Localization and Navigation	
Where Are We?	
METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 8 September 13, 2013	
metr4202@itee.uq.edu.au <u>http://itee.uq.edu.au/~metr4202/</u> © 2013 School of Information Technology and Electrical Engineering at the University of Queersland	DUISEWare.org

Week	Date	Lecture (F: 9-10:30, 42-212)
1	26-Jul	Introduction
2	2-Aug	Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)
3	9-Aug	Robot Kinematics
4	16-Aug	Robot Dynamics & Control
5	23-Aug	Robot Trajectories & Motion
6	30-Aug	Sensors & Measurement
7	6-Sep	Perception / Computer Vision
8	13-Sep	Localization and Navigation
9	20-Sep	State-Space Modelling
	27-Sep	State-Space Control
10	4-Oct	Study break
11	11-Oct	Motion Planning
12	18-Oct	Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan)
13	25-Oct	Applications in Industry (+ Prof. S. LaValle) & Course Review

- Iterative non-linear least squares [Press'92]
 - Linearize measurement equations

$$\hat{u}_{i} = f(\mathbf{m}, \mathbf{x}_{i}) + \frac{\partial f}{\partial \mathbf{m}} \Delta \mathbf{m}$$
$$\hat{v}_{i} = g(\mathbf{m}, \mathbf{x}_{i}) + \frac{\partial g}{\partial \mathbf{m}} \Delta \mathbf{m}$$

 Substitute into log-likelihood equation: quadratic cost function in Dm

$$\sum_{i} \sigma_{i}^{-2} (\hat{u}_{i} - u_{i} + \frac{\partial f}{\partial \mathbf{m}} \Delta \mathbf{m})^{2} + \cdots$$

13 September 2013

 From
 Szeliski, Computer Vision: Algorithms and Applications

 Image: Metric 4202: Robotics
 METR 4202: Robotics

- What makes this non-linear minimization hard?
 - many more parameters: potentially slow
 - poorer conditioning (high correlation)
 - potentially lots of outliers
 - gauge (coordinate) freedom

$$\hat{u}_{ij} = f(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

$$\hat{v}_{ij} = g(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

From Szeliski, <u>Computer Vision: Algorithms and Applications</u>

Components of SLAM	
 Localisation Determine pose given a priori map Mapping Generate map when pose is accurately known from auxiliary source. 	
 SLAM Define some arbitrary coordinate origin Generate a map from on-board sensors Compute pose from this map Errors in map and in pose estimate are dependent. 	
	32

History of SLAM

- It all started about 20 years ago at ICRA86 in San Francisco.
 - Probabilistic methods were new to robotics and AI
 - Several researchers were looking at applying estimation-theoretic methods to mapping and localisation problems
- They saw that:

H

- Consistent probabilistic mapping was a fundamental problem
- Major conceptual and computational issues needed to be addressed
- Key papers were written on geometric uncertainty (Smith and Cheeseman, HDW).
 - They showed that estimates exhibit a high degree of correlation between geometric features (ie, landmark locations in a map).

History of SLAM Landmark paper by Smith, Self and Cheeseman Landmark estimates correlated via vehicle pose estimate Important implication A consistent full solution requires a joint state composed of the vehicle pose and every landmark position Many landmarks means huge state vector Estimate to be updated following each landmark observation At the time, estimation meant Kalman filters Computation and storage costs scale quadratically with the number of landmarks

3

- Effect on other landmarks diminishes with distance
- Propagation depends on local stiffness (correlation) properties
- With each new observation the springs become increasingly (and monotonically) stiffer.
- In the limit, a rigid map of landmarks is obtained.
 - A perfect *relative* map of the environment
- The location accuracy of the robot is bounded by
 - The current quality of the map

 \square

- The relative sensor measurement

4

