
Chapter 5 

. Dynamics 

5.1 Introduction 

The study of manipulator dynamics is essential for both the analysis of 
performance and the design of robot control. A manipulator is a multi­
link, highly nonlinear and coupled mechanical system. In motion, this 
system is subjected to inertial, centrifugal, Coriolis, and gravity forces, 
which can greatly affect its performance in the execution of a task. If 
ignored, these dynamics may also lead to control instability, especially 
for tasks that involve contact interactions with the environment. Our 
goal here is to model the dynamics and establish the manipulator equa­
tion of motion in order to develop the appropriate control structures 
needed to achieve robot's stability and performance. 

There are various formulations for modeling the dynamics of manipula­
tors. We will discuss a recursive algorithm based on the Newton-Euler 
formulation, and present an approach for the explicit model, based on 
Lagrange's formulation. These two methodologies are similar to the re­
cursive and explicit approaches we presented earlier for the kinematic 
model and the Jacobian matrix. 

In the N ewton-Euler method, the analysis is based on isolating each link 
and considering all the forces acting on it. This analysis is similar to the 
previous study of static forces, which lead to the relationship between 
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Figure 5.1: Link's Dynamics 

end-effector forces and joint torques, Le. T = JTF. The difference with 
the previous analysis is that now we must account for the inertial forces 
acting on the manipulator links. 

For link i, we consider the forces fi and fi +1, and the moments ni and 
ni+l acting at joints i and i + 1. Because of the motion of the link, we 
must include the inertial forces associated with this motion. Let Pi and 
Ni be the inertial forces corresponding to the linear motion and angular 
motion respectively, expressed at the center of mass of the link. These 
dynamic forces are given by the equations of Newton (linear motion) 
and Euler (angular motion), 

(5.1) 

(5.2) 

where mi and Ci I are the mass and link's tensor of inertia at the center 
of mass. 

Similarly to the static analysis we have seen, recursive force and mo­
ment relationships can be developed, and internal forces and moments 
can be. eliminated by projection on the joint axis, 
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{ 
nt Zi for a revolute joint 

7i = f; Zi for a prismatic joint 
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(5.3) 

The N ewton-Euler algorithm consists of two propagation phases. A for­
ward propagation of velocities, accelerations, and dynamic forces. Back­
ward propagation then eliminates internal forces and moments. Internal 
forces are transmitted through the structure. 

Lagrange's formulation relies on the concept of energy, the kinetic en­
ergy K and the potential energy U of the system. The kinetic energy 
is expressed in terms of the manipulator mass matrix M and the gen­
eralized velocities q in the following quadratic form, 

K l'TM' = -q q 
2 

Given the potential energy V, the Lagrangian is 

L=K-V 

and Lagrange's equations of motion are 

(5.4) 

(5.5) 

(5.6) 

where T is the vector of applied generalized torques. Both formalisms, 
N ewton-Euler and Lagrange, lead to the same set of equations, which 
can be developed in the form 

Mq+V+g=T (5.7) 

where g is the vector of gravity forces ·and v is the vector of centrifugal 
and Coriolis forces. These equations provide the relationship between 
torques applied to the manipulator and the resulting accelerations and 
velocities. 

Analysis of Lagrange's equations shows that the coefficients involved 
in v can be obtained from M. This reduces the problem to finding M 
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and g. The mass matrix M can be directly found from the total kinetic 
energy of the mechanism, and g can be determined simply from static 
analysis. This provides an explicit form of the equation of motion. 

5.2 Newton-Euler Formulation 

Newton's equation provides a description of the linear motion. Euler's 
equation, which describes the angular motion, involves the notion of 
angular momentum and the link_'s inertia tensor. 

5.2.1 Linear and Angular Momentum 

a 
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Figure 5.2: A particle's dynamics 

Let us start with a simple particle. The kinetic energy of a particle 
with a velocity v is 1/2mv2 . Newton's law gives us the equation for 
the acceleration of the particle a with respect to an inertial frame, given 
an applied force F 

ma=F 



5.2. NEWTON-EULER FORMULATION 129 

This equation can be also written in terms of the linear momentum, 
mv of this particle. The rate of change of the linear momentum is equal 
to the applied forces, 

(5.8) 

p 

o 
Figure 5.3: Angular Momentum Computation 

To introduce the angular momentum, we take the moment of the forces 
that appear on both sides of the above equation. The moment N of 
F with respect to some point 0 is the cross product of the vector p 
locating the particle and the vector F. Taking the moment with respect 
to the same point of the left hand side of the equation yields 

p x mv = p x F = N (5.9) 

Let us· consider the rate of change of the quantity p x mv, 

d ( ) .. . dt p x mv = p x mv + v x mv = p x mv (5.10) 

This yields 
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d 
dt(P x mv) = N (5.11) 

The quantity p x mv is the angular momentum with respect to 0 of 
the particle. Thus the rate of change of the angular momentum is equal 
to the applied moment. This equation complements the one above for 
the rate of change of the linear momentum and the applied forces. 

5.2.2 Euler Equation 

To develop Euler's equations, we must extend our previous result to the 
rigid body case. A rigid body can be treated as a large set of particles, 
and the previous analysis can be extended to the sum over this set. 

p 

Figure 5.4: Rigid body rotational motion 

Let us consider the angular. motion of a rigid body rotating with respect 
to some fixed point 0 at an angular velocity w. The linear velocity, Vi, 

of a particle i of this rigid body is w x Pi. where Pi is the position 
vector for the particle with respect to O. The angular momentum, ~, 
of the rigid body - the sum of the angular momentums of all particles 
- is 
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(5.12) 

Let us assume that the mass density of the rigid body is p. The mass mi 
can be approximated by the product of the density of the rigid body p 
by a small volume dv occupied by a particle. Integrating over the rigid 
body's volume, V, we obtain 

<P= Jp~(WXp)pdv (5.13) 
v 

Observing that w is independent of the variable in this integral, and 
replacing p x by the cross product operator p, yields 

<P = [J -pppdv]w (5.14) 
v 

The quantity in brackets is called the inertia tensor of the rigid body, 
!, hence 

1 = [J -pppdv] 
v 

Finally, the angular momentum of this rigid body is 

<P =!w (5.15) 

Euler's equations for the rotational motion with respect to some point 
o state that the rate of change of the angular momentum of the rigid 
body is equal to the applied moments 

<P=!w+wx!w=N (5.16) 

Together with Newton's law, these equations provide the description of 
the linear and angular motions for a manipulator, subjected to external 
forces. 
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5.2.3 Inertia Tensor 

The inertia tensor I is defined by 

1= J -pppdv 
v 

The quantity -pp can be computed as 

The inertia tensor is therefore 

I = J [(pT p)I3 - ppT]pdv 
v 

(5.17) 

(5.18) 

(5.19) 

Let us consider a Cartesian representation for the position vector p, 

p = [~] (5.20) 

The term in the integral is 

-xz 1 
-yz J 

x2 +y2 
(5.21 ) 

The inertia tensor I is represented by the" matrix 

(5.22) 

where 



5.2. NEWTON-EULER FORMULA'rION 133 

lxx = fff (y2 + z2)pdxdydz (5.23) 

lyy = f ff (Z2 + x2)pdxdydz (5.24) 

Izz = fff (x2 + y2)pdxdydz. (5.25) 

lxy = fff xypdxdydz (5.26) 

lxz = fff xzpdxdydz (5.27) 

lyz = fff yzpdxdydz (5.28) 

lxx, Iyy) and Izz are called the moments of inertia and I xy , Iyz and Izx are 
called products of inertia. When the matrix I is diagonal, the diagonal 
moments of inertia are called the principal moments of inertia. 

Parallel Axis Theorem 

Because of the symmetries generally found in rigid bodies, it is more 
efficient to compute the body's inertia tensor with respect to its center 
of mass. If needed with respect to another point and axes, the inertia 
tensor can be obtained from the tensor computed at the center of mass 
through a translation and rotation transformation, determined by the 
parallel axis theorem. 

Assuming the the inertia tensor has been computed with respect to the 
frame {C} (at the body's center of mass), to find the inertia tensor 
with respect to another frame· {A}, whose axes are paraJlel to,those of 
{ C}, we can proceed as follows. 

Let Pc be the vector locating point C in frame {A}. The parallel axis 
theorem states: 
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{A} 

Figure 5.5: Parallel Axis Theorem 

A I = c j + m[(p~PC)I3 - PCP~] (5.29) 

If (XCl YCl ZC) are the Cartesian coordinates of point C in frame {A}, the 
relationships between the two tensors are 

AI CI' (2 2) 
zz = zz + m Xc + Yc (5.30) 

A Ixy = C Ixy + mxcYc (5.31) 

Rotation Transformation Let us consider the case where we wish 
to express the inertia tensor with respect to another frame rotated with 
respect to the rigid body frame. The angular momentum expressed in 
frame {A} is 

Let's express this quantity in a ·frame {E}, having the same origin as 
{ A} and obtained by a rotation ~ R, 
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where 

thus 

also 

finally 

The relationship described above is a similarity transformation. _For a 
general frame transformation involving both translation and rotation. 
We first proceed with a translation using the parallel axis theorem, and 
then apply the similarity transformation for the rotation. 

5.3 Lagrange Formulation 

Given a set of generalized coordinates, q, describing the configuration 
of a mechanism, there is a set of corresponding generalized forces, I, 

acting along (or about) each of these coordinates. If the coordinate qi 
represents the rotation of.a revolute joint, the corresponding force Ii 

would be a torque acting about the joint axis. For a prismatic joint, Ii 

is a force acting along the axis of the joint. 

Lagrange's equations involve a scalar quantity L, the Lagrangian, which 
represents the difference between the two scalars corresponding to the 
kinetic energy K and the potential energy V of the mechanism, 

L=K-V (5.32) 



136 CHAPTER 5. DYNAMICS' 

The Lagrangian, L is a function, of the generalized coordinates q and 
the generalized velocities, q. 

L= L(q, 4) 

For an n DOF mechanism, the Lagrange formulation provides the n 
equations of motion in the following from 

(5.33) 

Since the potential ene!gy (due to the gravity) is only dependent on 
the configuration, these equations can be written as 

d 8K 8K 8V 
-(-)--+-=T 
dt 84 8q 8q 

(5.34) 

The first two terms define the inertial forces associated with the motion 
of the mechanism, and the third term represents the gradient of the 
gravity potential act~ng on it. This gradient is the gravity force vector. 

For a single mass m with a velocity v, the kinetic energy is 1/2( vT mv). 
In the case of a multi-link manipulator with a mass matrix M and 
generalized velocities, 4, the kinetic energy is the scalar given by the 
quadratic form 

K l'TM' = -q q 
2 

U sing this expression of K we can write 

8K 8 (l.T . . 
84 = 84 2q M(q)q) = Mq 

Differentiating with respect to ti!Ile we obtain: 

~(8K) = M" M' 
dt 84 q + q 

(5.35) 

(5.36) 

(5.37) 
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The inertial forces in the equation of Lagrange can be expressed as 

This equation can be developed in the form 

"d(8K) 8K M" (.) 
dt 8q - 8q = q + v q, q 

where v is the vector of centrifugal and Coriolis forces given by 

[

.TOM.] . 1 q oql q 

v(q,q) =Mq- 2. : 
-TaM' q oqn q 

(5.38) 

(5.39) 

(5.40) 

Finally adding the inertial and gravity terms in the Lagrange equations, 
yields 

M(q)q + v(q, q) + g(q) = T (5.41 ) 

The vector of centrifugal and Coriolis forces can be expressed as 

v(q, q) = C(q) [q2] + B(q)[qqJ (5.42) 

5.3.1 Explicit Form of the Mass Matrix 

The mass matrix M plays a central role in the dynamics of manipulator. 
In particular, the elements of the matrices Band C can be completely 
determined from this matrix. 

Because of its additive property, the kinetic energy of the total system 
is the sum of the kinetic energies associated with its links. 
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----~--~ 

~ 

Figure 5.6: Explicit Form 

n 

K=LKi (5.43) 
i=l 

The kinetic energy of a link has two components: one that is due to 
its linear motion, and the second due to its rotational motion. If the 
linear velocity of the center of mass of a link is v Ci' and if the angular 
velocity of the link is Wi, the kinetic energy, Ki of this link is 

(5.44) 

where I Ci is the inertia tensor of link i computed with respect to the 
link's center of mass, Ci . The linear velocity at the center VCi can be 
expressed as a linear combination of the joint velocities, q. Introducing 
a Jacobian matrix, JVi , corresponding to the linear motion of the center­
of-mass of link i, the velocity vector VCi can be written as 

(5.45) 

where 

0] (5.46) 
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In this matrix, the columns i + 1 to n in JVi are zero columns, since 
the velocity v Ci at the center of mass of link i is independent of the 
velocities of joint i + 1 to joint n. Similarly the angular velocity can be 
expressed as 

(5.47) 

where 

(5.48) 

Using these.expressions, the kinetic energy becomes 

(5.49) 

Factoring out the generalized velocities, the kinetic energy can be ex­
pressed as 

K = ~({[t(m;J~Jvi + J~IGJwJlq 
i=l 

(5.50) 

Equating this expression to the quadratic form of the kinetic energy 
leads to the following explicit form of the mass matrixM, 

n 

M = L (miJ~Jvi + J~IciJwi) (5.51) 
i=l 

The mass matrix M is a symmetric positive definite matrix, i.e. mij ~ 

mji and qT Mq > 0 for q -=I- 0 
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5.3.2 Centrifugal and Coriolis Forces 

We now consider the relationships between the matrices Band C with 
the matrix M. These relationships can be obtained from the develop­
ment of equation 5.40 defining the vector of centrifugal and Corio lis 
forces 

v(q,q)=Mq-~ [qT~~ql 
·T8M· 
q 8qn q 

This equation involves time derivatives and partial derivatives of the 
elements mij of the matrix M. We denote by mijk the partial derivatives 

(5.52) 

The time derivative of an element mij is 

To simplify the development, let us consider the case of a 2 DOF ma­
nipuiator. The mass matrix is 

(5.53) 

The vector v of centrifugal and CoTiolis forces is 

These expressions can be developed in the form 
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v(q,q) _ [i(ffill1 + ffiUl - ffiud i(ffi122 + ffi122 ~ ffi221)] [~~] + 
2(ffi211 + ffi211 - ffiU2) 2 (ffi222 + ffi222 - ffi222) q2 

[
ffi112 + ffil21 - ffi121] [£il(.h] (5.54) 
ffi212 + ffi221 - ffi122 

Expansion in this form shows a pattern of grouping of coefficients that 
leads to the following representation of Christoffel symbols, 

(5.55) 

Using these symbols the equation above can be written as: 

(5.56) 

In this equation, the first matrix corresponds to the matrix C of the 
coefficients associated with centrifugal forces, and the second matrix 
represents the matrix B corresponding to the the coefficients of Coriolis 
forces. In this case of 2 DOF, the matrix C is of dimension (2 x 2) and 
B is (2 xl). 

In the general case of n DO F, C is an (n x n) matrix, while B is of 
dimensions n x (n x (n--,})n). Using these matrices, the vector v is 

v(q, q) = C(q)[q2] + B(q) [qq] I (5.57) 

[ce] is the symbolic representation of the n x 1 vector of components 
q} (square joint velocities), 

[q2JT = [qf q~ q; ... q~JT 

[qq] is the ((n-;l)n x 1) vector of product of joint velocities 
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The general forms of the matrices Band Care 

[ bill 
b1,22 

bl,nn 1 
C(q) = b2;U b222 b2nn , , 

bn 11 bn 22 ... bn,nn , , 

and 

r 2b1,12 2b1,13 2bI,1n 2b1,23 2b12n , 

l2b212 2b213 2b2,ln 2b223 2b22n 
B(q) = .' 

, , , 

2bn,I2 2bn 13 2bn In 2bn,23 2bn,2n , , 

(5.58) 

2b1,(n-1)n 1 
2b2'(~-I)n J 

2bn,(n-1)n 
(5.59) 

Because of the properties of the mass matrix, many of the elements 
bijk are zero. This symmetric, positive definite matrix represents the 
inertial properties of the manipulator with respect to joint motion. For 
. instance, if joint 1 was revolute, ml1 would represent the inertia (mass 
. if it were prismatic) of the whole manipulator as it rotates about the 
joint axis 1. mu is independent of the first joint, but varies with the 
configuration of the links following in the chain (q2, q3, ... , qn) . Simi-
larly m22 depends only on q3, ... ,qn, and m(n-1)(n-l) depends only on 
'"qn' Finally mnn is a constant element. These properties result in a 
:number of zero 'partial derivatives of the elements of the mass matrix, 
and leads to significant simplification of the elements involved in Band 
C. 

5.3.3 Gravity Forces 

The gravity forces are the gradient of the potential energy of the mech­
anism. The potential energy of link i increases with the elevation of 
its center of mass. This energy is proportional to the mass, the gravity 
constant, and to the height of the center of mass. 

(5.60) 



5.3. LAGRANGE FORMULATION 143 

Pq. 

)«'1-........--____... - - - - - - - - - - - - - - - - - - - - -

Figure 5.7: Potential Energy 

Where 110 represents the potential energy at some reference level. The 
height is given as the projection of the position vector POi along the 
gravity direction, _ 

(5.61) 

The potential energy of the whole manipulator is 

V=2:Vi (5.62) 
i 

Using the matrix JVi , the gradient of the potential energy is 

g == - (J~ (
mIg) 

JT ... JT) m29 . 
V2 Vn : 

mn 9 

(5.63) 
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Figure 5.8: Gravity Vector 

Direct Computation of g The gravity forces can be directly also 
by considering the gravity at the link's as weights acting at each link's 
center of mass. The gravity forces can then be directly computed as 
the torques needed to compensate for these weights. This leads 

(5.64) 

5.3.4 Example: 2-DOF RP Manipulator 

The links of the RP manipulator shown in Figure 5.9 have total masses 
of ml and m2. The center of mass of link 1 is located at a distance II 
from the joint axis 1, and the center of mass of link 2 is located at the 
distance d2 from the joint axis 1. The inertia tensors of these links are 

o 
Iyyl 
o 

o ) (IXX2 o ; and 212 = 0 
Izzl 0 

o 
Iyy2 
o 

o ) o . 
Izz2 

The. Mass Matrix M The mass matrix M can be obtained by ap­
plying equation 5.51 to this 2 DOF manipulator: 



5.3. LAGRANGE FORMULATION 145 

Figure 5.9: 2 DOF RP Manipulator 

M = mlJ~ Jvl + J~lIIJwl + m2 J'£Jv2 + J'5212Jw2. 

Jv1 and Jv2 are obtained by direct differentiation of the vectors: _ 

In frame {O}, these matrices are: 

This yields 

m (0 JT 0 1 ) = [mIlr 01 
1 vI vI 0 0; 

The matrices Jwl and Jw2 are given by 
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Joint 1 is revolute and joint 2 is prismatic. In frame {O}, these matrices 
are: 

o J wi = 0 J w2 = [~ ~]. 
Noting that for this planar mechanism I JwI = 0 Jw1 and I Jw2 = 0 Jw2 

yields 

( 2JT 2121 )' [lzz2 0] 
w2 2 w2 0 O' 

Finally, the matrix lv! is 

M = [mlli + 1zz1 + m2d~ + 1zz2 0]. 
o m2 

Centrifugal and Coriolis Vector v The Christoffel Symbols are 
defined as 

1 8m·· 
bi,jk = 2(mijk+m~kj-mjki); where mijk = 8q~J; with biii = biji = O. 

For this manipulator, only ml1 (see matrix M) is configuration depen­
dent - a function of d2 . This implies that only mU2 is non-zero, 

, 

Matrix B 

Matrix C 

Vector V 
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The Gravity Vector g 

In frame {a}, the gravity vector is 

and 

Equations of Motion 

5.3.5 Example: 2-DOF RR Equations of Motion 

The masses of the links are ml and m2' The center of mass for the first 
- link is located on the second joint axis at a distance II from the fixed 

origin. The distance from the second joint axis to the center of mass of 
link 2 is denoted by l2' The inertia tensors of the links are II and 12 . 

o 
1yyl 
o 

o ) (IXX2 o ; and 212 = 0 
1zz1 0 

o 
Iyy2 
o 

o ) o . 
1zz2 
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. Figure 5.10: 2-DOF RR Equations of Motion 

Matrix M . The mass matrix M is obtained by applying equation 5.51 . 

. We compute JVI and JV2 by direct differentiation of PCI and PC2 0 

In frame {O}, these matrices are: 

This yields 
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( 0 TO ) - [mlli 01. ml Jv1 Jv1 - 0 0) 

The matrices J w1 and Jw2 are given by 

Both joints are revolute. In frame {O}, these matrices are: 

and since 1 JwI = 0 Jw1 and 1 Jw2 = 0 Jw2 ) we have 

. (1 JT I I I1. ) = [IzZI 0] 
wI 1 wI 0 0; 

Finally, the matrix Mis 

M = [mIL? + Izzl + r;!2(li + l~ + 2lt l2C2 ) + Izz2 m2(l~ i l1l2C2) + Izz2] 
m2(l2 + hl2C2 ) + Izz2 l2 m2 + Izz2 . 

·Centrifugal and Coriolis Vector v The Christoffel Symbols are 
defined as 

1 8mij 
bi,jk = '2 (mijk+mikj -mjki); where mijk = 8qk ; with biii = biji = O. 

Matrix B 
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\Matrix C 

C _ [ 0 
- b211 

b122 ] 1 ( ) o ; b211 = '2 -m112; andb122 = m122; 

Vector v 

The Gravity Vector g 

In frame {O}, the gravity vector is 

and 
0G = [[(m1 + m2)l1C1 + m 2l2C12]9] 

m2 l2C12g . 

'Equations of Motion 

hC1 + l2C12 
l2C 12 

[
mllf + Izzl + m2(lf.+ l~ + 2l1l2C2) + Izz2 m2(l§ t lll2C2) + Izz2] [~1] 

m2(l~ + l1l2C2) + Izz2 l2 m 2 + Izz2 fh . 

[ -2l1 l2m 2S2] [·.rd:.·.·.·.· ..•• iJ] [ 0. -ltbm
2
S2 ] [~f] + 0 1 2 + lt l2mJ2S2 0 e~ + 

[ 
((ml + m2)h C1 ~ m 2l 2C12]9] = [T1] 

m2 l2C12g T2 . 




