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Schedule
Week Date Lecture (F: 9-10:30, 42-212)
1 26-Jul Introduction

Representing Position & Orientation & State]

2 2-Aug (Frames, Transformation Matrices & Affine Transformations)
3 9-Aug Robot Kinematics
4 16-Aug Robot Dynamics & Control
5 23-Aug Robot Trajectories & Motion
6 30-Aug Sensors & Measurement
7 6-Sep Perception / Computer Vision
8 13-Sep Localization and Navigation
9 20-Sep [State-Space Modelling
10 27-Sep State-Space Control
4-Oct Study break
11 11-Oct Motion Planning
12 18-Oct \Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)
13 25-Oct IApplications in Industry (+ Prof. S. LaValle) & Course Review
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Announcements:

» Grades:
— | am working on assembling the scores

— | promise you will have them by Monday night
 (or I will, um, um ... read the course profile 100x)

Lab 3:
— Will be out by Sept 27 (or 1 will read the course profile 1000x)

Integrated BE/ME Meeting (including Mechatronics)
— Tuesday, 24/September =» 10-11a @ Hawken 50-C207

Cool Robotics Share Site oo

— Jared is making a “blog”. URL Soon! Thanks Ashley! !fj:
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Announcements:

e Lab 2:

— The “Lab 2 Points ($)” may be better viewed as:
a “necessary, but not sufficient” condition.
— All team members must also be able to explain their work and
the principles behind it if called on
— (As must be a broken record now): getting the right value(s)
and/or points is not enough
Why?
» Even a broken clock is right twice a day.

— If you have genuinely studied the material/project,
Then this should be easy (so no worries)!

@ METR 4202: Robotics 20 September 2013 4




State Space

(“Hear Ye! It be stated”)

Affairs of state

* Introductory brain-teaser:

— If you have a dynamic system model with history (ie.
integration) how do you represent the instantaneous state of the
plant?

Eg. how would you setup a simulation of a step response, mid-step?

start

\Egj
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Introduction to state-space

* Linear systems can be written as networks of simple
dynamic elements:

_ s+2 _ 2 + -1
 s247s+12 s+4 s+3

1

1 1
S S
-7 <
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Introduction to state-space

» We can identify the nodes in the system

— These nodes contain the integrated time-history values of the
system response

— We call them “‘states”

1
X X

—12

“lR
0|
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Linear system equations

» We can represent the dynamic relationship between the
states with a linear system:

.X:l = _7x1 - 12x2 + u
'X:Z = X1 + Oxz + Ou
y = x1+ 2x,+0u
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State-space representation
» We can write linear systems in matrix form:

e =7 Per[lu

y =[1 2]x+0u

Or, more generally: “State-space
x =Ax+ Bu

equations”

y =Cx+ Du
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State-space representation

« State-space matrices are not necessarily a unique
representation of a system
— There are two common forms

» Control canonical form

— Each node — each entry in x — represents a state of the system
(each order of s maps to a state)

* Modal form

— Diagonals of the state matrix A are the poles (“modes”) of the
transfer function
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State variable transformation

* Important note!

— The states of a control canonical form system are not the same as
the modal states

— They represent the same dynamics, and give the same output, but
the vector values are different!

» However we can convert between them:
— Consider state representations, x and g where

x=Tq

T is a “transformation matrix”
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State variable transformation

» Two homologous representations:
x =Ax + Bu and q=Fq+ Gu
y=Cx+Du y =Hq+Ju

We can write:
x=Tq=ATz+ Bu
q=T 1ATz+ T 1Bu

Therefore, F = T"1ATand G = T~ 1B

Similarly, C=HTand D =]
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Controllability matrix

« To convert an arbitrary state representation in F, G, H and
J to control canonical form A, B, C and D, the
“controllability matrix”

€c=[G FG F?G -- F" 1G]
must be nonsingular.

99

W\ /1 o 14 Had 41 11 + HNalailit fratxr)
[;ﬂ \AY lly IS 1L CallCd UIcC bUIlL[UlldUlllLy IIdu X 7 i
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Example:

(Back To) Robot Arms

Slides 17-27 Source: R. Lindeke, ME 4135, “Introduction to Control”

Remembering the Motion Models:

 Recall from Dynamics, the Required Joint Torque is:

7 =D;(q)q + C;(q,4;) +h(q) + b(q)
1 \
Dynamial

Inertial Tensor —

a function of
position and
acceleration
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Lets simplify the model

« This torque model is a 2" order one (in position) lets look
at it as a velocity model rather than positional one then it
becomes a system of highly coupled 1% order differential
equations

« We will then isolate Acceleration terms (acceleration is
the 15t derivative of velocity)

a=1v=q=D;(q) (i — Ci(g,4) — h(q) — b(G1))
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Considering Control:

» Each Link’s torque is influenced by each other links motion
— We say that the links are highly coupled

+ Solution then suggests that control should come from a
simultaneous solution of these torques

» We will model the solution as a “State Space” design and try to
balance the torque-in with positional control-out — the most
common way it is done!

— But we could also use ‘force control’ to solve the control problem!
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The State-Space Control Model:

Inertial Coupling

1/s }4@——{ 1/s

R Friction b
L=
Coriolis
+ Centrifugal c
B Effects
Gravitation h
Effects
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Setting up a Real Control

» We will (start) by using positional error to drive our

torque devices

State Space Model,
Generalized

¥
_Qd—p@—ermv—b Kq >

e TOFGUE Needled mefib

Jgint Drive

Feedback, Q,

» This simple model is called a PE (proportional error)

controller

@ METR 4202: Robotics

20 September 2013 20

10



PE Controller:

« To a1t approximation, T = K_*I

« Torque is proportional to motor current

* And the Torque required is a function of ‘Inertial’
(Acceleration) and ‘Friction’ (velocity) effects as suggested by
our L-E models

Tm == Jeqq _I_ Feqq

- Which can be approximated as:

Kmlm = Jequ + Feqq
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Setting up a “Control Law”

» We will use the positional error (as drawn in the state
model) to develop our torque control

» We say then for PE control:

T X kﬁpe(@d — 9@)

* Here, Kk, is a “gain” term that guarantees sufficient current
will be generated to develop appropriate torque based on
observed positional error
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Using this Control Type:

* Itis arepresentation of the physical system of a mass on a
spring!
» We say after setting our target as a ‘zero goal’ that:

—kpe *0g = JO + FO

the solution of which is:

0, is a function of
the servo

feedback as a .
function of time! <0(L = (j(b/zf)f {Cle(l/:z)w‘f + Cge(l/z)wf}
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State Space Model of PD:

+ State Space Model, I6nt Drive
—Q, + Error—»{ K, 'y > Generalized  fmmm——Torque Neededmm—pp }\ Q
A
L ]

dQ/dt:

Feedback, Q,
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PID State Space Model:

State Space Model,

+
| e— > i
Q, + Error—»{ K, = Generalized Torque

dQrdt:

Feedback, Q,:
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State Model of Adjustable Controller

Kinetic Models

Kinematic/

Physical
Parameters

Actual Drive using

[ Separate. Feedback
Sensors

v

. Robot Sys.

—Q,— + Error=j» Cogg:)!s];‘;\gr:dj' Control Input=——jp ';I'urr?(r:'nt?(f)i;

A T
) Calc. Drive
Modifications
Desired Drive
T Performance

Index

Decision Measure
Logic
A

Feedback, Q,

Drive Position/Torque—}(AC'ual

Pos
~—
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Controllability

Controllability matrix

« If you can write it in CCF, then the system equations must
be linearly independent.

« Transformation by any nonsingular matrix preserves the
controllability of the system.

« Thus, a nonsingular controllability matrix means x can be
driven to any value.

tJ ; ;
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State evolution

 Consider the system matrix relation:
x =Fx+ Gu
y=Hx+Ju

The time solution of this system is:
t

x(t) = eFt=to) x(t,) +f = eFt= Gu(r)dr
to
If you didn’t know, the matrix exponential is:

1 1
et =T+ Kt + K2 + K% + -
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Stability

» We can solve for the natural response
to initial conditions x:

x(t) = ePitx,
~ x(t) = p;ePitx, = FePitx,

Clearly, a system will be stable provided
eig(F) < 0
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Characteristic polynomial

» From this, we can see Fx, = p;x,
or, (pil —F)x, =0
which is true only when det(p;1 — F)x, = 0
Aka. the characteristic equation!

» We can reconstruct the CP in s by writing:
det(s —F)xg =0
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Great, so how about control?

« Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F — GK) < 0

* In fact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

@ METR 4202: Robotics 20 September 2013 32

16



Example: PID control
 Consider a system parameterised by three states:

- X1,X2,X3
— where x, = x; and x3 = x,

1
x= 1
-2

y=1[0 1 0]x+0u

x—Ku

X, 1S the output state of the system;
x41s the value of the integral;
x5 1S the velocity.
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» We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
-2 —Kj
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.
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Just scratching the surface

» There is a lot of stuff to state-space control

» One lecture (or even two) can’t possibly cover it all in
depth

Go play with Matlab and check it out!
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Discretisation FTW!

» We can use the time-domain representation to produce
difference equations!

kT+T

x(kT +T) = efT x(kT) + J eFkT+T-D Gy (1) dr
kT

Notice u(t) is not based on a discrete ZOH input, but rather
an integrated time-series.

We can structure this by using the form:
u(t) = u(kT), kT <t <kT+T

20 September 2013 36

@ METR 4202: Robotics

18



Discretisation FTW!
» Put this in the form of a new variable:

n=kT+T—-1
Then:
KT+T
x(kT +T) = efTx(kT) + (f eF”dn> Gu(kT)
kT
Let’s rename @ = efT and T = (f:TTJrT eF"dn) G
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Discrete state matrices

So,
x(k+1) =®x(k)+ Tu(k)

y(k) = Hx(k) + Ju(k)
Again, x(k + 1) is shorthand for x(kT + T)

Note that we can also write ® as:
b =1+FTP

where
FT F2T?
Y=1+—+

TR T
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Simplifying calculation

» We can also use W to calculate T’

— Note that:
ka

Z k + 1)'
=YTG
Y jtself can be evaluated with the series:

FT FT FT FT
ll’§l+—{l+—[l+--~ (I+—
2 3 n—1 n

I
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State-space z-transform

We can apply the z-transform to our system:
(zI - ®)X(z) =TU (k)
Y(z) = HX(2)

which yields the transfer function:

Y@ _ D
X2 G(z) =H(zl - ®)~'T
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State-space control design

 Design for discrete state-space systems is just like
the continuous case.
— Apply linear state-variable feedback:
u =—Kx
such that det(zl — ® +I'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[I ®r &?2r - &"1r] tobe full-rank.
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2"d Order

System Response

21



2nd Order System Response

 Response of a 2" order system to increasing levels of

damping-

- T T T
- {=0
1.8 - : . L
1.61 ; / :
\\ 04
L4t /\ .
\ 06 :
12t S e
= 1
0.8 :
(=08
1.0
0.4- .
02 ‘ -
0 i i 1 I
0 2 4 8 10 12
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Damping and natural frequency

z=eST where s = —(w, + jw, /1 — {2

10

0.8~

,,,,,,,,,,,,,

0.6~

,,,,,,,,,,,,,

e "

Re(2)

ap 08 -06

-04 -0.2 0 0.2 0.4

0.6

[Adapted from Franklin, Powell and Emami-Naeini]

08 10
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Pole positions in the z-plane

« Poles inside the unit circle
are stable

« Poles outside the unit circle r
unstable W S

« Poles on the unit circle
are oscillatory

* Realpolesat0<z<1
give exponential response

» Higher frequency of L
oscillation for larger

+  Lower apparent damping AL F
for larer and r L; |

g@ METR 4202: Robotics
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2nd Order System Specifications

Characterizing the step response:

0.1

*1%
e __ i
0\(5 L/ \ ,(:;___-:‘:_-_.g—_—_—_:t'_—.f—:'_‘

A4

+ Rise time (10% -> 90%): w% .

—m(

» Overshoot:

« Settling time (to 1%): ¢, = ﬂ

Cwo

Steady state error to unit step:
eSS
Phase margin:

¢py ~ 100¢
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2nd Order System Specifications
Characterizing the step response:

o‘é 4 ﬁ\—ﬂ'!___ —l‘s-ef___t'_—T—_-'_‘

0.1

A4

>

Rise time (10% -> 90%) & Overshoot:
t, M, = §, o, : Locations of dominant poles
Settling time (to 1%):
t, > radius of poles: | < 0.01%
Steady state error to unit step:
e, = final value theorem ¢, = lim {(= = 1) F ()}
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Ex: System Specifications > Control Design [1/4]

Design a controller for a system with: -

« A continuous transfer function:% () = =57y
» A discrete ZOH sampler

« Sampling time (T,): T=1s

* Cup =—0.5uy,_1 + 13 (e, — 0.88¢;_1)

The closed loop system is required to have:
* M, <16%

*+ t,<10s

* e.<1
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Ex: System Specifications - Control Design [2/4]

1. (a) Find the pulse transfer function of G'(s) plus the ZOH

7 € u i { Y »(t) 'y
1(+ K D) k : 3@% u(?) G(s) Sf:[)pcl;eHLb
- | G(2) i

G(z)=(1 *371)2{@} -2 1)2{32(30:041)}

e.g. look up Z{a/s(s +a)} in tables:

(= 1) ;((O.l —14e O (1 —e 0 - 0.1670'1))
2 0.1(z — 1)2(z — e~ 91)
_ 0.0484(z 4 0.9672)
T (2= 1)(z — 0.9048)

(b) Find the controller transfer function (using z = shift operator):

Ul(z) (1-0.88:71)

- (I+052-1)

(2 —0.88)
E(z) 13

" (z+0.5)

D(z)=13
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Ex: System Specifications - Control Design [3/4]

2. Check the steady state error e5s when rx = unit ramp

ess = lim e, = lim(z — 1)E(z)
k—o0 z—1

R E U Y Blz) _ L
4_'_»?—> D(z) G(2) > R(z) 1+ D(2)G(2)
- Tz
R(z) = (z—1)2
. ; Tz 1 . T
0 cnr =l {(s =) (=~ 121+ D(=)G(z) } =y (z—1)D(z)G(z)
i T Qoo
= m :
z—> . Az ). 06T °
1(271)0048-4( +(9)f2)D(1) 5 o
(z —1)(= — 0.9048) g
6
1 —0.9048 5
= = 0.96 &
0.0484(1 & 0.9672)D(1) 0.96 2
£ 9
—> ess <1 (as required) ©
0
Timg(sec)
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Ex: System Specifications - Control Design [4/4]

3. Step response: overshoot M, < 16% = ¢ > 0.5
settling time ts < 10 = || < 0.01'/%° = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
(2 —0.88) 0.0484(z + 0.9672)
1413 =0
TEET05) o D(= - 0.0043)
= 2z = 0.88, —0.050 £ j0.304

But the pole at z = 0.88 is cancelled by controller zero at = = (.88, and
{ r=0.31, 6=1.73

2= —0.050 & j0.304 = retI? :
¢ =056

Output y and input u/10

all specs satisfied!

; i ; i i
5 6 7 8 9 10
Time (sec)
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