
p 

104 Dynamics 

5.2. Lagrangian Formulation of Manipulator Dynamics 

5.2.1. Lagrangian Dynamics 

In the Newton-Euler formulation, the equations of motion are derived from Newton's 

Second Law, which relates force and momentum, as well as torque and angular momentum. 

The resulting equations involve constraint forces, which must be elimiu3.ted in order t.o obtain 

closed-form dynamic equations. In the Newton-Euler formulation, the equations are ' not 

expressed in terms of independent variables, and do not include input joint. t.orques expliciUy. 

Arithmetic operations are needed to derive the closed-form dynamic equations. This represents 

a complex procedure which requires physical intuition, as discussed in the previous section. 

An alternative to the Newton-Euler formulation of manipulat.or dynamics is the 

Lagrangian formulation , which describes the behavior of a dynamic syst.em in t.erms of work 

and energy stored in the system rather than of forces and moment.a of the individual members 

involved. The constraint forces involved in the system are automatically eliminated in the 

formulation of Lagrangian dynamic equations. The closed-form dynamic equations can be 

derived systematically in any coordinate system. 

Let qI' ... ,qn be generalized coordinates that completely locat.e a dynamic system. 

Let T and U be the total kinetic energy and potential energy stored in the dynamic system. 

We define the Lagrangian L by 

(5-20) 

Note that, since the kinetic and potential energies are fUllctions of qi and qi ' (i = 1. ... ,I!) , 

so is the Lagrangian L. Using the Lagrangian, equations of motion of the dynamic system are 

given by 

i=l,' . . ,n (;)-21) 

where Q i IS the generalized force corresponding to the generalized coordinate qi ' The 
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Yo 
Figure 5-11: Centroidal velocity and angular veloity of link i. 

generalized force can be id entified by considering the virtu al work done by non-conse rv ative 

forces acting on the system. 

5.2.2. The Manipulator Inertia Tensor 

In this section and the f.ollowing section, we derive the equatiOl:s of motion of a 

manipulator arm using the Lagrangian. We begin by deriving the kinetic energy stored ill a n 

individual arm link. As shown in Figure 5-6, let v ci and wi be the 3 X 1 velocity vecto r o f th e 

centroid and the 3 X 1 angular velocity vector with reference t o the base C'oordinat e fr am e, 

which is an inertial reference frame . The kinetic energy of link j is then given by 

1 TIT T. = - m·v . v . + - w· I. W . 
I 2 I CI CI 2 I I I 

(S-22) 

where m i is the mass of the link and Ii is the 3 X 3 inertia t ensor at the centroid expressed in 

the base coordinates. The first t erm in the above equation accounts for the kinetic energy 

resulting from the translational motion of the mass 7II j , while the second term represents the 

kinetic energy resulting from rotation about the centroid. The total kinetic energy stored in 

the whole arm linkage is then given by 

(5-23) 

i=l 

since energy is additive. 
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The expression for the kinetic energy is written in terms of the velocity and angular 

velocity of each link member, which are not independent variables, as mentioned in the 

previous section . Let us now rewrite the above equations in terms of an independent [lnd 

complete set of generalized coordinates, namely joint displacement.s q = ['II' ... ,q"IT. In 

Chapter 3, we analyzed the velocity and angular velocity of an end-effect.or in relat.ion t.o joillt 

velocit.ies. We can employ the same method to compute t.he velocit.y and a.ngular nlocity of nn 

individual link, if we regard the link as an end-effector . Namely, replacing subscripts 11 and e 

by i and ci , respectively, in equations (3-19) and (3-23), we obtain 

v . = J(i)q + . . . + J(ilq•. = J(i1q· 
CI LilLi I L 

(5-24) 

w. = J(i) q + ... + J(i)q' . = J(ilq· 
I Al 1 Ai I A 

where J~;. and J~~. are the fth column vectors of the 3 X n Jacobian matrices J~) and J~2, for 

linear and angular velocities of link i, respectively. Namely, 

J(i) = [J(i1 
L LI OJ 

(5-25) 
J(i) = [J(i1 

A Al 

Note that, since the motion of link i depends on only joints 1 through j , the column vect.ors 

are set to zero for j 2 i. From equations (3-26) and (3-27) each column vector is given by 

Jt).= {bj _ l 

J b.lxrO ' J- ,CI 

J(i).= { 0 
AJ b 

j-l 

for a prismatic joint 

for a revolute joint 

for a prismatic joint 

for a revolute joint 

(5-26) 

where rO,ci is the position vector of the centroid of link i referred to the base coordinate frame, 

and b.i-I is the 3 X 1 unit vector along joint axis j-I. 



5.2 Lagrangian Formulation of Manipulator Dynamics 107 

Substituting expressions (5-24) into equations (5-22) and (5-23) yields 

(5-27) 

where H is the n X 71 matrix given by 

(5-28) 

i=1 

The matrix H incorporates all the mass properties of the whole arm linkage, as reflected to the 

joint axes, and is referred to as the manipulator inctlia tenso~. Not.e the differenrp b€'tween t h€' 

manipulator inertia tensor and the 3 X 3 inertia tensors of the individual arm links. The 

former is a composite inertia tensor including the latter as ('omponents. The manipu13,tor 

inertia tensor, however, has properties similar to those of individual inertia tensors, As shown 

in equation (5-28), the manipulator inertia tensor is a symmetric matrix, as is the individual 

inertia tensor defined by equation (5-2). The quadratic form associated with t.he manipulat.or 

inertia tensor represents kinetic energy, so does the individual in€'rtia tensor. Kinetic energy is 

always strictly positive unless the system is at rest. The manipulator inertia tensor of equation 

(5-28) is positive definite, so are the individual inertia tensors. Note, however, that the 

manipulator inertia tensor involves Jacobian matrices, which vary with arm configuration. 

Therefore the manipulator inertia tensor is configuration-dependent and represents the 

instantaneous composite mass properties of the whole arm linkage a.t the current arm 

configuration. 

Let Hi) be the [i,ll component of the manipulator inertia tensor H , then we can rewrite 

equation (5-27) in a scalar form so that 

1 n n •• 
T= 2'2: 2: HiJqiqJ (5-29) 

i=1 i=1 

i Tbis standard terminology is an abbreviation of manipulator inertia tensor matriz : strictly speaking, H is a 
matrix based on tbe individual inertia tensors. 
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Note that Hi} is a function of ql' .. . ,qn ' 

5.2.3. Deriving Lagrange's Equations of Motion 

In addition to the computation of the kinetic energy we need to find the paten t.ial 

energy U and generalized forces in order to derive Lagrange's equations of motion. Let. g be 

the 3 X 1 vector representing the acceleration of gravity with reference to the base coordinat e 

frame, which is an inertial reference frame. Then the potential energy stored in the whole arm 

linkage is given by 

(S-30) 

i=1 

where the position vector of the centroid C i is dependent on the arm configuration. Thus t.he 

potential function is a function of ql' ... , qn' 

Generalized forces account for all the forces a.nd moments acting on the arm linkage 

except gravity forces and inertial forces. We consider the situation where actuators exert joint 

torques r = [T1 , ... , TnlT at individual joints and an external force and moment F ext is 

applied at the arm's endpoint while in contact with the environment. Generalized forces can 

be obtained by computing the virtual work done by these forces. In equation (4-g), let us 

replace the endpoint force exerted by the manipulator by the negative external force -F ext. 

Then the virtual work is given by 

(5-31) 

By comparing this expression with the one in terms of generalized forces Q = [Q l' .. . ,Q ,JT, 
given by 

(5-32) 

we can identify the generalized forces as 
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Q = r + JTF ext (.5-33) 

Using the total kinetic energy (5-29) and the total potential energy (5-30), we can now derive 

Lagrange's equations of motion. From equation (5-29), the first term in equation (5-21) is 

computed as 

(5-34) 

Note that H .. is a function of Q1' ... ,q ,so that the time derivative of H .. is given by 
I) n I) 

dH .. En fJH .. dqk 2:n fJH .. ---.!.1. - ----..!J. _ - ----..!J. 0 

dt - oqk dt - oqk qk 
k=l k=l 

(5-35) 

The second term in equation (5-21) includes the partial derivative of the kinetic energy, given 

by 

n 

L (5-36) 

j= 1 k = 1 

since Hjk depends on qj' The gravity term Gi is obtained by taking the partial derivative of 

the potential energy: 

n 

E (5-37) 

j= 1 

since the partial derivative of the position vector ro . with respect to q. is the same as the I~th 
,C) 1 

column vector of the Jacobian matrix J~] defined by equations (5-24)-(5-26). Substituting 

expressions (5-34) through (5-37) into (5-21) yields 

n n n 

E H .. q.+" " I)) L...J L...J h "k qO . qOk + G. = Q. 
I)) 1 1 

i = 1, ... ,n (5-38) 

j=1 j=1 k=l 
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where 

and 

h ··k I) 
(5-39) 

(5-40) 

The first term represents inertia torques, including interaction torques, while the second term 

accounts for the Corio lis and centrifugal effects, and the last term is the gravity torque. It is 

important to note that interactive inertia torques Hij q j (j -:/:- i) result from the off-diagonal 

elements of the manipulator inertia tensor and that the Coriolis and centrifugal torques 

h ijk qj qk arise because the manipulator inertia tensor is configuration dependent. Equation 

(5-38) is the same as equation (5-13) derived from Newton-Euler equations. Thus the 

Lagrangian formulation provides the closed-form dynamic equations directly. 

Example 5-2 

Let us derive closed-form dynamic equations for the two degree-of-freedom planar 

manipulator shown in Figure 5-2, using Lagrange's equations of motion. 

We begin by computing the manipulator inertia tensor H . From equation (5-10), 

velocities of the centroids C1 and C2 can be written as 

-11 sin (81) - Ic2 sin (81 + 82) 

11 cos (81) + Ic2 cos (81 + 82) 

-lc2 sin (91 + 82) 

Ic2 cos (91 + 92) 

(5-41) 

The above 2 X 2 matrices are the Jacobian matrices J~) of equation (5-24) . The angular 
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velocities are associated with the Jacobian matrices J~) , which are 1 X 2 row-vectors in this 

planar case: 

(5-42) 

Substituting the above expressions into equation (5-28), we obtain the manipulator inertia 

tensor 
(5-43) 

The components of the above inertia tensor are the coefficients of the first term of equation 

(5-38). The second term is determined by substituting equation (5-43) into equation (5-39) . 

[ 

h111 = 0 , h122 = -m2 i1 ic2 sin ()2 ' hU2 + h121 = -2 m 2 i 1ic2 sin ()2 

h211 = m 2 /1/c2 sin ()2 ' h222 = 0 , h212 + 1£221 = 0 

(5-44) 

The third term in Lagrange's equations of motion, i.e., the gravity term, IS derived from 

equation (5-40) using the Jacobian matrices in equation (5-41) : 

(5-45) 

Substituting equations (5-43), (5-44) and (5-45) into equation (5-38) yields 

(5-46) 
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Gravity 

Joint 1 

Figure 6-7: Remotely driven two d.o.r. planar manipulator. 

Note that, since no external force acts on the endpoint, the generalized forces coincide with the 

joint torques, as shown in equation (5-33). Equation (5-46) is the same as equation (5-11), 

which was derived from the Newton-Euler equations. .j.j.j 

Example 5-3 

Figure 5-7 shows a planar manipulator whose arm links have the same mass properties 

as those of the manipulator of Figure 5-2. The actuators and transmissions, however, arE' 

different. The second actuator, driving joint 2, is now located at. the base, and t.he out.put. 

torque is transmitted to joint 2 through a chain drive mechanism. Since the act.uator is fixed 

to the base link, its reaction torque acts on the base link, while in Figure 5-2 t.he reaction 

torque of the second actuator acts on link 1. The first actuator, on the other hand, is the same 

for the two manipulators. Let us find Lagrange's equations of motion for this remotely driven 

manipulator. 

The manipulator inertia tensor and the potential functioll are the same as for the 

manipulator of Figure 5-2. Let us investigate the virtual work done by the generalized forces. 
• • Letting T 1 and T2 be the torques exerted by the first and the second actuators, respectively, the 

virtual work done by these torques is 
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(5-4iJ 

Comparing the above expression with (5-32): 

where 6ql = 6(\ and 6q2 = 6()2 ' we find that the generalized forces are 

(5--t8) 

Replacing Tl and T2 in equation (5-46) by Q
1 

and Q2 ' respectively, we obtain the dynamic 

equations of the remotely driven manipulator. 

5.2.4. Transformations of Generalized Coordinates 

In the previous section, we used joint displacements as a complete set of independent 

generalized coordinates to describe Lagrange's equations of motion. However, any complete set 

of independent generalized coordinates can be used . It is a. significant feature of t.he 

Lagrangian formulation that we can employ any convenient coordinates to describe the system. 

Also, in the Lagrangian formulation, coordinate transformations can be performed in a simple 

and systematic manner. 

As before, let q = [ql' ... ,qnlT be the vector of joint coordinates, which represents a 

complete and independent set of generalized coordinates. We now assume that there exists 

another set of complete and independent generalized coordinates, p = [PI' ... ,PlllT, that 

satisfy the following differential relationship with q : 

dp = Jdq (5-49) 

The Jacobian matrix J is assumed to be a non-singular square matrix within a specified region 

in q-coordinates. Let us derive Lagrange's equations of" motion in p-coordinates from the ones 

.,. 
I 




