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METR4202 -- Robotics 
Tutorial 2 – Week 3: Homogeneous Coordinates 

 
SOLUTIONS  & COMMENTARY 

 
 
Questions 
1. Calculate the homogeneous transformation matrix A

BT  given the [20 points] 
translations (APB) and the roll-pitch-yaw rotations (as α-β-γ)  
applied in the order yaw, pitch, roll.  
 

a. α=10, β=20, γ=30, APB={1  2  3}T  
 
First let’s assume a convention, such as the 
“Engineering” convention in which Yaw is 
about the Z-axis (pitch is about the Y-axis and 
roll is about the X-axis)  [[Lecture 2, Slide 24]]. 
 
Recall that :  

 
 
Thus, we need ARB and APB.   APB is given as {1  2  3}T 

 
ARB is The problem request the rotation in yaw-pitch-roll, which using the aforementioned 
convention would be Z-Y-X.  We can compute these from the Euler Angle representation 
[[Lecture 2, Slide 26]] or using the robotics toolbox with: 
 
R = rpy2r(ROLL, PITCH, YAW, 'zyx')  % see doc rpy2r 
 
This gives: 
Rab = rpy2r(10, 20, 30, 'deg', 'zyx'); 
Rab = 
    0.9254    0.0180    0.3785 
    0.1632    0.8826   -0.4410 
   -0.3420    0.4698    0.8138 
 
Thus: 

 
 
The bit to note, which might be confusing, is that APB is given in the {A} coordinate frame.  
If (hypothetically) it was given in the {B} coordinate frame, then we would have to rotate 
(i.e., APB= ARB BPB ) to make the frames (or basis) align.     
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b. α=10, β=30, γ=30, APB={3  0  0}T  
 
This is similar to (a).  Using the same procedure as before we get: 
 
Rab=rpy2r(10, 30, 30, 'deg', 'zyx') 
Rab = 
    0.8529    0.0958    0.5133 
    0.1504    0.8963   -0.4172 
   -0.5000    0.4330    0.7500 
 

 
 
 
 

 
2. Compare the output of: α=90, β=180, γ=-90, APB={0  0  1}T  [10 Points] 

and  α=90, β=180, γ=270, APB={0  0  1}T  
 
 
The difference between these is 360 in γ. 
There can be numerical issues though at such angles.  Note the ±0 terms when computed in 
MATLAB: 
 
>> R1=rpy2r(90, 180, 270, 'deg') 
R1 = 
    0.0000   -1.0000    0.0000 
   -0.0000    0.0000    1.0000 
   -1.0000   -0.0000   -0.0000 
 
>> R2=rpy2r(90, 180, -90, 'deg') 
R2 = 
   -0.0000   -1.0000    0.0000 
   -0.0000    0.0000    1.0000 
   -1.0000    0.0000   -0.0000 
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3. Given the following 3x3 rotation matrices: [40 points] 

1

0.7500 -0.4330 -0.5000

0.2165 0.8750 -0.4330

0.6250 0.2165 0.7500

R

 
   
  

, 
2

0.6399 -0.2351 -0.6159

0.2860 0.5854 -0.4970

0.3221 0.2488 0.7132

R

 
   
  

, 

3

0 0 1

0.8660 0.5000 0

-0.500 0.8660 0

R

 
   
  

, 
4

0.0238 0.1524 0.9880

-0.3030 -0.9407 0.1524

0.9527 -0.3030 0.0238

R

 
   
  

 

 
a. Are these (within practical numerical limits) valid rotation matrices? Why? 

 
A rotation matrix is orthonormal.  Thus, let’s check if these matrices satisfy these properties. 
Chiefly: 

 Orthogonally:   inv(R) = transpose(R) 
 Normal:  det(R)=1 , norm(R)=1 

 
Running some checks in Matlab we get: 

 
 mean(inv(R1)-R1') det(R) norm(R)
R1 4.0792e-007 1 1
R2 0.1819 0.5042 1.1286
R3 8.4679e-006 1 1
R4 -1.3397e-006 1 1

 
Thus we can conclude (with practical numerical limits) that R1, R3, and R4 are rotation 
matrices and that R2 is not a rotation matrix. 
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b. If yes, determine the Roll, Pitch, and Yaw that define each matrix.  Do you 
believe their values? 

 
A rotation matrix is redundant and thus is over constrained for the 3 Euler angles.   The 
values can be found by solving at least 3 of the 9 nonlinear simultaneous equations (see also 
Lecture 2, Slide 26). 
 
In the robotics toolbox this is implemented (in part) as part of the tr2rpy function.  
Forming these rotation matrices and running this gives: 
 
>> tr2rpy(TR1, 'deg') 
ans = 
   29.9993  -30.0002   29.9993 
 
>> tr2rpy(TR3, 'deg') 
ans = 
         0   90.0000   59.9993 
>> tr2rpy(TR4, 'deg') 
ans = 
  -81.1239   81.1266  -81.1239 
 
 
Rounding and using some “intuition” we get the roll-pitch-yaw as: 

 R1:  Roll: 30 °, Pitch: -30 °, Yaw: 30 ° 
 
We might trust this. 

 
 R3:  Roll: 0 °, Pitch: 90 °, Yaw: 60 ° 

 
We might not trust or “believe” this answer.  At pitch angles of 90 degrees, there is a 
singularity in the Roll-Pitch-Yaw Euler angles set (see also Lecture 3 – Slide 34 and or 
the documentation for tr2rpy [doc tr2rpy]).  (In this case the “Roll” value is 
undetermined, but it is set to zero by the toolbox). 
 
 R4:  Roll: -81 °, Pitch: 81 °, Yaw: -81 ° 
 
We might not trust this answer either.  Intuition suggests that this “rather unusual” value.   
A little bit of sleuthing with the value in radians, rather suggests that this was a matrix 
computed without the appropriate degree conversion or setting (i.e., the numbers were in 
degrees but processed as radians).  Thus giving:  Roll: 30 °, Pitch: -30 °, Yaw: 30 °. 
 
That is the user may have typed rpy2tr([30 -30 30]),  
when they should have typed rpy2tr([30 30 30], 'deg') 
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While it was not asked for directly, it is possible to enforce orthogonally constraints back 
on R2 and to estimate the roll-pitch-yaw values. 
 
There are several means for normalizing the matrix.  One convenient approach is to use 
the singular value decomposition (SVD). 
 
The SVD of R2 is: 
[UR2,SR2,VR2] = svd(R2) 
UR2 = 
   -0.7282    0.0725   -0.6815 
   -0.5131    0.6014    0.6123 
    0.4543    0.7956   -0.4008 
SR2 = 
    1.1286         0         0 
         0    0.7480         0 
         0         0    0.5973 
VR2 = 
   -0.4133    0.6346   -0.6530 
   -0.0143    0.7125    0.7015 
    0.9105    0.2993   -0.2854 
 

We can “normalize” this by setting the diagonal terms to 1.   
Thus:  
SR2NORM = 
     1     0     0 
     0     1     0 
     0     0     1 
 
Multiplying this back together with the previous left-singular (or unitary or U) and right-
singular (or unitary conjugate or V) matrices. 
 
Thus giving: 
>> R2NORM=UR2*SR2NORM*VR2' 
R2NORM = 
    0.7920   -0.4159   -0.4469 
    0.1939    0.8654   -0.4620 
    0.5789    0.2793    0.7661 
 
Solving for the angles via tr2rpy (tr2rpy(TR2N, 'deg')) gives: 
Roll=31.0906 ° , Pitch=-26.5419 ° , Yaw=27.7067 ° 
 
Rounding/Engineering intuition suggests that this might actually be: 
Roll=30° , Pitch=-30° , Yaw=30° 
 
 
 


