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Schedule 

Week Date Lecture (F: 9-10:30, 42-212) 

1 26-Jul Introduction 

2 2-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 9-Aug Robot Kinematics 

4 16-Aug Robot Dynamics & Control 

5 23-Aug Robot Trajectories & Motion 

6 30-Aug Sensors & Measurement 

7 6-Sep Perception / Computer Vision  

8 13-Sep Localization and Navigation 

9 20-Sep State-Space Modelling 
10 27-Sep State-Space Control  

  4-Oct Study break 

11 11-Oct Motion Planning 

12 18-Oct Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan) 

13 25-Oct Applications in Industry (+ Prof. S. LaValle) & Course Review 
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• Grades: 

– I am working on assembling the scores  

– I promise you will have them by Monday night  

• (or I will, um, um … read the course profile 100×) 

• Lab 3: 

– Will be out by Sept 27  (or I will read the course profile 1000×) 

 

•  Integrated BE/ME  Meeting (including Mechatronics) 

– Tuesday, 24/September   10-11a @  Hawken 50-C207 

 

• Cool Robotics Share Site 

– Jared is making a “blog”.  URL Soon!  Thanks Ashley! 

 

 

 

Announcements: 

! 

Cool 
Robotics 

Video 
Share 
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• Lab 2: 

– The “Lab 2 Points ($)” may be better viewed as: 

a “necessary, but not sufficient” condition.   

– All team members must also be able to explain their work and 

the principles behind it if called on 

– (As must be a broken record now): getting the right value(s) 

and/or points is not enough  

Why?  

∵ Even a broken clock is right twice a day. 

 

– If you have genuinely studied the material/project,  

Then this should be easy (so no worries)! 

 

 

 

Announcements: 

! 
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State Space 
(“Hear Ye!  It be stated”) 
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Affairs of state 

• Introductory brain-teaser: 

– If you have a dynamic system model with history (ie. 

integration) how do you represent the instantaneous state of the 

plant? 

 

Eg. how would you setup a simulation of a step response, mid-step? 

t = 0 
t 

start 

20 September 2013 METR 4202: Robotics 6 



4 

Introduction to state-space 

• Linear systems can be written as networks of simple 

dynamic elements: 
 

𝐻 = 
𝑠 + 2

𝑠2 + 7𝑠 + 12
=

2

𝑠 + 4
+

−1

𝑠 + 3
 

S   
1
𝑠
   

1
𝑠
 S 

−7 

1 

−12 

2 

S 

u y 
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Introduction to state-space 

• We can identify the nodes in the system 

– These nodes contain the integrated time-history values of the 

system response 

– We call them “states” 
 

S   
1
𝑠
   

1
𝑠
 S 

−7 

1 

−12 

2 

S 

u y 
x1 x2 
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Linear system equations 

• We can represent the dynamic relationship between the 

states with a linear system: 
 

 𝑥1  = −7𝑥1 − 12𝑥2  +   𝑢 

 𝑥2  =      𝑥1 +   0𝑥2 + 0𝑢 
 

  𝑦  =      𝑥1 +   2𝑥2 + 0𝑢 
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State-space representation 

• We can write linear systems in matrix form: 

 𝒙  =
−7 12
1 0

𝒙 +
1
0
𝑢 

 𝒚  = 1 2 𝒙 + 0𝑢 

 

Or, more generally: 

𝒙 = 𝐀𝒙 + 𝐁𝑢 

𝑦 = 𝐂𝒙 + 𝐷𝑢 

 

“State-space 

equations” 
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State-space representation 

• State-space matrices are not necessarily a unique 

representation of a system 

– There are two common forms 

 

• Control canonical form 

– Each node – each entry in x – represents a state of the system 

(each order of s maps to a state) 

 

• Modal form 

– Diagonals of the state matrix A are the poles (“modes”) of the 

transfer function 
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State variable transformation 

• Important note! 

– The states of a control canonical form system are not the same as 

the modal states 

– They represent the same dynamics, and give the same output, but 

the vector values are different! 

 

• However we can convert between them: 

– Consider state representations, x and q where 

 

x = Tq 

 

T is a “transformation matrix” 
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State variable transformation 

• Two homologous representations: 

and 
 

 

We can write: 

𝒙 = 𝐓𝒒 = 𝐀𝐓𝒛 + 𝐁𝑢 

𝒒 = 𝐓−𝟏𝐀𝐓𝒛 + 𝐓−𝟏𝐁𝑢 

 

Therefore, 𝐅 = 𝐓−𝟏𝐀𝐓 and 𝐆 = 𝐓−𝟏𝐁 

 

Similarly, 𝐂 = 𝐇𝐓 and 𝐷 = 𝐽  

𝒙 = 𝐀𝒙 + 𝐁𝑢 

𝑦 = 𝐂𝒙 + 𝐷𝑢 

𝒒 = 𝐅𝒒 + 𝐆𝑢 

𝑦 = 𝐇𝒒 + 𝐽𝑢 
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Controllability matrix 

 

• To convert an arbitrary state representation in F, G, H and 

J to control canonical form A, B, C and D, the 

“controllability matrix” 

 
𝓒 = 𝐆 𝐅𝐆     𝐅2𝐆 ⋯ 𝐅𝑛−1𝐆  

must be nonsingular. 

 

 

 

 

Why is it called the “controllability” matrix? 
20 September 2013 METR 4202: Robotics 14 
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Example: 

(Back To) Robot Arms 

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control” 
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Remembering the Motion Models: 

• Recall from Dynamics, the Required Joint Torque is: 

Dynamical 

Manipulator 

Inertial Tensor – 

a function of 

position and 

acceleration 

Coupled joint 

effects 

(centrifugal and 

coriolis) issues 

due to multiple 

moving joints 

Gravitational 

Effects 

Frictional Effect 

due to Joint/Link 

movement 
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Lets simplify the model 

• This torque model is a 2nd order one (in position) lets look 

at it as a velocity model rather than positional one then it 

becomes a system of highly coupled 1st order differential 

equations 

 

 

• We will then isolate Acceleration terms (acceleration is 

the 1st derivative of velocity) 
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Considering Control: 

• Each Link’s torque is influenced by each other links motion 

– We say that the links are highly coupled 

 

• Solution then suggests that control should come from a 
simultaneous solution of these torques 

 

• We will model the solution as a “State Space” design and try to 
balance the torque-in with positional control-out – the most 
common way it is done! 

– But we could also use ‘force control’ to solve the control problem! 
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The State-Space Control Model: 

D-1(q) 1/s 1/s
Output

Positions 

Kinematics

b

C

h

+

+

+

Torque accel Vel pos

Friction

Coriolis

Centrifugal 

Effects

Gravitation 

Effects

Inertial Coupling
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Setting up a Real Control 

• We will (start) by using positional error to drive our 

torque devices 

 

 

 

 

 

 

 

• This simple model is called a PE (proportional error) 

controller 

 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q
Joint Drive

20 September 2013 METR 4202: Robotics 20 



11 

PE Controller: 

• To a 1st approximation,  = Km*I 

• Torque is proportional to motor current 

 

 

• And the Torque required is a function of ‘Inertial’ 

(Acceleration) and ‘Friction’ (velocity) effects as suggested by 

our L-E models 

 

 

  Which can be approximated as: 
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Setting up a “Control Law” 

• We will use the positional error (as drawn in the state 

model) to develop our torque control 

• We say then for PE control: 

 

 

 

 

 

• Here, kpe is a “gain” term that guarantees sufficient current 

will be generated to develop appropriate torque based on 

observed positional error 
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Using this Control Type: 

• It is a representation of the physical system of a mass on a 

spring! 

• We say after setting our target as a ‘zero goal’ that: 

 

 

  

 the solution of which is: 

  

 

a is a function of 

the servo 

feedback as a 

function of time! 
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State Space Model of PD: 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q
Joint Drive

K
d

dQ/dt
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PID State Space Model: 

+ K
e

Error

State Space Model,

Generalized Torque Needed

Feedback, Q
a

Q
d

+

-

Q

K
d

dQ/dt

ki   dt

Joint Drive
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State Model of Adjustable Controller 

+ Controller w/ Adj.

Parameters
Error Control Input

Feedback, Q
a

Q
d

+

-

Drive Position/Torque
Actual

Pos

Performance

Index

Measure

Robot Sys.

Transfer

Functions

Desired Drive

Calc. Drive

Actual Drive using

Separate Feedback

Sensors

Decision

Logic

Modifications

Kinematic/

Kinetic Models

Physical

Parameters
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Controllability  

20 September 2013 METR 4202: Robotics 27 

Controllability matrix 

 

• If you can write it in CCF, then the system equations must 

be linearly independent.  

 

• Transformation by any nonsingular matrix preserves the 

controllability of the system. 

 

• Thus, a nonsingular controllability matrix means x can be 

driven to any value. 
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State evolution 

• Consider the system matrix relation: 

𝒙 = 𝐅𝒙 + 𝐆𝑢 

𝑦 = 𝐇𝒙 + 𝐽𝑢 

 
 

The time solution of this system is: 

𝒙 𝑡 = 𝑒𝐅 𝑡−𝑡0 𝒙 𝑡0 + = 𝑒𝐅 𝑡−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑡

𝑡0

 

 

 

If you didn’t know, the matrix exponential is: 

𝑒𝐊𝑡 = 𝐈 + 𝐊𝑡 +
1

2!
𝐊2𝑡2 +

1

3!
𝐊3𝑡3 +⋯ 
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Stability 

• We can solve for the natural response  

to initial conditions 𝒙𝟎: 

 

𝒙 𝑡 = 𝑒𝑝𝑖𝑡𝒙0 

∴ 𝒙 𝑡 = 𝑝𝑖𝑒
𝑝𝑖𝑡𝒙0 = 𝐅𝑒𝑝𝑖𝑡𝒙0 

 

 

 

Clearly, a system will be stable provided  
eig 𝐅 < 0 
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Characteristic polynomial 

 

• From this, we can see 𝐅𝒙0 = 𝑝𝑖𝒙0   

or, (𝑝𝑖I − 𝐅)𝒙0 = 0 

which is true only when det(𝑝𝑖I − 𝐅)𝒙0 = 0 

Aka. the characteristic equation! 

 

 

 

• We can reconstruct the CP in s by writing: 

det(𝑠I − 𝐅)𝒙0 = 0 
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Great, so how about control? 

• Given 𝒙 = 𝐅𝒙 + 𝐆𝑢, if we know 𝐅 and 𝐆, we can design a 

controller 𝑢 = −𝐊𝒙 such that 

eig 𝐅 − 𝐆𝐊 < 0 

 

 

 

 

 

 

• In fact, if we have full measurement and control of the states of 𝒙, 

we can position the poles of the system in arbitrary locations! 

 

(Of course, that never happens in reality.) 
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Example: PID control 

• Consider a system parameterised by three states:  

– 𝑥1, 𝑥2, 𝑥3 

– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 

 

𝑥2is the output state of the system;  

𝑥1is the value of the integral;  

𝑥3 is the velocity. 
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• We can choose 𝐊 to move the eigenvalues of the system  

as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 

 

 

It’s straightforward to see how adding derivative gain  
𝐾3 can stabilise the system.  
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Just scratching the surface 

 

 

• There is a lot of stuff to state-space control 

 

 

 

 

• One  lecture (or even two) can’t possibly cover it all in 

depth 

 

Go play with Matlab and check it out! 

20 September 2013 METR 4202: Robotics 35 

Discretisation FTW! 

• We can use the time-domain representation to produce 

difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, but rather 

an integrated time-series. 

We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  
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Discretisation FTW! 

• Put this in the form of a new variable: 

𝜂 = 𝑘𝑇 + 𝑇 − 𝜏 

Then: 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝑭𝑇𝒙 𝑘𝑇 +  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇

𝑮𝑢 𝑘𝑇  

 

Let’s rename 𝚽 = 𝑒𝑭𝑇 and 𝚪 =  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇
𝑮 
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Discrete state matrices 

So, 

𝒙 𝑘 + 1 = 𝚽𝒙 𝑘 + 𝚪𝑢 𝑘  

 𝑦 𝑘 = 𝐇𝒙 𝑘 + 𝐉𝒖 𝑘  
 

Again, 𝒙 𝑘 + 1  is shorthand for 𝒙 𝑘𝑇 + 𝑇  

 

Note that we can also write 𝚽 as: 

𝚽 = 𝐈 + 𝐅𝑇𝚿 

where 

𝚿 = 𝐈 +
𝐅𝑇

2!
+
𝐅2𝑇2

3!
+⋯ 
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Simplifying calculation 

• We can also use 𝚿 to calculate 𝚪 

– Note that: 

Γ =  
𝐅𝑘𝑇𝑘

𝑘 + 1 !
𝑇𝐆 

∞

𝑘=0

 

 = 𝚿𝑇𝐆 

𝚿 itself can be evaluated with the series: 

𝚿 ≅ 𝐈 +
𝐅𝑇

2
𝐈 +

𝐅𝑇

3
𝐈 +⋯

𝐅𝑇

𝑛 − 1
𝐈 +

𝐅𝑇

𝑛
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State-space z-transform 

We can apply the z-transform to our system: 

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘  
𝑌 𝑧 = 𝐇𝑿 𝑧  

 

which yields the transfer function: 
𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 −𝚽 −𝟏𝚪 
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State-space control design 

• Design for discrete state-space systems is just like 

the continuous case. 

– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 

such that  det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧) 

where 𝛼𝑐(𝑧) is the desired control characteristic equation 

 

Predictably, this requires the system controllability matrix 

𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
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2nd Order  

System Response  

20 September 2013 METR 4202: Robotics 42 
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• Response of a 2nd order system to increasing levels of 

damping: 

2nd Order System Response  
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Damping and natural frequency 

[Adapted from Franklin, Powell and Emami-Naeini] 

-1.0 -0.8 -0.6 -0.4 0 -0.2 0.2 0.4 0.6 0.8 1.0 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

Re(z) 

Img(z) 

𝑧 = 𝑒𝑠𝑇  where 𝑠 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2 
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0.5 
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0.8 
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𝜋
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1 

2𝜋

5𝑇
 

𝜔𝑛 =
𝜋

𝑇
 

𝜁 = 0 

3𝜋

10𝑇
 

𝜋

5𝑇
 

𝜋

10𝑇
 

𝜋

20𝑇
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• Poles inside the unit circle 

are stable 

 

• Poles outside the unit circle 

unstable 

 

• Poles on the unit circle 

are oscillatory 

 

• Real poles at 0 < z < 1 

give exponential response 

 

• Higher frequency of 

oscillation for larger  

 

• Lower apparent damping 

for larer  and r 

Pole positions in the z-plane 
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Characterizing the step response: 

 

 

2nd Order System Specifications 

• Rise time (10%   90%): 

 

• Overshoot:  

 

• Settling time (to 1%):  

 

• Steady state error to unit step:  

ess 

• Phase margin:  
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Characterizing the step response: 

 

 

2nd Order System Specifications 

• Rise time (10%   90%)  & Overshoot:  

   tr, Mp  ζ, ω0 : Locations of dominant poles 

• Settling time (to 1%):  

   ts  radius of poles: 

• Steady state error to unit step:  

ess  final value theorem  
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Design a controller for a system with: 

• A continuous transfer function: 

• A discrete ZOH sampler  

• Sampling time (Ts):  Ts= 1s 

• Controller:  

 

 

The closed loop system is required to have: 

• Mp < 16% 

• ts < 10 s 

• ess < 1 

 

Ex: System Specifications  Control Design [1/4] 
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Ex: System Specifications  Control Design [2/4] 
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Ex: System Specifications  Control Design [3/4] 
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Ex: System Specifications  Control Design [4/4] 
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