

Week	Date	Lecture (F: 9-10:30, 42-212)
1	26-Jul	Introduction
2	2-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)
3	9-Aug	Robot Kinematics
4	16-Aug	Robot Dynamics & Control
5	23-Aug	Robot Trajectories & Motion
6	30-Aug	Sensors & Measurement
7	6-Sep	Perception / Computer Vision
8	13-Sep	Localization and Navigation
9	20-Sep	State-Space Modelling
10	27-Sep	State-Space Control
	4-Oct	Study break
11	11-Oct	Motion Planning
12	18-Oct	Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)
13	25-Oct	Applications in Industry (+ Prof. S. LaValle) & Course Review

Introduction to state-space

• Linear systems can be written as networks of simple dynamic elements:

Linear system equations

• We can represent the dynamic relationship between the states with a linear system:

State variable transformation
 Important note! The states of a control canonical form system are not the same as the modal states They represent the same dynamics, and give the same output, but the vector values are different!
 However we can convert between them: Consider state representations, <i>x</i> and <i>q</i> where
$x = \mathbf{T}q$
T is a "transformation matrix"
METR 4202: Robotics 20 September 2013 12

20 September 2013

METR 4202: Robotics

PE Controller:

- Torque is proportional to motor current
- And the Torque required is a function of 'Inertial' (Acceleration) and 'Friction' (velocity) effects as suggested by our L-E models

$$\tau_m \simeq J_{eq} \ddot{q} + F_{eq} \dot{q}$$

 \rightarrow Which can be approximated as:

$$K_m I_m = J_{eq} \ddot{q} + F_{eq} \dot{q}$$

METR 4202: Robotics

20 September 2013 21

Setting up a "Control Law"

- We will use the <u>positional error</u> (as drawn in the state model) to develop our torque control
- We say then for PE control:

$$au \propto k_{pe}(heta_d - heta_a)$$

• Here, k_{pe} is a "gain" term that guarantees sufficient current will be generated to develop appropriate torque based on observed positional error

METR 4202: Robotics

20 September 2013 22

Controllability matrix

- If you can write it in CCF, then the system equations must be linearly independent.
- Transformation by any nonsingular matrix preserves the controllability of the system.
- Thus, a nonsingular controllability matrix means *x* can be driven to any value.

METR 4202: Robotics

20 September 2013 28

State evolution

• Consider the system matrix relation: $\dot{x} = Fx + Gu$ y = Hx + Ju

The time solution of this system is:

$$\mathbf{x}(t) = e^{\mathbf{F}(t-t_0)} \mathbf{x}(t_0) + \int_{t_0}^t e^{\mathbf{F}(t-\tau)} \mathbf{G}u(\tau) d\tau$$

If you didn't know, the matrix exponential is:

$$e^{\mathbf{K}t} = \mathbf{I} + \mathbf{K}t + \frac{1}{2!}\mathbf{K}^{2}t^{2} + \frac{1}{3!}\mathbf{K}^{3}t^{3} + \cdots$$

20 September 2013 29

METR 4202: Robotics

Stability
We can solve for the natural response to initial conditions x₀:
x(t) = e^{p_it}x₀ ∴ x(t) = p_ie^{p_it}x₀ = Fe^{p_it}x₀
Clearly, a system will be stable provided eig(F) < 0

- x_1, x_2, x_3 - where $x_2 = \dot{x}_1$ and $x_3 = \dot{x}_2$ $\dot{x} = \begin{bmatrix} 1 & & \\ & 1 & \\ & -2 \\ & y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} x - Ku$ $y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} x + 0u$ x_2 is the output state of the system; x_1 is the value of the integral; x_3 is the velocity. We take the output state of the system of the integral;

Discretisation FTW!

• Put this in the form of a new variable: $\eta = kT + T - \tau$

Then:

$$\boldsymbol{x}(kT+T) = e^{FT}\boldsymbol{x}(kT) + \left(\int_{kT}^{kT+T} e^{F\eta} d\eta\right)\boldsymbol{G}\boldsymbol{u}(kT)$$

20 September 2013 37

Let's rename $\mathbf{\Phi} = e^{FT}$ and $\mathbf{\Gamma} = \left(\int_{kT}^{kT+T} e^{F\eta} d\eta\right) \mathbf{G}$

METR 4202: Robotics

Discrete state matrices So, $x(k+1) = \Phi x(k) + \Gamma u(k)$ y(k) = Hx(k) + Ju(k)Again, x(k+1) is shorthand for x(kT + T)Note that we can also write Φ as: $\Phi = I + FT\Psi$ where $\Psi = I + \frac{FT}{2!} + \frac{F^2T^2}{3!} + \cdots$

Ex: System Specifications \rightarrow Control Design [1/4] Design a controller for a system with: • A continuous transfer function: $G(s) = \frac{0.1}{s(s+0.1)}$ • A discrete ZOH sampler • Sampling time (T_s): T_s= 1s • $Cu_k = -0.5u_{k-1} + 13 (e_k - 0.88e_{k-1})$ The closed loop system is required to have: • M_p < 16% • t_s < 10 s • e_{ss} < 1 WETHALL REAL CONSTRUCTIONS

