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Schedule 

13 September 2013 METR 4202: Robotics 2 

Week Date Lecture (F: 9-10:30, 42-212) 

1 26-Jul Introduction 

2 2-Aug 
Representing Position & Orientation & State 

(Frames, Transformation Matrices & Affine Transformations) 

3 9-Aug Robot Kinematics 

4 16-Aug Robot Dynamics & Control 

5 23-Aug Robot Trajectories & Motion 

6 30-Aug Sensors & Measurement 

7 6-Sep Perception / Computer Vision  

8 13-Sep Localization and Navigation 
9 20-Sep State-Space Modelling 

  27-Sep State-Space Control  

10 4-Oct Study break 

11 11-Oct Motion Planning 

12 18-Oct Vision-based control (+ Prof. P. Corke or Prof. M. Srinivasan) 

13 25-Oct Applications in Industry (+ Prof. S. LaValle) & Course Review 

http://itee.uq.edu.au/~metr4202/
http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
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Cool Robotics Share (this week) 

METR 4202: Robotics 13 September 2013 - 3 

D. Wedge, The RANSAC Song 

RANdom SAmple Consensus 

1. Repeatedly select a small (minimal) subset of 

correspondences 

2. Estimate a solution (in this case a the line) 

3. Count the number of “inliers”, |e|<Θ 

(for LMS, estimate med(|e|) 

4. Pick the best subset of inliers 

5. Find a complete least-squares solution 
 

• Related to least median squares 

• See also:  

MAPSAC (Maximum A Posteriori SAmple Consensus) 

 

 

 

 

10 September 2012 - METR 4202: Robotics 4 

From  Szeliski, Computer Vision: Algorithms and Applications 

../../Videos/ransac.avi
http://szeliski.org/Book/
http://szeliski.org/Book/
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Camera calibration 

• Determine camera parameters from known 3D points or 

calibration object(s) 

• internal or intrinsic parameters such as focal length, 

optical center, aspect ratio: 

what kind of camera? 

• external or extrinsic (pose) 

parameters: 

where is the camera? 

• How can we do this? 
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From  Szeliski, Computer Vision: Algorithms and Applications 

Camera calibration – approaches 

• Possible approaches: 

– linear regression (least squares) 

– non-linear optimization 

– vanishing points 

– multiple planar patterns 

– panoramas (rotational motion) 
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From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Image formation equations 
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u 

(Xc,Yc,Zc) 

uc f 

From  Szeliski, Computer Vision: Algorithms and Applications 

Calibration matrix 

• Is this form of K good enough? 

• non-square pixels (digital video) 

• skew 

• radial distortion 
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From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Levenberg-Marquardt 

• Iterative non-linear least squares [Press’92] 

– Linearize measurement equations 

 

 

 

 

 

– Substitute into log-likelihood equation:   

quadratic cost function in Dm 
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From  Szeliski, Computer Vision: Algorithms and Applications 

Levenberg-Marquardt 

• What if it doesn’t converge? 

– Multiply diagonal by (1 + l), increase l until it does 

– Halve the step size Dm (my favorite) 

– Use line search 

– Other ideas? 

• Uncertainty analysis:  covariance S = A-1 

• Is maximum likelihood the best idea? 

• How to start in vicinity of global minimum? 
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From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Camera matrix calibration 

• Advantages: 

– very simple to formulate and solve 

– can recover K [R | t] from M using  

QR decomposition [Golub & VanLoan 96] 

 

• Disadvantages: 

– doesn't compute internal parameters 

– more unknowns than true degrees of freedom 

– need a separate camera matrix for each new view 
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From  Szeliski, Computer Vision: Algorithms and Applications 

Multi-plane calibration 

• Use several images of planar target held at unknown 

orientations [Zhang 99] 

– Compute plane homographies 

 

 

– Solve for K-TK-1 from Hk’s 

• 1plane if only f unknown 

• 2 planes if (f,uc,vc) unknown 

• 3+ planes for full K 

– Code available from Zhang and OpenCV 
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From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Rotational motion 

• Use pure rotation (large scene) to estimate f 

– estimate f from pairwise homographies 

– re-estimate f from 360º “gap” 

– optimize over all {K,Rj} parameters 

[Stein 95; Hartley ’97; Shum & Szeliski ’00; Kang & Weiss ’99] 

 

 

 

 

• Most accurate way to get f, short of surveying distant 

points 
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f=510 f=468 

From  Szeliski, Computer Vision: Algorithms and Applications 

Feature matching 

• Given a feature in I1, how to find the best match in I2? 

1. Define distance function that compares two descriptors 

2. Test all the features in I2, find the one with min distance 

13 September 2013 - METR 4202: Robotics 14 

From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Feature distance 

• How to define the difference between two features 

f1, f2? 

– Simple approach is SSD(f1, f2)  

• sum of square differences between entries of the two descriptors 

• can give good scores to very ambiguous (bad) matches  

I1 I2 

f1 f2 

13 September 2013 - METR 4202: Robotics 15 

From  Szeliski, Computer Vision: Algorithms and Applications 

Feature distance 

• How to define the difference between two features f1, f2? 

– Better approach:  ratio distance = SSD(f1, f2) / SSD(f1, f2’) 

• f2         is  best SSD match to f1 in I2 

• f2’        is  2nd   best SSD match to f1 in I2 

• gives small values for ambiguous matches 

I1 I2 

f1 f2 f2
' 
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From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Evaluating the results 

• How can we measure the performance of a feature matcher? 

50 

75 

200 

feature distance 
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From  Szeliski, Computer Vision: Algorithms and Applications 

True/false positives 

 

 

 

 

 

 

 

 

 

• The distance threshold affects performance 

– True positives = # of detected matches that are correct 

• Suppose we want to maximize these—how to choose threshold? 

– False positives = # of detected matches that are incorrect 

• Suppose we want to minimize these—how to choose threshold? 

50 

75 

200 

feature distance 

false match 

true match 

From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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SFM: Structure from Motion  

(& Cool Robotics Share (this week)) 

METR 4202: Robotics 13 September 2013 - 19 

Structure [from] Motion 

• Given a set of feature tracks, 

estimate the 3D structure and 3D (camera) motion. 

 

• Assumption: orthographic projection 

 

• Tracks:  (ufp,vfp), f: frame, p: point 

• Subtract out mean 2D position… 

   if: rotation,  sp: position 

   

From  Szeliski, Computer Vision: Algorithms and Applications 

../../Videos/PhotoTourismFull.wmv
http://szeliski.org/Book/
http://szeliski.org/Book/
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Structure from motion 

• How many points do we need to match? 

• 2 frames: 

– (R,t): 5 dof + 3n point locations  

– 4n point measurements   

– n  5 

• k frames: 

– 6(k–1)-1 + 3n  2kn 

• always want to use many more 
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From  Szeliski, Computer Vision: Algorithms and Applications 

Measurement equations 

• Measurement equations 

 ufp = if
T sp   if: rotation,  sp: position 

 vfp = jf
T sp 

 

 

• Stack them up… 

 W = R S 

 R = (i1,…,iF, j1,…,jF)T 

 S = (s1,…,sP) 

 

From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Factorization 

 W = R2F3 S3P 

SVD 

 W = U Λ V  Λ must be rank 3 

 W’ = (U Λ 1/2)(Λ1/2 V)  = U’ V’ 

Make R orthogonal 

 R = QU’ ,  S = Q-1V’ 

 if
TQTQif = 1 … 

From  Szeliski, Computer Vision: Algorithms and Applications 

Results  

• Look at paper figures… 

From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Bundle Adjustment 

• What makes this non-linear minimization hard? 

– many more parameters: potentially slow 

– poorer conditioning (high correlation) 

– potentially lots of outliers 

– gauge (coordinate) freedom 

From  Szeliski, Computer Vision: Algorithms and Applications 

Two-frame methods 

• Two main variants: 

• Calibrated: “Essential matrix” E 

  use ray directions (xi, xi’ ) 

• Uncalibrated: “Fundamental matrix” F 

 

• [Hartley & Zisserman 2000] 

13 September 2013 - METR 4202: Robotics 26 

From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Essential matrix 

• Co-planarity constraint: 

•     x’ ≈  R x + t 

•  [t] x’ ≈ [t] R x 

•   x’ [t] x’ ≈ x’ [t] R x 

•       x’ E x = 0  with E =[t] R 

• Solve for E using least squares (SVD) 

• t is the least singular vector of E 

• R obtained from the other two s.v.s 

13 September 2013 - METR 4202: Robotics 27 

From  Szeliski, Computer Vision: Algorithms and Applications 

Fundamental matrix 

• Camera calibrations are unknown 

•  x’ F x = 0 with F  = [e] H = K’[t] R K-1 

• Solve for F using least squares (SVD) 

– re-scale (xi, xi’ ) so that |xi|≈1/2  [Hartley] 

• e (epipole) is still the least singular vector of F 

• H obtained from the other two s.v.s 

• “plane + parallax” (projective) reconstruction 

• use self-calibration to determine K [Pollefeys] 
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From  Szeliski, Computer Vision: Algorithms and Applications 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/
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Cool Robotics Share 

METR 4202: Robotics 13 September 2013 29 

D. Wedge, The Fundamental Matrix Song 

Localization: SFM  SLAM 

METR 4202: Robotics 13 September 2013 30 
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What is SLAM? 

• SLAM asks the following question: 
 

 Is it possible for an autonomous vehicle to start at an unknown location in an 
unknown environment and then to incrementally build a map of this 
environment while simultaneously using this map to compute vehicle 
location? 

 

• SLAM has many indoor, outdoor, in-air and underwater applications for 
both manned and autonomous vehicles.  

 

• Examples 
– Explore and return to starting point (Newman) 

– Learn trained paths to different goal locations 

– Traverse a region with complete coverage (eg, mine fields, lawns, reef 
monitoring) 

– … 

32 

Components of SLAM 

• Localisation 

– Determine pose given a priori map 

• Mapping 

–  Generate map when pose is accurately known from auxiliary 

source. 

• SLAM 

– Define some arbitrary coordinate origin 

– Generate a map from on-board sensors  

– Compute pose from this map 

– Errors in map and in pose estimate are dependent. 
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History of SLAM 

• It all started about 20 years ago at ICRA86 in San Francisco. 
– Probabilistic methods were new to robotics and AI 

– Several researchers were looking at applying estimation-theoretic methods to 
mapping and localisation problems 

• They saw that: 
– Consistent probabilistic mapping was a fundamental problem 

– Major conceptual and computational issues needed to be addressed 

• Key papers were written on geometric uncertainty (Smith and 
Cheeseman, HDW). 
– They showed that estimates exhibit a high degree of correlation between 

geometric features (ie, landmark locations in a map). 

34 

History of SLAM 

• Landmark paper by Smith, Self and Cheeseman 

– Landmark estimates correlated via vehicle pose estimate 

• Important implication  

– A consistent full solution requires a joint state composed of the vehicle pose 

and every landmark position 

– Many landmarks means huge state vector  

– Estimate to be updated following each landmark observation 

• At the time, estimation meant Kalman filters 

– Computation and storage costs scale quadratically with the number of 

landmarks  
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History of SLAM 

• Researchers initially thought SLAM would not converge 
– Assumed estimated map errors would exhibit a random walk behaviour  

– Unbounded map uncertainty 

– Leonard (1991): Simultaneous mapping and localisation, which came 
first, the chicken or the egg ? 

• Researchers tried to minimise correlations between landmarks 
– Applied approximations to minimise or eliminate correlations, or simply 

assumed they were zero 

– Reduced the full filter to a series of decoupled landmark to vehicle 
filters. 

• Theoretical work on SLAM came to a temporary halt 
– Work focused on either mapping or localisation as separate problems. 
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History of SLAM 
• Conceptual break-through: SLAM converges (Csorba, Dissa) 

– Must correctly formulate as a joint state; correlations are essential 

– Correlations grow, not shrink 

– Stronger correlations means better relative map estimate 

• The term `SLAM' was introduced in 1995. 

• Groups started working again at SLAM (aka CML) 

– ACFR, Zaragoza, MIT 

– Key series of papers through 2000 showing convergence properties. 

– Initial work on computational efficiency and on loop-closure. 

• Growth in SLAM interest. 

– First `SLAM' session held at ISRR 1999. Included also probabilistic mapping methods 
of Sebastian Thrun and Dieter Fox.  

– First ICRA SLAM workshop: 2000 

– First SLAM summer school: 2002 

– Massive increase in SLAM papers since 2002 
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Basic SLAM Operation 
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Example: SLAM in Victoria Park 
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Basic SLAM Operation 
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Basic SLAM Operation 
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41 

Basic SLAM Operation 

42 

Basic SLAM Operation 
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43 

Dependent Errors 

44 

Correlated Estimates 
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SLAM Convergence  

• An observation acts like a displacement to a spring system 
– Effect is greatest in a close neighbourhood  

– Effect on other landmarks diminishes with distance 

– Propagation depends on local stiffness (correlation) properties 

• With each new observation the springs become increasingly (and 
monotonically) stiffer. 

• In the limit, a rigid map of landmarks is obtained. 
– A perfect relative map of the environment 

• The location accuracy of the robot is bounded by 
– The current quality of the map  

– The relative sensor measurement  

46 

Spring Analogy 
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47 

Constrained Local Submap Filter 

48 

CLSF Registration 
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49 

CLSF Global Estimate 


