

l 
0 -.143 0 ~ 

B = .3~2 ~ ~ 
o .108 -.0592 

o -.0486 0 

o 
o 
o 
o 
o 

Fl:}:4}34 'H 

_LJ 
-.0591 

(2H.5) 

(2H.6) 

(2H.7) 

A block.diagram representation of the system, using the structure implied by (2H.5)
(2H.7) is shown in Fig. 2.21. Over the period that the process was in operation various changes 
were made that result in changes in numerical values in the matrices,[9] but the structure of 
Fig. 2.21 did not change. 

PROBLEMS 

Problem 2.1 Motor-driven cart with inverted pendulum 

The cart carrying the inverted pendulum of Example 2E is driven by an electric motor having 
the characteristics described in Example 2B. Assume that the motor drives one pair of wheels of the 
cart, so that the whole cart, pendulum and all, becomes the "load" on the motor. Show that the 
differential equations that describe the entire system can be written 

k' mg k 
x+--x+-/J=--e 

Mr2R M MRr 

where k is the motor torque constant, R is the motor resistance (both as described in Example 2B), 
r is the ratio of motor torque to linear force applied to the cart (7" = rf), and e is the voltage applied 
to the motor. 

Problem 2.2 Motor-driven inverted pendulum 

Derive the dynamic model for an inverted pendulum pivoted at its lower end and driven by an 
electric motor, as shown in Fig. 6.3. 
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z 

Figure P2_1 Inverted pendulum on cart. 

Show that the dynamic equations of the inverted pendulum on a cart of Prob. 2.1 reduce to that 
of a pendulum fixed at its lower end as the mass of the cart becomes infinite. 

Problem 2-3 Three-capacitance thermal system 

A conducting bar (Fig. P2.3(a)) is insulated along its length but exposed to the ambient 
temperature at one end, and heated at the other end. An approximate electrical equivalent, based 
on "lumping" the bar into three finite lengths, is shown in Fig. P2.3(b). 

Write the differential equations for the system using as state variables v" v2 , and V3 , the 
capacitor voltages. The input u is the temperature eo at the heated end, and the output y is the 
temperature [)3 at point 3 on the rod, as would be determined by a thermocouple, for example. 

Heater 

I 

r" =, oV I o V z o V3 1~""Jb" 
I 

Thennometer 

(a) 

RI2 VI R vz R V3 RI2 

'-"r f 
'V\N' I 

.VVV' f ],'=" I 
(b) 

Figure P2.3 Three-capacitance thermal system. (a) Cross-sectional view; (b) Electrical analog. 

Problem 2.4 Spring-coupled masses 

Use Lagrange's equations (Sec. 2.4) to derive the dynamic equations of a pair of masses 
connected by a spring as shown in Fig. P2.4. 

As the state variables use 



54 CONTROL SYSTEM DESIGN 
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Figure P2.4 Spring-coupled masses (two-car train) . 

Problem 2.5 Two-car train 

An idealized two-car train consists of a pair of masses coupled by a spring, as shown in Fig. 
P2.4. The wheels of each car are independently driven by an electric motor such as described in 
Example 2B. (Also see Prob 2.1.) 

(a) Express the differential equations of the system in state-space form. (Find the A and B 
matrices.) Assume R is the motor resistance, K is the spring constant, k is the motor torque 
constant, and r = r/ f is the ratio of the motor torque to the linear force applied to the car. Use the 
following state and control variables 

X2 = Z2 

where e l and e2 are the voltages on the drive motors. 
(b) Draw the block diagram of the system. 

Problem 2.6 Missile guidance dynamics 

The geometry of a missile and target, both confined to move in a plane, is depicted in Fig. 
P2.6. The target moves in a straight line at constant velocity VT and the missile moves at constant 
speed VM but the direction of the velocity vector can be controlled by the use of an acceleration a 
which is assumed perpendicular to the relative velocity vector V = V

M 
- V

T
. 

(a) Using a coordinate system that is "attached to the target" show that the dynamics of 
relative motion are 

r = - V cos 0" 

A = V sin 0"/ r (P2.6(a» 

0-= VsinO"/r+a/V 

Target 

Figure P2.6 Missile dynamics. 
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where r is the range to the target, A is the inertial line-of-sight angle, IT is the angle sub tended at 
the missile by the velocity vector and the line of sight, and a is the applied acceleration. 

(b) Let z be the "distance of closest approach" of the missile to the target, under the 
assumption that the missile continues in a straight line without any further acceleration. (Sometimes 
z is called the projecled miss dislance.) Show that 

z = r sin IT 

and, using P2.6( a) 

i = (r cos lTl V)a (P2.6(b)) 

(c) Assume that IT is a small angle. Then; "" - If. Thus r(l) = TO - VI, then rl V = To - I = f 
where To = rol V: f is often called "time-to-go." Show that the following equations represent the 
approximate dynamics 

(P2.6(c)) 
z = fa 

These equations are studied further in Chap. 3, Example 3 B. 

NOTES 

Note 2.1 Rigid body dynamics 

The representation of the motion of a rigid body in a noninertial coordinate system (i.e., a 
coordinate system in which the reference axes rotate and accelerate linearly) is treated in most 
standard textbooks in classical dynamics, such as Goldstein.[2l The basic relationship with regard 
to axes fixed in a rotating body are expressed by 

dli I = dli I + w x Ii 
dt inertial de body 

where Ii is any (three·component) vector. The symbol x denotes the vector cross product and 
"body" means that the derivatives are taken as if the body axes were inertially fixed; w is the 
angular velocity of the body axes. Thus (2.27) can be expressed as 

Since ii = ]w, this becomes 

_ dhl dhl .-r=- =- +wxh 
dl inertial dl body 

dw 
T= ]-+ w x]w 

dl 

which is the form in which the" Euler equation" appears in many books. 

Note 2.2 The gyroscope 

The gyroscope is one of the two basic components of all inertial navigation systems. (The other 
is an accelerometer.) Since the 1920s, gyroscopes (or "gyros" as they are now known) have been 
used in navigation systems, first in gyro compasses and more recently (i.e., since about 1950) in 
complete inertial navigation systems. In addition to being used in navigation systems, gyros are also 
used as motion sensors for stabilizing the motion of ships, aircraft, and other mechanical systems. 
The inner ear of a human has a vestibular system that includes three gyroscopic sensors known as 
"semicircular canals" which are important in the biological feedback system that maintains the 
human body upright. 
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The remarkable properties of spinning bodies have always been a source of fascination, not 
only to children, but also to mathematicians and physicists. The renowned mathematician Felix 
Klein, one of the founders of the field of topology, also wrote a famous treatise on the theory of 
tops. [12] 

Note 2.3 Three-Mile Island 

The near disaster caused by the sequence of failures at the Three-Mile Island (Pennsylvania) 
nuclear plant in 1979, has a number of valuable, if costly, lessons. The failure was not due to use of 
novel, untested design concepts nor to new state-of-the-art hardware having been insufficiently tested. 
Neither the design nor the hardware were flawed in principle. The combination of misfortune, lack 
of training, and deficient critical judgment were in part responsible for the accident that may well 
have spelled doom for the nuclear industry in the United States. An outstanding account of the 
Three-Mile Island incident and its implications were presented in the November 1979 issue of the 
IEEE Spectrum.[13] 

Note 2.4 Swedish papermaking industry 

The bcnefiLS of using modern contro l concepts in t'he field of process control were vividly 
demonstratcd by Karl J . ..\stro m, now a professor at the Lun 1 Institute of Technology in Sweden. 
During the late 1950s and ellrly 1960s, Astrom, under sponsorship of IBM, in association with a 
group of inves ligll tors (including R. E. Kalma.n, J . E. Bertram) ii i Columbia University, initiated the 
investigation of Ule use of state-space methods for improved process control design, particularly in 
papermaking. After his return to Sweden he succeeded in persuading the management of a paper 
company that the improved performance using modern methods, and implemented by means of a 
digital computer, would more than justify the cost of the new installation. With the cooperation of 
the plant management, he performed the tests needed to get the required dynamic characteristics of 
the plant and then installed the new computer control. The results were outstandingly successful; 
within a few years much of the Swedish paper industry adopted the new control system design 
approach. A technical account of Astram's work is found in Chap. 6 of [14]. 
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