
Chapter 4 

The Jacobian 

4.1 Introduction 

We have thus far established the mathematical models for the forward 
kinematics and-inverse kinematics of a manipulator. These models 
describe the relationships between the static configurations of a mech
anism and its end-effector. The focus in this chapter is on the models 
associated with the velocities and static forces of articulated mecha
nisms and the Jacobian matrix which is central to these models. 

Assuming the manipulator is at a given configuration, q, let us imagine 
that all its joints undertook a set of infinitesimally small displacements, 
represented· by the vector oq. At the end-effector, there will be a cor
responding set of displacements of the position and orientation x, rep
resented by the vector ox. The goal in this chapter is to establish the 
relationship between ox and oq. "By considering the time derivatives of 
x and q, this same relationship can be viewed as a relationship between 
the velocities x and q. The relationship between x and q is described 
by the Jacobian matrix. Because of the duality between forces and 

81 



82 CHAPTER 4. THE JACOBIAN 

velocities, this matrix as we will see later in this chapter is key to the 
relationship between joint torques and end-effector forces. 

4.2 Differential Motion 

{n} 
...... ~ 

Figure 4.1: A Manipulator 

Let us consider the function f that maps the space defined by variable 
q to the space defined by the variable x. Both q and x are vector 
variables (n and m- dimensional resp.), related by 

(

Xl 1 ( 11 (q) 1 X2 I2(q) 
· . · . · . . 

Xm fm(q) / 

(4.1) 

As described above we can consider the infinitesimal motion of the 
relationship x = f ( q). If we write it for each component of x and q 
we can derive the following set of equations for JXl, t5.x2, ... ,Jxm as 
functions of Jql, bq2, ... , bqn 

(4.2) 
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The above equations can be written in vector form as follows 
\ 

!ill] 
8qn 

: 6q 
8im 
8qn 
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(4.3) 

. (4.4) 

The matrix in the above relationship is called the Jacobian matrix and 
is function of q. 

of 
J(q) = oq (4.5) 

In general, the Jacobian allows us to relate corresponding small dis
placements in different spaces. If we divide both sides of the relation
ship by small time interval (Le. differentiate with respect to time) we 
obtain a relationship between the velocities of the mechanism in joint 
and Cartesian space. 

(4.6) 

4.2.1 Example: RR Manipulator 

Figure 4.2: A 2 link example 
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The Jacobian is a mxn matrix from its definition .. To illustrate the Ja
cobian, let us consider the following example. Take a two link manipu
lator in the plane with revolute joints and axis of rotation perpendicular 
to the plane of the paper. Let us first derive the positional part of a 
Jacobian. First from the forward kinematics we derive the description 
of the position and orientation of the end-effector in Cartesian space 
with respect to the joint coordinates 01 and O2 , 

x - hC1 + l2C12 

y h S 1 + l2 S 12 

The instantaneous motion of the position vector (x, y) is 

6x - -(hS 1 + l2812)601 - l2812582 

5y (hc1 + l2C12)501 + hC12582 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

If we group the coefficients in front of 581 and 582 we obtain a matrix 
equation which can be written as 

5x = [~:] = [-; ~!~:~2] (~~~) ( 4.11) 

The 2x2 matrix in the above equation is the Jacobian, J(q). 

ox = J(q)5q ( 4.12) 

As we can see this matrix is a function of the vector q = (81 , 82 ), 

(4.13) 

Now if we consider the differentiation w. r. t. time, we can write the 
relationship between x and q. 

x= J(q)q (4.14) 
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4.2.2. Example: Stanford Scheinman Arm 

As another example, we describe below the Jacobian associated with the 
end-effector position of the Stanford Scheinman arm . The first three 
joint variables here are 81 , 82 and d3 . From the forward kinematics we 
can observe that the position of the end-effector as a function of 81 , 82 

and d3 is: 

( 4.15) 

If we differentiate with respect to the joint vector (81, 82 , d3 , 84 ,85 ) 86 ) 

we obtain the following Jacobian for the position of the end-effector. 

41 

G) [ ~y C1 C2d3 c1 8 2 0 0 

~] 
42 

xp = 81 C2d3 81 8 2 0 0 43 ( 4.16) - 44 
-s2d3 C2 0 0 q5 

46 

We defined the position part as xp and the corresponding part of the 
Jacobian will be denoted as Jp • 

( 4.17) 

For the orientation we will derive a Jacobian associated with the end
effector orientation representation, x r . 

(4.18) 

In our example the orientation part is given in terms of direction cosines 
(Tn, T12, ... ,T33)' When we differentiate those w. T. t. the joint variables, 
we will obtain the Jacobian for this orientation representation. 



86 CHAPTER 4. THE JACOBIAN 

(4.19) 

( 4.20) 

This is a 9 x 6 matrix because we are using the redundant direction 
cosines representation for the orientation. As time derivatives the re
l~tionship between q and xr (the derivative of the orientation) is de
scribed by Jr (Jacobian of the orientation). Finally we can put the 
position and the orientation part together below. 

Xp - Jp(q)q 
Xr Jr(q)q 

The above equations can be combined as 

We can see that this Jacobian is a 12 x 6 matrix. 

(4.21) 

( 4.22) 

(4.23) 

(4.24) 

. We should also note that so far we have not used any explicit frame in 
which we are describing those quantities, i.e. these equations are valid 
for any common frame that the variables are described in. 

The above matrix is clearly dependent on the end effector representa
tion. If we have selected a different representation for the orientation 
or the position of the end-effector we will obtain a different Jacobian 
matrix. 
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of(q) 
x = f(q) ---t Jx = -oq 

87 

Typically the position, xp is represented by the three Cartesian coordi
nates of a point on the end- effector (x, y, z). However we can also use 
spherical or cylindrical coordinates for that end-effector point and this 
will lead to a different Jacobian Jp . The orientation can be also de
scribed by different sets of parameters - Euler angles, direction cosines, 
Euler parameter, equivalent axis parameters, etc. 

Depending on the representation used we will have different dimension 
of the orientation component of the Jacobian - 3 x n for Euler angles, 
9 x n for direction cosines, 4 x n for Euler parameters or equivalent 
axis parameters, where n is the number of degrees of freedom of the 
mechanism. 

4.3 Basic Jacobian 

We will introduce a unique Jacobian that is associated with the motion 
0,£ the mechanism. 

As we mentioned earlier, the Jacobian we have talked so far about 
depends on the representation used for the position and orientation of 
the end-effector. 

If we use spherical coordinates for the position and direction cosines for 
the orientation we will obtain one Jacobian (12 for 6 DOF robot) very 
different from the one that results from Cartesian coordinates for the 
position and Euler parameters for the orientation (7 x 6 matrix for a 6 
DOF robot). 

Defined from the differentiation of x = f( q) with respect to q, the 
Jacobian is dependent on the representation x of the end-effector po
sition. and orientation. Since the kinematic properties of a mechanism 
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are independent of the selected representation, it is important for the 
kinematic model to also be representation-independent. The Jacobian 
associated with such a model is unique. This Jacobian will be called 
the basic Jacobian. 

The basic Jacobian matrix establishes the relationships between joint 
velocities and the corresponding (uniquely-defined) linear and angular 
velocities at a given point on the end-effector. 

( :) = JO(Q)(6xn)<l(nx1) 
(6x 1) 

( 4.25) 

Linear velocities are the time derivatives of the Cartesian coordinates 
of the end-effector position vector. However this is not the case for 
any orientation representation. For example if we take (a, f3, ry) Euler 
angles, their derivatives are not the angular velocities. In fact angular 
velocities do not have a primitive function, no representation of the 
orientation has derivatives equal to the angular velocities. The angu
lar velocity is defined as an instantaneous quantity. However) the time 
derivative of any representation of the orientation is related to the an
gular velocity. This is a,lso the case for general position representation. 
These relationships are of the form 

Xp - Ep(xp)v 

xT = Er(xr)w 

( 4.26) 

( 4.27) 

Here ip is the time derivative of the position part of the end-effector 
representation and ir is the time derivative of the orientation part. The 
matrices Ep and Er are only dependent on the particular position or 
orientation representation of the end-effector. Using Ep and Er we will 
be able to obtain the Jacobian for the particular representation as a 
function of the basic Jacobian. 

4.3.1 Example: Ep , Er 

As an illustration, if for example we use Cartesian coordinates for the 
end-effector position and a - f3 - ry Euler angles for the end-effector 
orientation 
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Xp= G) 
xr=(~) 

the corresponding matrices for Ep' and Er are: 

Ep(Xp) = (~ 
0 

D 1 
0 

( sa.c~ ca.c(3 
-~ s/3 

Er(xr) = ca sa 
sa ca 
s/3 - s/3 D 

As mentioned earlier Ep is the unit 3 x 3 matrix for that 

example. 

4.3.2 Relationship: Jx and Jo 

The basic Jacobian, Jo, is defined as 

89 

( 4.28) 

(4.29) 

(4.30) 

(4.31 ) 

(4.32) 

We will denote Jvand Jw as the linear and angular velocity parts of 
this matrix. 

(4.33) 

Using the definitions of Ep and Er above 
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( 4.34) 

and 

(4.35) 

we can derive the following relationships between Jp and Jr and, the 
basic Jacobian's components Jv and Jw . 

(4.36) 

The above relationships can also be arranged in a matrix form by in
trodticing the matrix E(6X6) 

(4.37) 

Using E, the relationship between Jx and the basic Jacobian Jo becomes 

Jx ( q) = E(x)Jo( q) (4.38) 

with 

( 4.39) 

For the example above 

( 4.40) 

and 

E = (1 0) o Er 
(4.41 ) 
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4.4 Linear / Angular Motion 

In this section we further analyze the linear and angular velocities as
sociated with multi-body systems. Let us consider a point P described 
by a position vector p with respect to the origin of a fixed frame {A}. 
If the point P is moving with respect to frame {A}, the linear velocity 
of the point P with respect to frame {A} is the vector v P / A. As a vec
tor, the linear velocity can be expressed in any frame - {A}, { B}, { C} 
with the coordinates Avp/A, B vp/ A1 GVP/ A ' The relationships between 
these coordinates, involve the rotation transformation matrices intro
duced earlier. Naturally if the point P is fixed in frame {A}, the linear 
velocity vector of P with respect to {A} will be zero. 

{A} 

{C~ 
I CV~/~ 

Figure 4.3: Linear Velocity 

4.4.1 P.ure Translation 

Let us now consider a pure translation of frame {A} with respect to 
another frame {B}. The linear velocity of point P with respect to {B} 
is Vp/B. If v A/B represents the velocity of the origin of frame {A} with 
respect to frame {B}, the two vectors of linear velocities of point P 
with respect to {A} and {B} are related by 
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VPIB = vAIB + vPIA 

{8} 

Figure 4.4: Pure Translation 

4.4.2 Pure Rotation 

To analyze the rotation of a rigid body, we need to define a point fixed 
in the body an4 an axis of rotation passing through this point. The 
body rotates about this axis and all the points along this axis are fiXed 
w. r. t. this rotation. This rotation is described by a quantity called 
angular velocity, represented by the vector n. 
A point P on the rotating rigid body is moving with a linear velocity 
Vp, which is dependent on the magnitude of n and on the location of 
P with respect to the axis of rotation. 

Different points on the rigid body will have different linear velocities. If 
we select a point 0 in the body along the axis of rotation the position 
vector. p measured from 0 to P will be perpendicular to the linear 
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Q Angular Velocity 

fixed point 

Figure 4.5: Rotational Motion 

velocity vector v p' In addition from mechanics we know that the vector 
v p is also. perpendicular to the axis of rotation and in particular to n 
(the angular velocity vector). The magnitude of v p is proportional to 
the magnitude of n (the rate of rotation) and to the distance to the axis 
of rotation, in other words to the magnitude of p sine ¢), as illustrated 
in Figure 4.5. Here ¢ is the angle between the axis of rotation and the 
position vector p. Thus we can derive the following relationship 

vp = n x p ( 4.42) 

Using the dttfinition of cross product operator, the above vector rela
tionship can be described in the matrix form as 

vp := n x p =} Vp = Qp ( 4.43) 

For instance. let us consider the components of vectors, nand p. 
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n=(g:] and p=[~:] ( 4.44) 

With the cross product operator, the linear velocity of a point P is 

Vp = Dp= [ ~z 
-fly 

(4.45) 

4.4.3 Cross Product Operator and. Rotation Ma
trix 

Consider the rotation matrix between a frame fixed with respect to the 
rigid axis and frame moving with the rotated body. The cross product 
operator D can be expressed in terms of this rotation matrix. 

Q 

p 

Figure 4.6: Rot~tion and Cross Product 

Consider a pure rotation about an axis with an angular velocity n. Let 
P be a point fixed in body B. Then the velocity of P in B is zero, i.e. 
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VPjB = 0 ( 4.46) 

The representations Bp and Ap of the position vector p in frames {A} 
and {B} are related by the rotation matrix ~R 

( 4.47) 

Let us differentiate w. r. t. time the above relationship 

Noting that the second term is equal to zero (since VPjB = 0), the 
relationship becomes 

Transforming Bp to Ap by pre-multiplication of ~RT~R = 1, yields 

Ap _ ~R (1) Bp = ~R (~RT~R) Bp (4.48) 

Ai> _ ~R~RT(~RBp) = (~R~RT)Ap (4.49) 

The above relationship can be written in vector form for any rotating 
frame 

(4.50) 

Observing that p is linear velocity of Vp, we obtain 

(4.51 ) 
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4.4.4 Example: Rotation About Axis Z 

Consider the rotation of frame about the axis Z of a fixed franle. Mea
sured by the angle e, the corresponding rotation matrix is 

CO -se 

D R= s~ ce 
0 

( 4.52) 

The derivative w. r. t. time is 

( -soo -cOB 

D R= C~B -sOB 

° 
( 4.53) 

or 

( 4.54) 

Clearly vector w here is just 

(4.55) 

and we can verify that 

(
0 -8 000) n= ~ ~ (4.56) 

Thus the relationship above is verified. 

(4.57) 
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4.5 Combined Linear and Angular Motion 

Now we consider motions involving both linear and angular velocities, 
as illustrated in Figure 4.7. 

{A} 

Figure 4.7: Linear and Angular Motion 

The corresponding relationship is: 

Vp/A = VBjA + Vp/B + n x PB (4.58) 

In order to perform thi~ addition we need to have all quantities ex
pressed in the same reference frame. In frame {A} the eqliation is 

A A ARB An ARB 
VPjA = VElA + B VPjB + HE X B PB (4.59) 

4.6 Jacobian: Velocity Propagation 

When we have several rigid bodies connected in a mechanism, we need 
to propagate the velocities from frame {O} to fr arne {n}. 
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{n} 

{O} .. ~ 
'. 
~'~"'. V 

(0 

Figure 4.8: A Spatial Mechanism 

The linear and angular velocity at the end-effector can be computed 
by propagation of velocities through the links of the manipulator. By 
computing and propagating linear and angular velocities from the fixed 
base to the end-effector, we establish the relationship between joint 
velocities and end- effector velocities. This provides an iterative method 
to compute the Basic J acobiari. 

Consider two consecutive links i and i + 1. 

{i+ 1} Zi+1 

Figure 4.9: Velocity Propagation 

The angular velocity of link i + 1 is equal to the angular velocity of link 
i plus the local rotation of link i + 1 represented by [li+l. 
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( 4.60) 

This local rotation is simply given by the derivative 8i +1 of the angle 
of rotation of the link along the axis of rotation Zi+l. 

( 4.61) 

For the linear velocity the expression is slightly more complicated. The 
linear velocity at link i + 1 is equal to the one at link i plus the contri
bution of the angular velocity of1ink i (Wi X Pi+d plus the contribution 
of the local linear velocity associated with a prismatic joint (this is 
di+lZi+d if joint i + 1 was prismatic. 

( 4.62) 

If we use these equations we can propagate them from the beginning 
to the end of the chain. If the computation of velocities is done in the 
local frame, the result will be obtained in frame {n}. The end-effector 
linear and angular velocities in the base frame are 

( 4.63) 

The above expressions are linear functions of q, from which the basic 
Jacobian can be extracted. This iterative procedure is suitable for 
numerical computations of the Jacobian. The procedure, however, does 
not provide a description of the special structure of the J aco bian matrix. 
The next section addresses this aspect and presents a method for an 
explicit form of the Jacobian. 

4.7 Jacobian: Explicit Form 

Consider a general mechanism and let us examine how the velocities at 
the joints affect the linear and angular velocities at the end-effector. 
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v. 
------~ q 

\ 

\ v. 
} 

Figure 4.10: Explicit Form of the Jacobian 

The velocity of a link with respect to the proceeding link is dependent 
on the type of joint that connects them. If the joint is a prismatic one, 
then the link linear velocity with respect to the previous link is along 
the prismatic joint axis, Zi with a magnitude of <ii. 

( 4.64) 

Similarly for a revolute joint the angular velocity is about the revolute 
joint axis with a magnitude of qi. 

( 4.65) 

The local velocity at each joint contributes to the end effector velocities. 
A revolute joint creates both an angular rotation at the end:effector and 
a linear velocity. The linear velocity depends on the distance between 
the end-effector point and the joint axis. It involves the cross product 
of Oi with the vector locating this point. The angular velocity, ni 

is transfered down the chain to the end-effector. A prismatic joint j 
creates only a linear velocity Vj that gets transfered down to the end
effector. 

The total contribution of joint velocities of the mechanism to the end
effector linear velocity is therefore 
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.n 

V = L [tiVi + Ei(ni x Pin)] (4.66) 
i=1 

Similarly the end-effector angular velocity is the sum 

n 

W = LEini (4.67) 
i=1 

Substituting the expressions of Vi and ni from equations 4.64 and 4.65, 
we obtain 

n 

V = L [tiZi + Ei(Zi X Pin)]qi (4.68) 
i=1 

n 

W = L EiZiqi (4.69) 
i=1 

The end-effector velocity is: 

or 

and it can be written as: 

(4.72) 
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where Jv is the linear motion Jacobian. Similarly the end-effector an
gular velocity is: 

(4.73) 

or 

(4.74) 

and it can be written as: 

(4.75) 

where Jw is the angular motion Jacobian. Combining the linear and 
angular motion parts leads to the basic Jacobian 

{V = Jv~ } --? (V) = Jq 
w = Jwq w 

(4.76) 

or 

( 4.77) 

The equations provide the expressions for the matrices Jv and Jw . The 
derivation of the matrix Jv involves new quantities PIn, P2n, ... ,Pnn 
that need to be computed. 

A simple approach to compute Jv is to use the direct differentiation of 
the Cartesian coordinates of the point on the end-effector 

(~) . axp . axp . axp . 
(4.78) V = Xp = --ql + --q2 + ... + --qn 

aql aq2 aqn 

V - ( axp axp aXP ) . - J . ( 4.79) aql aq2 aqn q - vq 



4.7. JACOBIAN: EXPLICIT FORM 103 

For Jw all that we need is to compute the z-vectors associated with 
revolute joints. Overall the Jacobian takes the form 

( 4.80) 

Note that E is zero for a revolute joint and one for a prismatic one. To 
express the Jacobian in particular frame, all we need is to have all the 
quantities expressed in that frame. 

. . . !!2E) &qn . 

- ° •.. En Zn 
(4.81 ) 

The components of. °Zi can be found as °Zi . = ? RiZi (iZi is of course 
( 0 0 1 )). Thus all we need for the angular motion Jacobian is the 
last column of the rotation matrix. 

(~) = ( ~) G) (4.82) 

( 4.83) 

with 

Z= G) (4.84) 

The overall Jacobian is then found as: 

(4.85) 
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4.7.1 Example: Stanford Scheinman Arm 

As we have shown previously, we first introduce frames, define the 
D&H parameters and calculate the D&H table. Then we calculate 
the transformation matrices, namely: 

[ Cl 

-81 0 

1] ~T= ~ 
C1 0 

(4.86) 
0 1 
0 0 

[ C2 

-82 0 

t] . ~T=· 0 0 1 
(4.87) 

-82 c2 0 
0 0 0 

~T= [1 
0 0 

-f3] 0 -1 
(4.88) 

1 0 
0 0 

[ C4 

-84 0 

1] ~T= ~ 
C4 0 

( 4.89) 
0 1 
0 0 

[ C5 

-85 0 

1] ~T= 0 
0 1 

(4.90) 
-85 -Cs 0 

0 0 0 

~T= [~ 
-86 0 

1] 
0 -1 

(4.91) 
86 Cs 0 
0 0 0 

Next we express each of the frames w,r.t. the {O} frame, i.e. we calcu-
late the transformation matrices: 
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[ C]C2 
-C1 8 2 -81 

-Sld2
] 

gT= 81 C2 -81 8 2 C1 C1 d2 

-82 -C2 0 0 
0 0 0 1 

(4.92) 

[ CIC2 
-81 C1 8 2 c1d3s2 - Sld2 ] 

. 0T = 81 C2 Cl 81 8 2 81 d382 + C1 d2 

3 -82 0 C2 d3C2 

0 0 0 1 

(4.93) 

[CIC2C4 - 81
8

4 -C1C28 4 - 81 C4 C1 8 2 cld3s2 - Sld2 ] 

~T= 81 C2C4 + C1 8 4 -81C28 4 + CIC4 81 8 2 81d3 8 2 + C1 d2 (4.94) 
-82C4 82 C4 C2 d3C2 

0 0 0 1 . 

[~ 
X -C1 C2 8 4 - 81 C4 ' c1d3S2 - Sld2 ] 

~T= 
X -81 C2 8 4 + C1 C4 81 d3 8 2 + C1 d2 (4.95) 
X 828 4 d3C2 

0 0 1 

~T= [~ 
X C1 C2C4 S 5 -'818485 + C1 S 28 5 C1 d3

S
2 - Sld2 ] 

X S1 C2C4 S 5 + C1 S4 S 5 + 81 8 28 5 8 1d3s 2 + c1d2 (4.96) 
X -82C4 8 5 + CSC2 d3C2 

0 0 1 

As we can see the origin of frame {3} is the same as the one for {4}, {5} 
and {6}. All we need to keep for the computation of the orientation is 
just the third column of the transformation matrices. Now we can fill 
the 6 x 6 Jacobian in this case using the information above. 

(4.97) 

As we can see the 3 x 1 representation of the third orientation vector 
is 0 (since it is a prismatic link). Similar ly, we easily fill the rest of 
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th t . ft' f 0 0 0 d ax p ax p ax p Th e ma fIX as a unc Ion 0 ZI, Z2,····, Z6 an f) 'f) '-f)' ese ql q2 q3 

expressions can be easily calculated using the transforms we calculated 
before. The Jacobian, J, is 

-cid2 - 81 8 2d3 C1 C2d3 C1 8 2 0 0 0 
-81d2 + C1 8 2d3 81 C2d3 81 8 2 0 0 0 

0 -82d3 C2 0 0 0 
0 -81 0 q 8 2 -81 C2 8 4 + C1 C4 C1 C2C4 85 - 81 84 85 + C1 8 28 5 

0 Cl 0 81 8 2 -81C2 84 + CIC4 81C2C4 8 5 + q 8 4 85 + 818285 

1 0 0 C2 82 84 -82C4 8 5 + C5 C2 

Of course, all quantities in this matrix are expressed in frame {a}. 
Note that the vertical dimension of the basic Jacobian depends on the 
number of DOF of the mechanism, while the horizontal one is six (3 
for the position and 3 for the orientation). 

4.7.2 Jacobian in a Different Frame 

As we mentioned above, we may want to express the Jacobian in dif
ferent frames. The transformation matrix between two frames is 

(4.98) 

In practice the best frame to compute the Jacobian is in the middle 
of the chain because that makes the expressions of the elements of the 
Jacobian least complicated. Moving to frame {O} can be done using 
the above transformation. 

4.8 Kinematic Singularities 

The work space of a manipulator generally contains a number of par
ticular configurations that locally limits the end-effector mobility. Such 
configurations are called singular configurations. At a singular configu
ration, the end-effector locally loses the ability to move along or rotate 
about some direction in Cartesian space. 
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Note that these singularities are related to the kinematics of the ma
nipulator and are obviously different from the singularities of the repre
sentation we have discussed earlier, which uniquely arise from the type 
of the selected representation. 

For example the kinematic singularities for a 2 DOF revolute arm (see 
Figure 4.11) are the configurations where the two links are collinear. 
The end-effector cannot move along the common link direction. 

Another example of singularity is the wrist singularity, which is common 
for the Stanford Scheinman Arm and the PUMA. This is the config
uration when axis 4 and axis 6 are collinear, the end-effector cannot 
rotate about the normal to the plane defined by axes 4 and 5. 

In such configurations, instantaneously the end-effector cannot rotate 
about that axis. In other words even though we can vary the joint 
velocities, the resulting linear or angular velocity at the end effector will 
be zero. Since the Jacobian is the mapping between these velocities, the 
analysis of kinematic singularities is closely connected to the Jacobian. 

At a singular configuration, some columns of the Jacobian matrix be
come linearly dependent and the Jacobian losses rank. The phenomenon 
of singularity can then be studied by checking the determinant of the 
Jacobian, which is zero at singular configurations. 

det[J( q)] = 0 (4.99) 

Consider again the example of the 2 DOF revolute manipulator illus
trated in Figure 4.11. 

From simple geometric considerations we derive the coordinates of the 
end-effector point. 

This leads to the Jacobian 

(4.100) 

(4.101) 
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(X,Y) 

Figure 4.11:2 DOF Example 

(4.102) 

We now express the Jacobian in frame {I} to further simplify its ex
pression. 

with 

(4.103) 

Thus: 

(4.104) 

The above expressions show how the manipulator approaches a singu
larity as the angle ()2 goes to zero. When 82 = 0 the first row becomes 
( 0 0) and the rank of the Jacobian is 1. 

( 4.105) 
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Note that the determinant of the Jacobian does not depend on the 
frame where the matrix is defined. 

(4.106) 

Consider a small joint displacement (ofh, 082 ) from the singular configu
ration. The corresponding end-effector displacement (ox, oy) expressed 
in frame {1} is 

(8x) ( 0 
lty = h + l2 

0)( 8111 ) 
l2 082 

(4.107) 

Thus: 

lox = 0 ( 4.108) 

and 

loy = (It + l2)081 + l2082 ( 4.109) 

4.9 Jacobian at Wrist/End-Effector 

The point at the end-effector, where linear and angular velocities are 
evaluated, varies with the robot's task, grasped object, or tools. Each 
selection of the end-effector point corresponds to a different Jacobian. 
The simplest Jacobian corresponds to the wrist point. The wrist point 
is fixed with respect to the end-effector and the Jacobian for any other 
point can be computed from the wrist Jacobian. 

Consider a point E at the end-effector located with respect to the wrist 
point (origin of frame {n}) by a vector pwe· The linear velocity, Ve at 
point E is 

Ve = V n + Wn X Pne (4.110) 
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Figure 4.12: Jacobian at the End-effector 

Since the angular velocity is the same at both points (E being fixed 
with respect to W), we have 

{
Ve = V n - Pne X Wn 

We =Wn 

Replacing Pne x. by the cross product operatorpne yields 

4.9.1 Example: 3 DOF RRR Arm 

(4.111) 

(4.112) 

Let us consider the 3 DO F revolute planar mechanism shown in Fig
ure 4.13. 

The position coordinates of the end-effector wrist point are 

Xw - II C1 + l2C12 

Yw - hSl + l2 8 12 

(4.113) 

( 4.114) 
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~E 

~W 

Figure 4.13: 3 DOF Example 

at the end-effector point i~: 

XE - hC1 + l2 C12 + la c123 

YE - lt81 + l2 8 12 + l3 8 123 

The Jacobian in frame {O} for the wrist point is 

-l18 1 - l28 12 -l28 12 

itc1 + l2 C12 l2 C12 

Jw= 
0 0 
0 0 
0 0 
1 1 

0 
0 
0 
0 
0 
1 

111 

(4.115) 

(4.116) 

( 4.117) 

To get the Jacobian at the end-effector We will use vector Pw E in frame 
{a}: 

(4.118) 

Thus the cross product operator is 
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(4.119) 

The Jacobian at point E is 

Here: 

(4.121) 

If we perform the multiplications we obtain the following 3 columns 
for the Jacobian associated with the linear velocity and the overall 
Jacobian follows .. 

(4.122) 

We can verify these results using the time derivatives of (x, y, z) as 
before. 

4.10 Static Forces 

Another application of the Jacobian is to define the relationship be
tween forces applied at the end-effector and torques needed at the joints 
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to support these forces. We described the relationship between linear 
velocities and angular velocities at the end-effector and the joint veloc
ities. Here we consider the relationship between end-effector forces and 
moments as related to joint torques. We will denote by f and n the 
static force and moment applied by the end-effector to the environment. 
T1, T2, ... , Tn are the torques needed at the joints of the manipulator to 
produce f and n. 

4.10.1 Force Propagation 

Figure 4.14: Static Forces 

One way to establish this relationship is through propagation of the 
forces along the kinematic chain, similar to the velocity propagation 
from link to link. In fact as we will see later in considering the dynamics 
of the manipulator, velocities are propagated up the kinematic chain 
after which forces are propagated back in the opposite direction. As 
we propagate we can eliminate internal forces that are supported by 
the structure. This is done by projecting all forces at the joints. To 
analyze the static forces, let us imagine that we isolate the links of the 
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manipulator into components, which can be treated as separate rigid 
bodies. 

Figure 4.15: Force and Moments Cancellation 

For each rigid body, we will consider all forces and moments that act 
on it and will then set the conditions for bring it to equilibrium. Let 
us consider the .rigid body'i (link i). In order for this rigid body to be 
at equilibrium, the sum of all forces and moments with respect to any 
point on the rigid body must be equal to zero. For link i, we have 

(4.123) 

We select the origin of frame {i} for the moment computation. This 
leads to the equation 

( 4.124) 

The above two relationships' can be written'recursively as follows: 

(4.125) 
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-f· 1 1+ -no 1 1+ 

Link i 

f· I 
Figure 4.16: Link Equilibrium 

( 4.126) 

We need to guarantee that we eliminate in these equations the compo
nents that will be transmitted to the ground through the structure of 
the T11echanism. We will do that by projecting the equations along the 
joint axis and propagating these relationships along the kinematic chain 
from the end-effector to the ground. These relationships are as follows: 
For a prismatic joint Ii = fl Zi and for a revolute joint Ii = n; Zi. 

For link n 

and for link i 

nfn' = nf 

n lln = nn + n pn+1 X n f 
(4.127) 

( 4.128) 
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i i i+l i i 
lli = i+l R lli+l + Pi+l X fi 

(4.129) 

(4.130) 

This iterative process leads to a linear relationship between end-effector 
forces and moments and joint torques. The analysis of this relationship 
shows that it is simply the transpose of the Jacobian matrix. 

where F is the vector combining end-effector forces and moments. The 
above relationship is the dual of the relationship we have established 
earlier between the end-effector linear angular velocities and joint ve
locities. 

Earlier we derived similar equations for propagating angular and linear 
velocities along the links. These equations are 

(4.131) 

(4.132) 

Starting from the first fixed link, we can propagate to find the veiocities 
at the end-effector, and then extract the Jacobian matrix. 

4.10.2 Example: 3 DOF RRR Arm 

Let us illustrate this method on the 3 DOF revolute manipulator we 
have been using in this Chapter. 

For the linear velocity we obtain: 

VPl - 0 

V P2 V PI + WI X P2 
V P3 - V P2 + W2 X P3 

( 4.133) 

(4.134) 

(4.135) 
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{O} 

Figure 4.17: Example of Velocity Propagation 

or 

o . 
[

0 

VP2 = 0+ ~ (4.136) 

and 

0vPa [ ~:~:1 ] 01 + [~ ~1 ~] (01 + 02)O~3 (4.137) 

°vPa ~ [~:F] 01+ [~:~:~2 ] (01 + O2 ) (4.138) 

The angular velocities are simple since they are all rotations about the 
Z-axis perpendicular to the plane of the paper. 

(4.139) 
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In matrix form 

( 4.140) 

and 

(4.141) 

from which we obtain the Jacobian: 

( 4.142) 

This Jacobian is clearly the same as previously calculated using the 
explicit method. 

4.10.3 Virtual Work 

The relationship between end-effector forces and joint torques can be 
directly established using the virtual work principle. This principal 
states that at static equilibrium the virtual work of all applied forces is 
equal to zero. 

The virtual work principal allows to avoid computing and eliminating 
internal forces. Since internal forces do not produce any work, they are 
not involved in the analysis. 

J oint torques and end-effector forces are the only applied or active forces 
for this mechanism. Let F be the vector of applied forces and moments 
at the end-effector, 

F= (~) ( 4.143) 
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At static equilibrium, the virtual work is 

( 4.144) 

Note that the minus sign is due to the fact that forces at the end effector 
are applied by the environment to the end-effector. 

Using the relationship 

bx = lbq 

yields 

(4.145) 

This is an important relationship not only for the the analysis of static 
forces but also for robot control. 

4.11 More on Explicit Form: Jv 

We have seen how the linear motion Jacobian, lv, can be obtained from 
direct differentiations of the end-effector position vector. We develop 
here the explicit form for obtaining this matrix. The expression for the 
linear velocity was found in the form 

n 

V - L [EiZi + Ei(Zi X Pin)]£ii (4.146) 
i=l 

v - [EIZI + El(Zl X Pln)]ql + [E2Z2 + E2(Z2 X P2n))q2 + 
.... + [EnZn + En(Zn x Pnn)]qn (4.147) 

and the corresponding Jacobian is 

Jv = [EIZI + El (Zl X PIn) .. . EnZn + En(Zn X Pnn) ] q 
I 

(4.148) 
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In this form, Jv is expressed in terms of the Zi vectors and Pin vectors 
associated with the various links. Combining the linear and angular 
parts, the Jacobian J is 

( 

(€lZl + ~IZl X Pin) 

EIZl 

EnZn ). 

EnZn 

(4.149) 

To express this matrix in a given frame, all vectors should be evaluated 
in that frame. The cross product (Zi X Pin) can be evaluated in frame 
{i}. Again, since the components in {i} of Zi are independent of frame 
{i}, we define 

Z =i Zi = G ~1 ~). 
The components in frame {i} of cross product vectors (Zi X Pin) are 
simply (Z i pin ). 

The components in the frame {i} of the vector Pin are given in the last 
column of the transformation ~T. 

The expression in frame {OJ of the Jacobian matrix, oJ is given by 

4.11.1 Stanford Scheinman Arm Example 

Applying the explicit form of Jv to the Stanford Scheinman arm, we 
can easily (by setting the num~rical values of Ei) write the Jacobian as 

o~J (4.151) 
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P13 is given in ~T in frame {I} 

( C2 

0 82 
d

3
S

2
) 

~T= (0 §R Ip13) = 0 1 0 d2 

0 0 1 -82 0 C2 d3C2 

0 0 0 1 

( 4.152) 

To express (Zl x P13) in frame {O}, we have 

(4.153) 

The computation of iZi x i I{n in frame {i} is simply 

(0 -1 0) (P) (-P) 
(iZi X ip) = ~ ~ ~ ~: = ~ y (4.154) 

For lZI x i PIS, this computation is 

(4.155) 

and 

(4.156) 

In frame {O} this is 
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For O(Z2 x P23), we can similarly obtain 

( 4.158) 

and 

(4.159) 

Since 

(4.160) 

we obtain 

(4.161) 

Finally Z3 in frame {O} is 

(4.162) 

The Jacobian in frame {O} is, as expected, the same as the one derived 
earlier: 



4.11. MORE ON EXPLICIT FORM: Jv 123 

-qd2 - 81 8 2d 3 C1 C2d 3 C1 82 0 0 0 
-81d2 + q82d 3 81 C2d 3 81 8 2 0 0 0 

0 -82d 3 C2 0 0 0 
0 -81 0 C182 -81 C2 84 + C1 C4 C1 C2C4 8 5 - 818485 +C1 828 5 

0 C1 0 81 8 2 -81C2 84 + C1 C4 81 C2C4 85 + C1 84 85 +81 8 285 

1 0 0 C2 82 84 -82C4 8 5 + C5 C2 

There is yet another approach to compute the vectors· Pin) this is dis
cussed in the next section. 

4.11.2 Pin Derivation 

Figure 4.18: Computing Pin 

The computation in ,frame {i} of the vector Pin requires ~ T, However, 
this transformation is often not explicitly available, as only the ma
trices: ~T, ~T, ... , ?T, ... , ~ T are computed. In this case, it is more 
efficient to express Pin as i 

Pin = xp - POi· 

The vector xp and POi are expressed in frame {O}, °POi is given in ?T. 
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The computation of (2R Z i pin ) that appears in (4.150) can then be 
replaced by 




