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METR4202 -- Robotics 
Tutorial 2 – Week 3: Homogeneous Coordinates 

 
The objective of this tutorial is to explore homogenous transformations.  The MATLAB robotics 
toolbox developed by Peter Corke might be a useful aid1.     
 
Please login to the Platypus system and create an account.  Please answer the tutorial by Thursday 
night via the Platypus system for tutor and peer feedback. 
 
Reading  
Please read/review Section 2.4 of Multiple View Geometry in Computer Vision (see attached). 
(from R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2004) 
 
Review 
The Homogeneous Transformations functions in the toolbox are useful.   
1. Try the Transformations module of rtdemo for a demonstration of these function 

2. Look at rpy2tr and tr2rpy  (doc rpy2tr and  doc tr2rpy) 

3. Look at the source of these functions (open rpy2tr and  open tr2rpy).   
Does tr2rpy exploit the redundancies inherent in a rotation matrix? 

 
Questions 
1. Calculate the homogeneous transformation matrix A

BT  given the [20 points] 
translations (APB) and the roll-pitch-yaw rotations (as α-β-γ)  
applied in the order yaw, pitch, roll.  
 

a. α=10, β=20, γ=30, APB={1  2  3}T  
b. α=10, β=30, γ=30, APB={3  0  0}T  

 
 

2. Compare the output of: α=90, β=180, γ=-90, APB={0  0  1}T  [10 Points] 
and  α=90, β=180, γ=270, APB={0  0  1}T  

 
 

3. Given the following 3x3 rotation matrices: [40 points] 

1

0.7500 -0.4330 -0.5000

0.2165 0.8750 -0.4330

0.6250 0.2165 0.7500

R

 
   
  

, 
2

0.6399 -0.2351 -0.6159

0.2860 0.5854 -0.4970

0.3221 0.2488 0.7132

R

 
   
  

, 

3

0 0 1

0.8660 0.5000 0

-0.500 0.8660 0

R

 
   
  

, 
4

0.0238 0.1524 0.9880

-0.3030 -0.9407 0.1524

0.9527 -0.3030 0.0238

R

 
   
  

 

 
a. Are these (within practical numerical limits) valid rotation matrices? Why? 

 
 

b. If yes, determine the Roll, Pitch, and Yaw that define each matrix.  Do you 
believe their values? 

                                                 
1 http://petercorke.com/Robotics_Toolbox.html 
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Fig. 2.6. Distortions arising under central projection. Images of a tiled floor, (a) Similarity: the 
circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or 
perpendicular have the same relative orientation in the image, (h) Affine: The circle is imaged as an 
ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square 
tiles, which are parallel in the world are parallel in the image, (c) Projective: Parallel world lines are 
imaged as converging lines. Tiles closer to the camera have a larger image than those further away. 

which is a quadratic form x'TC'x' with C' = H~TCH_1. This gives the transformation 
rule for a conic: 

Result 2.13. Under a point transformation x' = Hx, a conic C transforms to 
C/ = H-TCH-1. 

The presence of H_1 in this equation may be expressed by saying that a conic transforms 
covariantly. The transformation rule for a dual conic is derived in a similar manner. 
This gives: 

Result 2.14. Under a point transformation x! = Hx, a dual conic C* transforms to 
C*' = HC*HT. 

2.4 A hierarchy of transformations 

In this section we describe the important specializations of a projective transformation 
and their geometric properties. It was shown in section 2.3 that projective transforma­
tions form a group. This group is called the projective linear group, and it will be seen 
that these specializations are subgroups of this group. 

The group of invertible n x n matrices with real elements is the (real) general linear 
group on n dimensions, or GL(n). To obtain the projective linear group the matrices 
related by a scalar multiplier are identified, giving PL(n) (this is a quotient group of 
GL(n)). In the case of projective transformations of the plane n = 3. 

The important subgroups of PL(3) include the affine group, which is the subgroup 
of PL{3) consisting of matrices for which the last row is (0, 0,1), and the Euclidean 
group, which is a subgroup of the affine group for which in addition the upper left hand 
2 x 2 matrix is orthogonal. One may also identify the oriented Euclidean group in 
which the upper left hand 2 x 2 matrix has determinant 1. 

We will introduce these transformations starting from the most specialized, the 
isometries, and progressively generalizing until projective transformations are reached. 
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This defines a hierarchy of transformations. The distortion effects of various transfor­
mations in this hierarchy are shown in figure 2.6. 

Some transformations of interest are not groups, for example, perspectivities (be­
cause the composition of two perspectivities is a projectivity, not a perspectivity). This 
point is covered in section A7.4(p632). 

Invariants. An alternative to describing the transformation algebraically, i.e. as a ma­
trix acting on coordinates of a point or curve, is to describe the transformation in terms 
of those elements or quantities that are preserved or invariant. A (scalar) invariant of a 
geometric configuration is a function of the configuration whose value is unchanged by 
a particular transformation. For example, the separation of two points is unchanged by 
a Euclidean transformation (translation and rotation), but not by a similarity (e.g. trans­
lation, rotation and isotropic scaling). Distance is thus a Euclidean, but not similarity 
invariant. The angle between two lines is both a Euclidean and a similarity invariant. 

2.4.1 Class I: Isometries 

Isometries are transformations of the plane IR2 that preserve Euclidean distance (from 
iso = same, metric— measure). An isometry is represented as 

( x'\ 
y' = 

V i / 

where e = ± l . Ife = l then the isometry is orientation-preserving and is a Euclidean 
transformation (a composition of a translation and rotation). If e = —1 then the isome­
try reverses orientation. An example is the composition of a reflection, represented by 
the matrix diag(—1,1,1), with a Euclidean transformation. 

Euclidean transformations model the motion of a rigid object. They are by far the 
most important isometries in practice, and we will concentrate on these. However, the 
orientation reversing isometries often arise as ambiguities in structure recovery. 

A planar Euclidean transformation can be written more concisely in block form as 

e cos 9 — sin 6 tx ' fx 
esin6> cos 9 ty y 

0 0 1 { i 

x' = H„x = R t 
0T 1 x (2.7) 

where R is a 2 x 2 rotation matrix (an orthogonal matrix such that RTR = RRT = I), 
t a translation 2-vector, and 0 a null 2-vector. Special cases are a pure rotation (when 
t = 0) and a pure translation (when R = I). A Euclidean transformation is also known 
as a displacement. 

A planar Euclidean transformation has three degrees of freedom, one for the rotation 
and two for the translation. Thus three parameters must be specified in order to define 
the transformation. The transformation can be computed from two point correspon­
dences. 

Invariants. The invariants are very familiar, for instance: length (the distance be­
tween two points), angle (the angle between two lines), and area. 
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Groups and orientation. An isometry is orientation-preserving if the upper left 
hand 2 x 2 matrix has determinant 1. Orientation-preserving isometries form a group, 
orientation-reveraVig ones do not. This distinction applies also in the case of similarity 
and affine transformations which now follow. 

2.4.2 Class II: Similarity transformations 

A similarity transformation (or more simply a similarity) is an isometry composed with 
an isotropic scaling. In the case of a Euclidean transformation composed with a scaling 
(i.e. no reflection) the similarity has matrix representation 

(2.1 
(x'\ SCOS0 —ssin^ tx ] X 

y' \ = s sin 0 s cos 0 y y 

[i 0 0 i Vi 
This can be written more concisely in block form as 

x Hqx = 
sR t 
0T 1 x (2.9) 

where the scalar s represents the isotropic scaling. A similarity transformation is also 
known as an equi-form transformation, because it preserves "shape" (form). A planar 
similarity transformation has four degrees of freedom, the scaling accounting for one 
more degree of freedom than a Euclidean transformation. A similarity can be computed 
from two point correspondences. 

Invariants. The invariants can be constructed from Euclidean invariants with suitable 
provision being made for the additional scaling degree of freedom. Angles between 
lines are not affected by rotation, translation or isotropic scaling, and so are similarity 
invariants. In particular parallel lines are mapped to parallel lines. The length between 
two points is not a similarity invariant, but the ratio of two lengths is an invariant, 
because the scaling of the lengths cancels out. Similarly a ratio of areas is an invariant 
because the scaling (squared) cancels out. 

Metric structure. A term that will be used frequently in the discussion on reconstruc­
tion (chapter 10) is metric. The description metric structure implies that the structure 
is denned up to a similarity. 

2.4.3 Class III: Affine transformations 

An affine transformation (or more simply an affinity) is a non-singular linear transfor­
mation followed by a translation. It has the matrix representation 

(2.10) 
1 \ 

0,n Ol2 tx ' / X 

y' ) = 021 «22 ty y 
1 / 0 0 1 U 
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Fig. 2.7. Distortions arising from a planar affine transformation, (a) Rotation by R(9). (b) A defor­
mation R(—<j>) DR(<̂ >). Note, the scaling directions in the deformation are orthogonal. 

or in block form 

x' = HAx = A t 
0T 1 x (2.11) 

with A a 2 x 2 non-singular matrix. A planar affine transformation has six degrees of 
freedom corresponding to the six matrix elements. The transformation can be com­
puted from three point correspondences. 

A helpful way to understand the geometric effects of the linear component A of 
an affine transformation is as the composition of two fundamental transformations, 
namely rotations and non-isotropic scalings. The affine matrix A can always be decom­
posed as 

A = R(0)R(-0)DR(0) (2.12) 

where R(0) and R((f>) are rotations by 6 and (f> respectively, and D is a diagonal matrix: 

" Ax 0 
0 A2 

This decomposition follows directly from the SVD (section A4A(p5S5j): writing A — 
UDVT = (UVT)(VDVT) = R(0) (R(-0) DR(0)), since U and V are orthogonal matrices. 

The affine matrix A is hence seen to be the concatenation of a rotation (by <p); a 
scaling by Ai and A2 respectively in the (rotated) x and y directions; a rotation back 
(by —(f)); and finally another rotation (by 0). The only "new" geometry, compared to 
a similarity, is the non-isotropic scaling. This accounts for the two extra degrees of 
freedom possessed by an affinity over a similarity. They are the angle <f> specifying the 
scaling direction, and the ratio of the scaling parameters Ai : A2. The essence of an 
affinity is this scaling in orthogonal directions, oriented at a particular angle. Schematic 
examples are given in figure 2.7. 
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Invariants. Because an affine transformation includes non-isotropic scaling, the sim­
ilarity invariants of length ratios and angles between lines are not preserved under an 
affinity. Three important invariants are: 

(i) Parallel lines. Consider two parallel lines. These intersect at a point 
(xi,x2,0)T at infinity. Under an affine transformation this point is mapped 
to another point at infinity. Consequently, the parallel lines are mapped to lines 
which still intersect at infinity, and so are parallel after the transformation. 

(ii) Ratio of lengths of parallel line segments. The length scaling of a line seg­
ment depends only on the angle between the line direction and scaling direc­
tions. Suppose the line is at angle a to the x-axis of the orthogonal scaling 

direction, then the scaling magnitude is y Af cos2 a + A2, sin2 a. This scaling is 
common to all lines with the same direction, and so cancels out in a ratio of 
parallel segment lengths. 

(iii) Ratio of areas. This invariance can be deduced directly from the decomposi­
tion (2.12). Rotations and translations do not affect area, so only the scalings by 
Aj and A2 matter here. The effect is that area is scaled by A] A2 which is equal to 
det A. Thus the area of any shape is scaled by det A, and so the scaling cancels 
out for a ratio of areas. It will be seen that this does not hold for a projective 
transformation. 

An affinity is orientation-preserving or -reversing according to whether det A is positive 
or negative respectively. Since det A = A^\2 the property depends only on the sign of 
the scalings. 

2.4.4 Class IV: Projective transformations 

A projective transformation was defined in (2.5). It is a general non-singular linear 
transformation of homogeneous coordinates. This generalizes an affine transformation, 
which is the composition of a general non-singular linear transformation of inhomoge-
neous coordinates and a translation. We have earlier seen the action of a projective 
transformation (in section 2.3). Here we examine its block form 

x' = HPx A t 
vT v 

(2.13) 

where the vector v = (vi,v2)
T. The matrix has nine elements with only their ratio 

significant, so the transformation is specified by eight parameters. Note, it is not always 
possible to scale the matrix such that v is unity since v might be zero. A projective 
transformation between two planes can be computed from four point correspondences, 
with no three collinear on either plane. See figure 2.4. 

Unlike the case of affinities, it is not possible to distinguish between orientation 
preserving and orientation reversing projectivities in P 2 . We will return to this point 
in section 2.6. 
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Invariants. The most fundamental projective invariant is the cross ratio of four 
collinear points: a ratio of lengths on a line is invariant under affinities, but not un­
der projectivities. However, a ratio of ratios or cross ratio of lengths on a line is a 
projective invariant. We return to properties of this invariant in section 2.5. 

2.4.5 Summary and comparison 

Affinities (6 dof) occupy the middle ground between similarities (4 dof) and projectivi­
ties (8 dof). They generalize similarities in that angles are not preserved, so that shapes 
are skewed under the transformation. On the other hand their action is homogeneous 
over the plane: for a given affinity the det A scaling in area of an object (e.g. a square) 
is the same anywhere on the plane; and the orientation of a transformed line depends 
only on its initial orientation, not on its position on the plane. In contrast, for a given 
projective transformation, area scaling varies with position (e.g. under perspective a 
more distant square on the plane has a smaller image than one that is nearer, as in 
figure 2.6); and the orientation of a transformed line depends on both the orientation 
and position of the source line (however, it will be seen later in section 8.6(p213) that 
a line's vanishing point depends only on line orientation, not position). 

The key difference between a projective and affine transformation is that the vector 
v is not null for a projectivity. This is responsible for the non-linear effects of the 
projectivity. Compare the mapping of an ideal point (x1; x2, 0)T under an affinity and 
projectivity: First the affine transformation 

X] 

0 
(2.14) 

Second the projective transformation 

(2.15) 

In the first case the ideal point remains ideal (i.e. at infinity). In the second it is mapped 
to a finite point. It is this ability which allows a projective transformation to model 
vanishing points. 

2.4.6 Decomposition of a projective transformation 
A projective transformation can be decomposed into a chain of transformations, where 
each matrix in the chain represents a transformation higher in the hierarchy than the 
previous one. 

H — Ho HA HP — 
sK t " 
0T 1 

K 0 " 
0T 1 

I 0 " 
V T V 

= 
A t ' 

V T V 
(2.16) 

with A a non-singular matrix given by A = sRK + 1 vT, and K an upper-triangular matrix 
normalized as det K = 1. This decomposition is valid provided v ^ 0, and is unique if 
s is chosen oositive. 
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Each of the matrices Hs, HA, HP is the "essence" of a transformation of that type (as 
indicated by the subscripts S, A, P). Consider the process of rectifying the perspective 
image of a plane as in example 2.12: HP (2 dof) moves the line at infinity; HA (2 dof) 
affects the affine properties, but does not move the line at infinity; and finally, Hs is a 
general similarity transformation (4 dof) which does not affect the affine or projective 
properties. The transformation HP is an elation, described in section A7.3(p631). 

Example 2.15. The projective transformation 

H = 
1.707 0.586 1.0 
2.707 8.242 2.0 

1.0 2.0 1.0 

may be decomposed as 

2 cos 45° - 2 sin 45° 1 
2 sin 45° 2 cos 45° 2 

0 0 1 

0.5 1 0 " " 1 0 0 
0 2 0 0 1 0 
0 0 1 1 2 1 

A 

This decomposition can be employed when the objective is to only partially deter­
mine the transformation. For example, if one wants to measure length ratios from the 
perspective image of a plane, then it is only necessary to determine (rectify) the trans­
formation up to a similarity. We return to this approach in section 2.7. 

Taking the inverse of H in (2.16) gives H_1 = H~l H ̂ H"1. Since HP ,H andHs 

still projective, affine and similarity transformations respectively, a general projective 
transformation may also be decomposed in the form 

H - H H H - I 0 l K ° l [ s R t l OM) 
H — H P H A H S — T T T (2.1/) 

Note that the actual values of K, R, t and v will be different from those of (2.16). 

2.4.7 The number of invariants 

The question naturally arises as to how many invariants there are for a given geometric 
configuration under a particular transformation. First the term "number" needs to be 
made more precise, for if a quantity is invariant, such as length under Euclidean trans­
formations, then any function of that quantity is invariant. Consequently, we seek a 
counting argument for the number of functionally independent invariants. By consid­
ering the number of transformation parameters that must be eliminated in order to form 
an invariant, it can be seen that: 

Result 2.16. The number of functionally independent invariants is equal to, or greater 
than, the number of degrees of freedom of the configuration less the number of degrees 
of freedom of the transformation. 
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Group Matrix Distortion Invariant properties 

Concurrency, collinearity, order of contact: 
intersection (1 pt contact); tangency (2 pt con­
tact); inflections 
(3 pt contact with line); tangent discontinuities 
and cusps, cross ratio (ratio of ratio of lengths). 

Affine 
6dof 

O-ll 0,12 tx 

«21 «22 ty 

. 0 0 1 

Parallelism, ratio of areas, ratio of lengths on 
collinear or parallel lines (e.g. midpoints), lin­
ear combinations of vectors (e.g. centroids). 
The line at infinity, loo. 

Similarity 
4dof 

srn sr,2 tx 

sr 2 i sr22 ty 

0 0 1 

—* Ratio of lengths, angle. The circular points, I, J 
(see section 2.7.3). 

Euclidean 
3dof 

" ru rV2 tx 

r-n r22 ty 

0 0 1 
*••/ Length, area 

LI 

Table 2.1. Geometric properties invariant to commonly occurring planar transformations. The 
matrix A = [oy] is an invertible 2 x 2 matrix, R = [r^] is a 2D rotation matrix, and (tx,ty) a 2D trans­
lation. The distortion column shows typical effects of the transformations on a square. Transformations 
higher in the table can produce all the actions of the ones below. These range from Euclidean, where 
only translations and rotations occur, to projective where the square can be transformed to any arbitrary 
quadrilateral (provided no three points are collinear). 

For example, a configuration of four points in general position has 8 degrees of freedom 
(2 for each point), and so 4 similarity, 2 affinity and zero projective invariants since 
these transformations have respectively 4, 6 and 8 degrees of freedom. 

Table 2.1 summarizes the 2D transformation groups and their invariant properties. 
Transformations lower in the table are specializations of those above. A transformation 
lower in the table inherits the invariants of those above. 

2.5 The projective geometry of ID 

The development of the projective geometry of a line, P 1 , proceeds in much the same 
way as that of the plane. A point x on the line is represented by homogeneous coordi­
nates (xi, x2)T , and a point for which x% = 0 is an ideal point of the line. We will use 
the notation x to represent the 2-vector (x\, x2)

T. A projective transformation of a line 
is represented by a 2 x 2 homogeneous matrix, 

X = H 2 x 2 x 

and has 3 degrees of freedom corresponding to the four elements of the matrix less one 
for overall scaling. A projective transformation of a line may be determined from three 
corresponding points. 

Projective 
8dof 

/ i n hu hiS 

h-21 fl22 h23 
h3i h32 h33 




